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a b s t r a c t

Dynamic decisions arise in many applications including military, medical, management, sports, and
emergency situations. During the past 50 years, a variety of general and powerful tools have emerged
for understanding, analyzing, and aiding humans faced with these decisions. These tools include
expected and multi-attribute utility analyses, game theory, Bayesian inference and Bayes nets, decision
trees and influence diagrams, stochastic optimal control theory, partially observable Markov decision
processes, neural networks and reinforcement learning models, Markov logics, and rule-based cognitive
architectures. What are all of these tools, how are they related, when are they most useful, and do these
tools match the way humans make decisions?We address all of these questions within a broad overview
that is written for an interdisciplinary audience. Each description of a tool introduces the principles upon
which it is based, and also reviews empirical research designed to test whether humans actually use these
principles to make decisions. We conclude with suggestions for future directions in research.

© 2009 Elsevier Inc. All rights reserved.
Decision making is not getting any easier. Today’s decisions are
becomingmore complex,with greater uncertainty, increasing time
pressure, more rapidly changing conditions, and higher stakes.
These dynamic types of decisions arise in many areas including
military, medical, management, sports, and emergency situations,
just to name a few (Bar-Eli & Raab, 2006; Klein, 1998). Examples of
dynamic decisions within each of these areas include sequential
information sampling, optional stopping of search, detection of
change, navigational control, robotic tasks, health management,
inventory control, portfolio management, emergency resource
allocation, and many others.
A large box of tools has emerged for understanding, analyzing,

and aiding humans faced with these decisions. This tool box
includes expected and multi-attribute utility analyses (Keeney &
Raiffa, 1993; Luce, 2000), game theory (Fudenberg & Tirole, 1991;
Myerson, 1991), Bayesian inference (DeGroot, 1970) and Bayes
nets (Pearl, 1988), decision trees and influence diagrams (Clemens,
1996), stochastic optimal control theory (Stengel, 1986), partially
observableMarkov decision processes (POMDP; Puterman (1994)),
neural network (Haykin, 1999) and reinforcement learningmodels
(Sutton & Barto, 1998), and rule-based cognitive architectures
(Newell, 1990).
What are all of these tools, how are they related, when are

they most useful, and do these tools match the way humans make
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decisions? Part of the answer to this question is that some of
these tools (Markov decision problems, decision trees, influence
diagrams, and Bayes nets) are models of the decision situation
while the remaining are tools (expected and multi-attribute
utility analyses, game theory, Bayesian inference, stochastic
optimal control theory, POMDPS, reinforcement learning, rule
based cognitive architectures) that can be used to analyze these
situations to come to a (sometimes optimal) decision. There is
more to these questions than this simple answer and in this article
we aim to give a historical perspective which attempts to describe
how these tools evolved across time. This perspective perhaps
allows one to look ahead for new tools on the horizon or at least for
directions where new tools need to be developed. The review also
begins with simpler tools and works toward more complex ideas.
Due to the scope of the review we will give a broad overview that
briefly reviews many topics, rather than a detailed and thorough
review of a specific topic.

1. A generic framework for dynamic decisions

First, let us provide a theoretical framework for discussing
dynamic decisions. The framework is illustrated in Fig. 1 and can
approximate a number of decisions with more specialized formal
structures (Bertsekas, 1976, 1987). This systemhas a set of possible
actions A, a set of system states X, an output set Y, and a set of
uncertainty factors E, which in the figure is further decomposed
into uncertainty about the state and uncertainty about the output.
To be concrete, consider a fisherman who at several different

time points during the day (or more generally throughout the
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Fig. 1. A generic dynamic decision problem.

season) must decide where he is going to fish. 1 To do so,
the fisherman selects among a set of alternatives or actions A
(e.g., shallows in the Southern section of the lake or deep bay in the
North). The decision at each time point reflects the abundance of
fish at each location or the state of the systemX and the fisherman’s
uncertainty in this abundance. It is also a function of the amount
of fish caught or the output set Y , about which the fisherman
may also be uncertain. For the time being, assume for simplicity,
that each of the sets is finite (possibly large enough to closely
approximate continua if needed) and that x ∈ X, y ∈ Y , a ∈ A,
and e ∈ E. Additionally, suppose actions are taken and outputs are
experienced at a finite but possibly large number of discrete time
points t ∈ {t1, . . . , tN}, where t0 represents the current time point
and tN the furthest time point in the future used to make plans
(which defines the decision horizon).
In this dynamic system the state of the system changes from

time point to time point. For example, presumably our fisherman
catches some fish and changes the state of the supply at some
location. We characterize this change in the system with a system
updating function S : X×A×E→ X such that xt+h = S(xt , at , et).
That is, the state of the system at time point t+h is a function of the
previous state xt , the action taken at , and the uncertainty at time
point et , t . There is also an output functionM : X×A×E→ Y such
that yt = M(xt , at , et). Note that we assume that the state vector
x contains all the information and memory about the past history
needed to update the system for the future, and the output vector
y contains both measurements of the states as well as payoffs for
the actions.
Thedecisionmaker needs to formapolicy, P , for choosing action

a at time point t , which depends on the estimate of the current
state at each time point, at = Pt(xt). The action in turn produces an
output yt via the output function at each time point. The resulting
sequence of outputs (y1, y2, . . . , yN ) is assigned some path payoff
value denoted R(y1, . . . , yN). In the fisherman example, the payoff
might be the net value added in terms of the number of fish caught
over the time and effort spent. Normally, the decision maker’s
objective is assumed to be to determine a policy P for selecting
actions that maximizes the expected path payoff (averaged over
paths for a given policy). That is the decision maker finds the P
that maximizes EU(P) = E[R(y1, . . . , yN)|P]where the maximum
is taken over feasible selections of possible P ’s.
The dynamic decision framework in Fig. 1 encompasses a broad

range of decision situations including bandit problems (Berry &
Fristedt, 1985). These problems or very similar problems have
been popular in psychology (see Barron & Erev, 2003; Denrell,
2005, 2007; Erev & Barron, 2005; Steyvers, Lee, & Wagenmakers,
2009; Yechiam & Busemeyer, 2008). In these problems you are
faced repeatedly with a choice among n different options, or
actions. The options are different stochastic processes so that each
choice produces a numerical reward determined by the respective
stochastic process. If we have n = 2 options (play or not) then
the problem can be analogous to its namesake: a slot machine.
With multiple options the problems also reflect the decision our
fisherman face about which location to fish in. The goal of the

1 We thank Ido Erev for suggesting we use this fishing example inspired by Lane
(1989).
decision makers in these problems is to maximize their earnings
over the entire (often finite) horizon. Note that amore general form
of the bandit problem is a restless bandit problemwhere the payoff
distributions are allowed to change over time (see Biele, Erev, & Ert,
2009; Whittle, 1988)
The challenge decisionmakers facewith bandit problems is that

the characteristics of each option are often unknown. However,
decision makers are assumed to form an expectation from each
option. Thus, there are two benefits from selecting an option:
(1) immediate payoffs, and (2) information that can be used to
develop one’s expectation to make better choices in the future.
Selecting the best option at any time point is often called the
greedy action because it is exploiting the known values of the
options. Selecting the other lesser valued options is an exploration
choice because this allows decision makers to better form their
expectation about the other options,which in the long run could be
a more profitable selection if you happen to hold a mistaken belief
about some of the options. This conflict between exploration and
exploitation occurs inmany real world decisions and is at the heart
of the question decision-makers face in determining their strategy
in these problems: how much to explore and how and when to
exploit their knowledge. One way to answer this question is with
dynamic programming described next (see Berry & Fristedt, 1985,
for more details).

1.1. Solving for optimal policies

Finding an optimal policy for a dynamic decision can be a very
complex problem, but the task becomes easier if one can adopt
what is called a separable utility function. A utility function sat-
isfies separability if the path payoff R(y1, . . . , yN) can be decom-
posed into the sum of the utilities of the separate contributions
(assuming joint independence, see Koopmans (1960), postulate 3′).
This function is typically formalized in terms of the sum of all pos-
sible future rewards, R(y1, . . . , yN) =

∑
t γt · u(yt). The param-

eter γt represents a weight for discounting payoffs depending on
how far in the future they will occur. It represents the psychologi-
cal principle that decision makers often prefer earlier rewards to
later ones. In dynamic decision problems this discounting func-
tion is also important for convergence in infinite horizon problems
where N →∞. In economics, the discount weight γt is usually set
equal to an exponential function, γt = γ t (0 < γ < 1). Psycho-
logical research, however, suggests that other discount functions
are more descriptive of human preference (Loewenstein & Prelec,
1992).
Assuming separability (a topic we will return to in Section 4),

the problem for the decision maker is to find a policy that
maximizes the objective

EU(P) = E[R(y1, . . . , yN)|P] = E

[∑
t

γt · u(yt)|P

]
=

∑
t

γt · E[u(yt)|P] (1)

for t ∈ {t1, t2, . . . , tN}. The expectation is based on the
probability that the system updates to a particular state. Dynamic
programmingmethods solving for optimal policies with backward
induction use this representation of utility and generally operates
in the following manner.
Suppose the decision maker is facing the final decision to be

made at time tN . Expanding the summation on the right hand side
of Eq. (1) we can isolate the last contribution to the expected path
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payoff as follows:

E[R(y1, . . . , yN)|P] = (γ1 · E[u(y1)|P] + · · ·

+ γN−1 · E[u(yN−1)|P])+ γN · E[u(yN)|P]. (2)

The expected payoff for the last stage, E[u(yN)|P], only depends on
the action taken at this stage produced by policy PN , E[u(yN)|P] =
E[u(yN)|PN ]. To optimize this expected payoff, an action is selected,
a∗N = P∗N(xN), that maximizes E[u(M(xN , PN(xN), eN))] for each
possible final state xN . The value of this solution is defined as
VN(xN) = γN · E[u(M(xN , P∗N(xN), eN))]. At this point, we do not
know what the final state will be, but we know it depends on the
previous state and action, and so the maximum expectation over
the final state can be described as

γN · E[u(yN)|P∗N ] =
∑
p(S(xN−1, aN−1, eN−1) = xN) · VN(xN),

where p(S(xN−1, aN−1, eN−1) = xN) is the probability the system
updates to xN .
Having made this plan for the last stage, we can update Eq. (2) as
follows

E[R(y1, . . . , yN)|P] = (γ1 · E[u(y1)|P] + · · ·
+ γN−2 · E[u(yN−2)|P])

+ γN−1 · E[u(yN−1)|PN−1] + γN · E[u(yN)|P∗N ], (3)

and recede backward a step to identifying a maximizing policy to
use in the second-to-last stage. However, because E[u(yN)|P∗N ] de-
pends on xN−1 and aN−1 the optimal policy in the second-to-last
stage P∗N−1(xN−1)mustmaximize E[u(M(xN−1, PN−1(xN−1), eN−1))]
+ γN · E[u(yN)|P∗N ] for each state xN−1. Define the value of this so-
lution as

VN−1(xN−1) = γN−1 · E[u(M(xN−1, P∗N−1(xN−1), eN−1))]
+ γN · E[u(yN)|P∗N ]
= γN−1 · E[u(M(xN−1, P∗N−1(xN−1), eN−1))]

+

∑
p(S(xN−1, P∗N−1(xN−1), eN−1) = xN) · VN(xN).

The maximum expectation over the final two states is then equal
to

γN−1 · E[u(yN−1)|P∗N−1] + γN · E[u(yN)|P
∗

N ]

=

∑
p(S(xN−2, aN−2, eN−2) = xN−1) · VN−1(xN−1).

Havingmade this plan for the last two stages,we canupdate Eq. (3),

E[R(y1, . . . , yN)|P] = (γ1 · E[u(y1)|P] + · · ·
+ γN−3 · E[u(yN−3)|P])+ γN−2 · E[u(yN−2)|PN−2]
+ γN−1 · E[u(yN−1)|P∗N−1] + γN · E[u(yN)|P

∗

N ],

and back up to the third-to-last stage. The maximum ex-
pected payoff for the last three stages is obtained by select-
ing P∗N−2(xN−2) that optimizes E[u(M(xN−2, PN−2(xN−2), eN−2))]+
γN−1 · E[u(yN−1)|P∗N−1] + γN · E[u(yN)|P

∗

N ] for each state xN−2. We
can define this solution as

VN−2(xN−2) = γN−2 · E[u(M(xN−2, P∗N−2(xN−2), eN−2))]

+

∑
p(S(xN−2, P∗N−2(xN−2), eN−2) = xN−1) · VN−1(xN−1).

Suppose the decision only has three stages so that N = 2 and we
started in state xN−2 = x0. Then the solution process is completed
because all of the variables would be known at this point.
The whole process can be extended backwards step by

step beyond three stages. Given that we have already found
{P∗N , P

∗

N−1, . . . , P
∗

N−k−1}, and we know VN−k−1(xN−k−1), we can
then back up another step by solving for P∗N−k(xN−k) to produce

VN−k(xN−k) = γN−k · E[u(M(xN−k, P∗N−k(xN−k), eN−k))]

+

∑
p(S(xN−k, aN−k, eN−k) = xN−k−1) · VN−k−1(xN−k−1).
The process we just described is the recursive form of the
dynamic programming algorithm and it forms the basis for finding
the optimal solution for many dynamic decisions. As can be
seen from above, the dynamic programming algorithm breaks the
value of stage k into the sum of the immediate expected utility
and the expected utility for the future state of the system. This
process depends on a separable utility function, which is quite a
strong restriction, but necessary for using the recursive backward
induction schemes to solve complex problems with long time
horizons.

2. Utility theory

Utility theory is designed for evaluating and selecting courses
of actions and is thus a tool that can be used to help find an
optimal solution in dynamic decision problems. This includes
evaluations involving risk or uncertainty of the outcomes, as
well as evaluations involving multiple conflicting attributes or
objectives. For example, for our fisherman, utility theory would be
used for evaluating whether or not the expected number of fish
caught outweighs the cost of resources spent to catch the fish.
Utility theory has a long history stretching all the way back to

the 1700’s with some inspirational work by Daniel Bernoulli (see
Bernoulli (1954/1738)). A rigorous modern theory of utility was
first formulated by von Neumann and Morgenstern (1947). This
theory was designed to provide a representation of preferences
over risky actions, where a risky action is defined by a probability
distribution over a set of possible uncertain outcomes. For
example, which of two investments would you prefer: a risky
investment aR which has a .50 probability of returning a gain equal
$100,000 or a .50 probability of producing loss equal to $50,000;
versus a safe investment aS which returns a gain of $25,000 for
sure?
To address this investment question, von Neumann and

Morgenstern proposed a small set of intellectually appealing
axioms, which, if accepted, leads to a formula for meaningfully
assigning real numbers or utility values to gambles via their
expected utility, EU =

∑
pi · u(yi). Where pi is the probability

of outcome yi and u(yi) is the utility of outcome yi, and the
sum is across all possible outcomes. For example, one axiom is
transitivity: If you prefer action a1 to a2, and you prefer action
a2 over a3, then you should prefer action a1 over a3. Transitivity
seems quite reasonable and one might question the rationality of
a person who violates this axiom (but see Rieskamp, Busemeyer,
and Mellers (2006)). Once transitivity and the other von Neumann
and Morgenstern axioms are met, then a utility function can be
constructed that can then be used to compare your preferences
over risky actions (Luce, 2000). This utility function assures that
choicesmadebased on the assignedutilitieswill satisfy the axioms.
Thus, utility theory defines what most decision theorists accept as
the theory of rational or normative decision making.
Referring to our question of investment preference, if you used

a utility function such as u(y) =
√
y for y ≥ 0, and u(y) = −

√
|y|

for y < 0 then you could rationally prefer investment aS , with
EU(aS) =

√
$25,000 = 158, to investment aR with EU(aR) =

.5
√
100,000 − .5

√
50,000 = 46, even though the expected dollar

value for aR is much larger. This is an example of what a decision
theorist would call a ‘risk averse’ utility function. Risk aversion is
not unreasonable —many of us buy insurance, which is also a ‘risk
averse’ decision.

2.1. Extensions of utility theory

Three important extensions followed the seminal work by
von Neumann and Morgenstern. First, the original theory was
limited to ‘actions under risk’ with probabilities provided by some
valid source or derived from some mechanism in an objective or
uncontroversial manner. For example, suppose the return depends
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on the flip of a fair coin, then it is uncontroversial to assign equal
probabilities. Rarely does a decision maker face a situation with
such crisp and precisely known probabilities. More often one is
facedwith ‘actions under uncertainty’ in which you have to rely on
your personal beliefs about uncertain events. For example, suppose
the returndepends onwhether a democrat or a republicanwins the
next election. Nobody really knows the exact probability for this
event, and people may differ in their beliefs about the likelihoods.
Savage (1954) extended the axioms of expected utility theory to
allow for personal probabilities for uncertain events.
Second, the original theory was limited to gambles with

outcomes that can be described by some uni-dimensional value
like money. However, many decisions involve multiple and
possibly conflicting dimensions such as quality and cost of a
consumer product, or quality and cost of medical care, location
and size of an apartment, or speed versus accuracy of a decision.
Keeney and Raiffa (1993) developed an axiomatic foundation for a
comprehensive utility theory for multi attribute outcomes.
The third extension is more recent and fundamental because it

changes the axioms upon which the original rational theory was
founded. One of the axioms assumed by all of the above utility
theories is the independence axiom, which can be loosely stated
as follows: If one prefers action a1 to a2, then one should also
prefer a probabilistic mixture of action a1 with a3 to the same
probabilistic mixture of action a2 with a3. According to classic
utility theory, the common component of the mixture, a3, should
cancel out and not affect your preference. However, thirty years
of experimental tests of this independence axiom indicate that
people generally do not obey it (Allais, 1979; Kahneman & Tversky,
1979). Apparently the independence axiom is too restrictive, and
so utility theorists have weakened the axiom and produced a new
formula for rank orderingpreferences called rankdependent utility
theory (see Luce, 2000, for a review).

3. Bayesian inference and bayes nets

Bayesian inference is used to infer the probability of a
hypothesis or the probability of a state of the world, based on
previously collected evidence or data. For example, this tool would
be useful for our fisherman who needs to infer the distribution
of fish in areas of the lake based on environmental cues or
information from other people. Other applications of Bayesian
inference might be to infer the hidden intent of an enemy based
on previous behaviors that you have observed or infer a disease
state of an individual based on laboratory tests.
Expected utility theory and Bayesian inference form the two

pillars upon which decision theory is built, and they integrate
in a rational and elegant manner to provide prescriptions
for decision making. This integration should not be taken for
granted because it is difficult to rationally justify methods
for integrating beliefs with values to inform decisions using
alternative models of reasoning under uncertainty. The latter
includes the Neymann–Pearson hypothesis testing procedure,
Zadeh’s fuzzy set theory (Zimmerman, 2001), or Dempster–Shaffer
belief systems (Shafer & Pearl, 1990).
To see the close link between Bayesian inference and Expected

Utility, consider for example, the deferred decision problem (also
called the sequential sampling problem). The deferred decision
problem can be viewed as a dynamic version of signal detection
theory (Smith, 2000), and it is highly relevant to problems such
as pattern recognition and target detection. Suppose a system can
be in either a signal state (xS) or a noise state (xN) with prior
probabilities of p(xS) and p(xN). You have available one of two
possible actions: ah = act hostile, af = act friendly. Your payoff
depends on both the true state and the action: u(ah, xS) is the gain
for a hit, u(ah, xN) is the loss for a false alarm, u(af , xS) is the loss for
amiss, andu(af , xN) is the gain for a correct rejection. Your decision
is informed by collecting a series of independent and identically
distributed samples, [e1, e2, . . . , et ], whose distribution depends
on the state, and each sample is assumed to cost a fixed amount c .
Using the notation from our generic dynamic system described

above, the previous state of the system xt−1 is updated after
sampling each new observation et to a new state xt , using the
posterior odds form of Bayes rule:

xt =
p(xS |[e1, . . . , et ])
p(xN |[e1, . . . , et ])

= xt−1 ·
p(et |xS)
p(et |xN)

,

with x0 =
p(xS)
p(xN)

.

The posterior probabilities of each hypothesis are

p(xS |[e1, e2, . . . , et ]) =
xt
1+ xt

and

p(xN |[e1, e2, . . . , et ]) =
1

1+ xt
.

At each time point you are faced with a choice among three
options: stop and act hostile, stop and act friendly, or sample
another observation. The expected utilities for each of three actions
at time t are:
EU (stop and choose ah|xt )= xt

1+xt
u(ah, xS)+ 1

1+xt
u(ah, xN)

EU (stop and choose af |xt )= xt
1+xt
u(af , xS)+ 1

1+xt
u(af , xN)

EU (continue to sample |xt )=−c +
∑
p(et+1) · V (xt+1)

where V (xt+1) is the expected utility of following the optimal pol-
icy from next evidence state xt+1 after observing a new observa-
tion et+1. The optimal decision is to choose the option that is the
maximum of these three expected utilities at each point in time.
Using the dynamic programming methods discussed earlier, it can
be shown that the optimal strategy is to continue sampling until
the posterior probability exceeds a fixed threshold (DeGroot, 1970;
Edwards, 1965; Rapoport & Burkheimer, 1971). This idea forms the
rational foundation for randomwalk and diffusion models of deci-
sion making, which are popular in cognitive science (Busemeyer &
Townsend, 1993; Laming, 1968; Link &Heath, 1975; Ratcliff, 1978)
aswell as neuroscience (Bogacz, Brown,Moehlis, Holmes, & Cohen,
2006; Schall, 2003; Shadlen & Newsome, 2001).

3.1. Bayes nets

An important extension of Bayesian inference is a graphical
tool called Bayes nets (Pearl, 1988). They are particularly useful
in representing complex uncertain situations to find the joint
distribution of the underlying events. Specifically, a Bayes net
is an augmented directed acyclic graph represented by a set of
vertices and a set of directed edges joining vertices. Each vertex
contains a probability distribution that depends on the parent
edges (an example is given below). Thus, Bayes nets become
efficient at representing complex uncertain situations when the
parents of the vertices are relatively small in number so that
the joint distribution can be reconstructed from the product of
conditionally independent components.
Fig. 2 provides a simple example of a Bayes net that contains

5 vertices. For example, e1 could represent a disease state, which
affects the probabilities assigned to the values of measurements of
medical symptoms e2 and e3, and these measurements influence
the likelihood of the type of a diagnosis at e4, and finally this
diagnosis affects the probability of different treatments at e5.
The random variable e1 does not depend on any other variable

in this system so that we only need to define p(e1 = xi) for all i.
The random variable e2 depends on e1, so that we need to define
p(e2 = xi|e1 = xj) for all i, j. Similarly, for e3 we need to define
p(e3 = xi|e1 = xj) for all i, j. The random variable e4 depends on
both e2 and e3 but it is conditionally independent of e1 so we need
to define p(e4 = xi|e2 = xj, e3 = xk) for i, j, k. Finally e5 only
depends on e4 so we only need to define p(e5 = xi|e4 = xj) for
all i, j. All the joint probabilities can then be computed from the
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product of conditionals
p(e1 = xi, e2 = xj, e3 = xk, e4 = xl, e5 = xm)
= p(e1 = xi) · p(e2 = xj|e1 = xi) · p(e3 = xk|e1 = xi)
× p(e4 = xl|e2 = xj, e3 = xk) · p(e5 = xm|e4 = xl).

In sum, if each node had 5 values, then we need to define (5−1)+
5(5− 1)+ 5(5− 1)+ 25(5− 1)+ 5(5− 1) = 164 probabilities to
reconstruct the entire set of (55−1) = 3124 joint probabilities. All
sorts of other conditional probabilities, such as p(e5 = xi|e1 = xj)
or p(e1 = xi|e4 = xj), can be inferred from the joint distribution.

3.2. Hierarchical Bayes nets

Of course, 164 probability estimates is still a large number
to determine, and so how can these estimates be determined?
Furthermore, how can one determine the structure of a Bayes
net? Bayesian learning schemes are being developed to solve these
problems (Neapolitan, 2004). One interesting example is the use of
hierarchical Bayes nets (Tenenbaum, Griffiths, & Kemp, 2006). At
the top of the hierarchy are probabilities assigned to hypotheses
about the form of various structures for a network (e.g., assign
a probability to a tree form). The next layer assigns probabilities
to specific structures given a hypothesized form (e.g. assign a
probability to a specific type of tree structure, given that it is a
tree form). The final layer assigns probabilities to the branches
of a specific tree structure. Using this hierarchical structure, data
can be used to inform not only the edges of a particular Bayes
net, but also the most appropriate abstract form of the Bayes net.
This generalization of Bayes nets provides robustness with respect
to the representation of knowledge. Bayes nets are not limited to
discrete variables, and a very elegant theory can be formulated
based on multivariate normal distributions.

3.3. Human inference

There is quite a large empirical literature on probability
inference and causal inference (see Kahneman, 1982, for a review
of probability inference and Novick & Cheng, 2004, for a review of
causal reasoning). This research addresses the question of whether
or not people actually reason according to the rules of probability.
To get an idea of these findings, it is worthwhile to point out
at least two important results from each area. A large number
of experiments on causal inference have been conducted using
simple 2 × 2 tables of frequencies of the form: putative cause
present or absent, effect observed or not. What is frequently found
in this paradigm is that people over weight the frequencies in
the ‘cause present–effect present’ cell. If this frequency is high,
people tend to infer a contingent statistical relationship when in
fact none is present; and when this frequency is low, they tend
to underestimate a true contingency. Many consider this a sign
of irrationality in human inference; however others have tried to
explain this from a Bayesian point of view (Anderson, 1990).
Perhaps the most famous finding related to probabilistic

inference is the conjunctive fallacy (Tversky & Kahneman, 1983).
For example, suppose you are told that Harry is a 56 year old
overweight business manwho is under high pressure and who has
a lot of stress in his life. Given this fact, you are asked to judge the
likelihood of three future scenarios for Harry: (a) Harry will die
within the next year; (b) Harry will have a heart attack within the
next year; (c) Harrywill have a heart attack and diewithin the next
year. Not surprisingly, most people judge (b) to be most likely, but
surprisingly they judge (c) to bemore likely than (a). This judgment
is a violation of a basic property of probability because p (diewithin
next year) = p (heart attack and die within next year) + p (no
heart attack and die within next year) ≥ p (heart attack and die
within next year). Once again this has been interpreted as another
dramatic sign of irrationality in human inference, however again
there is a possible Bayesian explanation for this result (Tenenbaum
& Griffiths, 2001).
Fig. 2. A Bayes net with 5 vertices.

4. Decision trees and path utility

The complexity in dynamic decision problems makes them
difficult to conceptualize for both lay and expert decision makers.
A simple but important tool that decision theorists use to represent
relatively short time horizon dynamic decisions is a decision tree
(Clemens, 1996; von Winterfeldt & Edwards, 1986). This tool
is limited to short time horizons because the branches in the
tree grow in number very fast with extensions of the decision
horizon. But, when applicable, decision trees are a useful tool
for understanding and reducing the cognitive load of dynamic
decision problems. In reviewing this tool we will also address two
important theoretical issues that arise in dynamic decisions: one is
the separability of the utility function, and the second is the reliance
on backward induction. Similarly, two interesting psychological
issues arise in this context: one is called the sunk cost problem, and
the second is the problem of dynamic inconsistency.
Consider the example shown in Fig. 3, which represents a

dynamic decision that a fisherman may face at a fishing contest.
Suppose you bet another person that you can catch more weight
than the other. The decision process begins at node a1 where you
can decide to travel to a lake in the Westside of town (West or
left at a1) or in the Eastside (East or right at a1). Imagine that you
estimate that your opponent will catch 2 or 3 lbs. of fish with equal
probability.
Following any of these outcomes you potentially face a decision

about howyouwant to proceed. For the purpose of this illustration,
consider what youmight do if the opponent catches a 2 pound fish
(y1 = −2, left at e1) after you go East. The state of the tournament is
now you are 2 pounds behind’. At this point, you have to decide if
you are going to be aggressive and go for a 3 lb. fish (left branch
at a2) which you might catch with probability .15 or not. Now
consider instead the alternative where you go for a 2 pound fish
(right branch). To make the scenario interesting, imagine if you
catch a 2 pound fish you expect to have time to go after another
fish. Therefore, if you catch a 2 pound fish (right at e3) then you
may catch another fish or not. And this fish could be 0, 1, 2, or 3
pounds with probabilities .4, .25, .25, and .10, respectively.

4.1. Separable utility functions and sunk cost

To decide what actions to take in this problem, you need to
select a payoff function for each path, where a path is a sequence of
actions and events starting at the top node and ending at a bottom
node. Suppose youuse thedifference in total pounds betweenwhat
you and your opponent have accumulated as the utility function for
each path. That is, the utility of an outcome equals the net weight
accumulated, and the path payoff equals the net weight produced
by a path. Note that this utility function satisfies the separability
assumption: R(y1, y2) = u(y1)+ u(y2). Using this utility function,
we can ignore the ‘sunk cost’ of our opponent catching a two pound
fish when we make our decision to travel to a new spot at node
a2 and we simply focus on the future consequences. To make a
decision at a2 we compare the expected utilities associated with
each future path following a2:
EU( left at a2) = (.15)(3) = .45 < EU(right at a2) =

(.2)(.4)(2)+ (.2)(.25)(3)+ (.2)(.25)(4)+ (.2)(.1)(5) = .61. The
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Fig. 3. A decision tree involving a sequence of actions a fisherman in a competition to catch the most weight in fish might face.
difference in expected utilities, .61 − .45 = .16, favors going
right at a2. This action is valid in this case because the ‘sunk cost’ of
losing 2 pounds to your competitor is a common consequence that
would simply cancel out when we compare the utilities of going
left and right at decision node a2 after incorporating the common
loss of two pounds: EU(left at a2) = −2 + (.15)(3) = −1.55 <
EU(right at a2) = −2+(.2)(.4)(2)+(.2)(.25)(3)+(.2)(.25)(4)+
(.2)(.1)(5) = −1.39, and the difference is−1.39−(−1.55) = .16,
the same as before.
Suppose instead your goal is to win the fishing contest (catch

themostweight) rather thanmaximize the netweight caught. That
is if you are down 2 pounds you would see catching a 2 pound fish
as equivalent to catching no fish at all because you would not win
the contest. Formally, R(y1, y2, . . . , yN) = 1 if y1+y2+· · ·+yN >
0, and zero otherwise. If the utility function is separable then,

R(y1 = 0, y2 = 2) > R(y1 = 0, y2 = 1)→
u(y1 = 0)+ u(y2 = 2) > u(y1 = 0)+ u(y2 = 1)→
u(y2 = 2) > u(y2 = 1)→
u(y1 = −2)+ u(y2 = 2) > u(y1 = −2)+ u(y2 = 1)→
R(y1 = −2, y2 = 2) > R(y1 = −2, y2 = 1).

But, in fact this new utility function assigns R(y1 = −2, y2 = 2) =
R(y1 = −2, y2 = 1) = 0. Therefore, this utility function violates
the additive rule required for separability.
Consider the implications of this violation in the fishing contest

decision tree in Fig. 3. At node a2, with this different goal of
simply winning the contest, if we now mistakenly ignore the
‘sunk cost’ of our opponent catching a fish and evaluate only the
future consequences we find that EU(left at a2) = (.15)R(3) =
(.15)(1) = .15 < EU(right at a2) = (.2)(.4)R(2) +
(.2)(.25)R(3) + (.2)(.25)(4) + (.2)(.1)(5) = (.2)(.4)(1) +
(.2)(.25)(1) + (.2)(.25)(1) + (.2)(.1)(1) = .20 and we would
choose to go for a 2 pound fish. But, if we correctly include the
−2 loss from the pounds fish our opponent caught at node e1
into our net weight, then the correct utilities are EU(left at a2) =
(.15)R(3−2) = (.15)(1) = .15 > EU(right at a2) = (.2)(.4)R(2−
2) + (.2)(.25)R(3 − 2) + (.2)(.25)(4 − 2) + (.2)(.1)(5 − 2) =
(.2)(.4)(0)+ (.2)(.25)(1)+ (.2)(.25)(1)+ (.2)(.10)(1) = .12 and
we would choose to go for the 3 pound fish (left at a2).
Several psychological experiments have been conducted to
examine whether or not decision makers ignore past outcomes
and base their decisions solely on future consequences (Arkes &
Blummer, 1985). Frequently it is found that people are not willing
to ignore these ‘sunk costs’ and this is usually considered irrational
behavior (see Dawes & Hastie, 2001). However, as this example
shows, whether or not one should consider past payoffs when
making future decisions depends on whether or not the utility
function is separable.

4.2. Backward induction and dynamic consistency

In order to decide what to do at decision node a1 and more
generally find an optimal solution to problems represented in
decision trees like our fishing example, decision theorists usewhat
is called a backward induction algorithm. Youplan ahead, andwork
backward from the possible future end nodes to the imminent
decision. Even though you are currently trying to decide what to
do at node a1, you need to first plan ahead and decide what action
to take at node a2. Using net pounds caught as our utility function
we find that EU (left at a2) <EU(right at a2), so that going right at
a2 is optimal, and thus EU(a2) = EU(right at a2). When we back
up and finally evaluate action a1, we compute EU(right at a1) =
(.5) · EU(a2)+ (.5) · EU(a3). Finally, to determine the final optimal
policy, you would also need to evaluate the action of going left
at a1 (going to the lake on the Westside). As discussed earlier in
Section 1, this recursive computation of expected utility lies at the
heart of dynamic programming algorithms.
To be effective, the backward induction algorithm relies on

the assumption that the decision maker will be dynamically
consistent, i.e., planned actions are faithfully carried out. For
example, suppose your selection at node a1 depends on your plan
to go right at node a2. In that case, if and when you arrive at node
a2, you need to actually go right as planned. If you change your
mind at this later stage, you would be dynamically inconsistent,
destroying the plan. Thus, dynamic consistency is a key assumption
underlying the use of backward induction, and backward induction
is the basic principle underlying the use of dynamic programming.
Several recent experiments have been designed using simple

gambles to empirically determine whether or not people actually
satisfy dynamic consistency (see Cubitt, Starmer, & Sugden,
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Fig. 4. An influence diagram with decision and event node dependencies.

2004, for a review). These empirical results show that dynamic
consistency frequently fails even when simple gambles are used
(involving real money) and participants are given full information
about the probabilities and payoffs before making their plans.
Furthermore, this dynamic inconsistency far exceeds the rate of
inconsistency for repeated choices, and so the result cannot be
explained by choice inconsistency alone. Apparently the decision
makers’ utility function changes as they progress down a decision
tree.

4.3. Influence diagrams

On the one hand, Bayes nets provide a convenient graphical
representation for making inferences but not for evaluating
decisions. On the other hand, decision trees are useful for planning
decisions, but they do not provide a cogent representation of the
dependencies among events for making inferences. These two
tools can be combined into a common framework for representing
decision problems which call for making inferences and decisions
using what are called influence diagrams. Essentially, decision
nodes and the dependencies entailed by these decisions are
combined with event nodes and dependencies among events to
form an integrated representation (Clemens, 1996; Howard &
Matheson, 2005). Fig. 4 shows a situation where the decision at
node a1 depends on knowing events e1 and e2, and the event at
e4 depends on events e1, e3, and a1. The final utility depends on
event e4. The calculation of utility for each action produced by the
influence diagram turns out to be the same as that for the decision
tree, and so the same optimal policy will be selected. The gain
fromusing influence diagrams ismainly obtained bymore efficient
representation and the improvement in understanding.

5. Game theory and equilibrium solutions

Most of the situations and tools we have talked about until now
have assumed that the outcomes a decision maker experienced
were not directly influenced by the decisions opposing decision
makers made. Game theory is a tool that can be used when
this is not true. That is when the outcomes in these situations
for one decision maker are also a function of the choices others
make (Fudenberg & Tirole, 1991; Myerson, 1991). Games involve
intelligent adversaries (players) who also have preferences over
the outcomes of the situation you are in and have partial control
of the outcomes. Decision trees, such as those in Fig. 3, can easily
be augmented with decision nodes that distinguish the various
players for both simultaneous and sequential games forming what
is called extensive form representations of the game (Luce & Raiffa,
1957).
Fig. 5. Two player, six stage centipede Centipede Game.

In game theory, players are typically assumed to be fully
rational and only wish to maximize their self interest (Luce &
Raiffa, 1957). The rational strategy under these assumptions is a
Nash equilibrium strategy (Nash, 1951): If all the players adopt
the equilibrium strategy, then no player has any incentive to
unilaterally change strategies. For sequential games, the Nash
equilibrium is often found by solving the game in extensive form
using the subgame perfect equilibriummethod (Harsanyi & Selten,
1988). This method forms a set of strategies that constitute a Nash
equilibrium in every subgame of the original game. The latter is
found by backward induction by means of finding the optimal
strategy for the last play of the game, then find the optimal strategy
for the second to last play, given the optimal strategy of the last
play, and continue until this process works back to the beginning.
Fig. 5 illustrates a game first developed by Rosenthal (1981)

often studied in the laboratory called the centipede game (see
Camerer (2003)). In this case, you are playing against your
opponent and you have the first move. If you go down, you win $5
and the opponent gets only $1 and the game is over; but if you go
right, then your opponent makes the next move. If your opponent
goes down, you win $1 and you opponent wins $15 and the game
is over; but if your opponent goes right, then you make the next
move.
Note that if you and your opponent progress to the final stage,

then you could earn up to $100while your opponent could earn up
to $90. However, because the game is dominance solvable,working
backwards, we see that reaching the last node is not what should
happen. Starting at the last possible decision stage, if the game ever
reaches this point then your opponent has the final move, and she
is better off going down (earning $95) rather than moving right
(earning $90). Assuming that this is what your opponent will do
at the last stage, if you reach the second to last stage, you will
be better off going down (earning $80) rather than going right
to the last stage (earning $75). Working backwards then finally
leads to the conclusion that at the first move you will go down
(earning $5) rather than moving right (earning $1). Thus, as game
theory assumes, if players are rational and have full knowledge
the prediction for the game is grim and perhaps paradoxical: it
will end on the first move with you earning only $5 and your
opponent earning only $1, even though you both could cooperate
and potentially earn very much more.
Empirically, during centipede games with low stakes (possible

earnings between $0 and $25.60) people quite frequently move
to the right with the tendency to go down increasing as one
approaches the end of the tree (McKelvey & Palfrey, 1992).
However, when the stakes are increased 100-fold (possible
earnings range between $0 and $2560.00), the number of players
are increased from 2 to 3, and players are rematched over iterated
games, behavior approaches the equilibrium play of stopping on
the first node (Parco, Rapoport, & Stein, 2002). An adaptive learning
model that assumes an updating of individual choice probabilities
accounts for these results over and above other static and dynamic
models (Rapoport, Stein, Parco, & Nicholas, 2003)

5.1. Backward induction revisited

We see in this example, just as with the analysis of decision
trees, that backward induction is an important assumption
underlying the solutions for equilibrium strategies. In other areas,
like bargaining with another agent, experimental economists have
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found evidence that people do not even implement an information
search strategy consistent with backward induction. Instead they
tend to search for information in a forward looking manner (see
Johnson, Camerer, Sen, & Rymon, 2002).

6. Stochastic optimal control theory

Control theory is most useful for planning paths that are
evolving smoothly across time and space. In this case, the set of
states, actions, and uncertainties are continuous rather than finite
and discrete. The time index is also usually treated as a continuum,
although often this is approximated by a discrete but fine grained
set of equally spaced time points. A common example for which
this tool is useful is navigating a vehicle in space and time, and
so this theory has been particularly useful for uninhabited vehicle
control (Astrom &Murray, 2008). But, control theory is not limited
to this situation, and it can be applied much more broadly to
include other examples such as managing a patient’s health across
time, or managing fishing resources over time.
Modern control theory started developing rapidly in the 1950’s,

and it developed somewhat independently of decision theory.
Initially this independent development prevented researchers
from seeing the close connections between these two theories.
Modern control theory is now based more directly on the same
principles as decision theory: the goal is to solve for a sequence
of controls that minimize some expected cost function over time.
Consider for example the very popular linear stochastic optimal

control problem. For this application, we need to extend our
generic dynamic system to allow for continuous rather than
discrete states, actions, and uncertainties; but for simplicity, we
will continue to work with a fine grain set of discrete time points.
The system updating function S is given by the matrix equation

x(t + h) = S(xt , at , et) = F · x(t)+ G · a(t)+ ex(t),

where ex(t) is a noise term. At this point let us assume that the
state is directly observable so that yt = (xt , at)′. The objective is
to select the control inputs at each time to minimize the expected
deviations around a target or desired trajectory denoted dt :

E

[∑
t

(xt − dt)′Qx(xt − dt)+ a′tQyat

]
.

Thematrices Qx and Qy are used to differentially weight deviations
on each coordinate, and differentially weight deviations from
target versus control cost.
This is equivalent to defining the goal as an expected utility

maximization problem, where the utility that results from each
action is defined as

u(yt) = −[(xt − dt)′Qx(xt − dt)+ a′tQyat ].

Decision theorists would call this an ideal point utility model
(Coombs & Avrunin, 1977). Note that this objective function
assumes a separable utility function and dynamic programming
methods (using backward induction) are used to find the optimal
solution. The optimal solution is a linear function, say C · x, of the
state variable (Stengel, 1986), so that the systemequation becomes

x(t + h) = F · x(t)+ G · C · x(t)+ ex(t)
= (F + G · C) · x(t)+ ex(t) = H · x(t)+ ex(t).

6.1. Bayesian connection with state space models

A close connection between stochastic optimal control theory
and Bayesian inference emerges when the state is hidden and
not directly observable. General state space models allow for the
possibility that the state is updated by the linear system
x(t + h) = S(xt , at , et) = H · x(t)+ ex(t).
However, the output is limited to a fallible set of measures:
y(t) = M(xt , at , et) = M · x(t)+ ey(t).
The noise terms, ex(t) and ey(t), are assumed to be normally
distributed and uncorrelated. In this case we need to estimate
the hidden or latent state from the limited and fallible measures.
Assume that ex(t) ∼ N(0,Σx) and ey(t) ∼ N(0,Σy). Then the
Kalman filter provides a Bayesian rule for state updating (Meinhold
& Sinpurwalla, 1983). Suppose that the posterior distribution at
time t − h is f (xt−h|yt−h) = N(µt−h,Σt−h). Then the prior
distribution for time t is given by
f (xt) = N(H · µt−h, Rt), with Rt = H ·Σt−h · H ′ +Σx.
Finally, the posterior distribution at time t , after incorporating the
new observation yt is
f (xt |yt) = N(µt = Hµt−h + RtM ′(Σy +MRtM ′)−1(yt −MHµt−h),

Σt = Rt − RtM ′(Σy +MRtM ′)−1MRt).

The whole process starts with some initial guesses for (µ0,Σ0),
and once these are specified, the distribution of future states
evolves according to the above recursive formula.

6.2. Human control over dynamic systems

There have been a number of psychological studies to
examine human performance on dynamic control problems (see
Busemeyer, 2002; Sterman, 1994, for reviews). Sterman (1989)
found that when subjects tried to manage a simulated production
task, they produced costs 10 times greater than optimal, and their
decisions induced costly cycles even though the consumer demand
was constant. Brehmer and Allard (1991) found that when subjects
tried to allocate resources to manage a simulated forest fire,
they frequently allowed their headquarters to burn down despite
desperate efforts to put the fire out. Kleinmuntz and Thomas
(1987) found that when subjects tried to manage their simulated
patients’ health, they often let their patients die while wasting
time waiting for the results of non-diagnostic tests and performed
more poorly than a random benchmark. In these experiments, the
participants are provided all the information that they need to
solve the optimal policy, and sowhy do people have such difficulty
controlling these dynamic situations?

6.3. Learning to control

One of the obvious reasons that it is so difficult for people
to control dynamic systems is a cognitive one. That is, even
when all the necessary information for determining the optimal
policy is provided, people do not have the cognitive resources
and knowledge to explicitly solve this complex problem. Instead,
they need to implicitly learn how to control dynamical systems
through extensive hands on experiencewith feedback. Past studies
reveal that overall performance improves with extensive training
(Gonzalez, Lerch, & Lebiere, 2003; Rapoport, 1966), and subjective
policies tend to evolve over trial blocks toward the optimal
policy (Jagacinski & Miller, 1978; Jagacinski & Hah, 1988). Thus,
humans are bounded rational decision makers (Simon, 1982),
whose performance is limited by their information processing and
learning capacities.
Three different frameworks for modeling human learning

processes in dynamic decision tasks have been proposed. One
approach is based on production rule models such as ACT-R
(Anderson, 1990; Anderson et al., 2004), SOAR (Laird, Newell, &
Rosenbloom, 1987), EPIC (Meyer & Kieras, 1997), and CLARION
(Sun, Zhang, & Mathews, 2006). These models assume that a
large set of condition–action rules is incrementally learned from
experience to control a system. For example, Anzai (1984) used a
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Fig. 6. A neural network for learning to control a dynamic system.

production rule system to describe how humans learn to navigate
a simulated ship.
A second approach is based on instance or exemplar or case

based learning. These models assume that whenever an action
leads to a successful outcome, then the preceding situation and
the successful response are stored together in memory. On any
given trial, stored instances are retrieved on the basis of similarity
to the current situation, and the associated response is applied to
the current situation. Exemplar models were employed by Dienes
and Fahey (1995) to describe how humans learn to control a
simulated sugar production task, and by Gonzalez et al. (2003) to
describe howhumans learn to control a hydraulic plant. Gilboa and
Schmeidler (1995) have used the model in economic applications
for consumer choice.
A third approach is based on the use of supervised artificial

neural network models (Haykin, 1999). Neural networks were
originally developed by psychologists to model concept learning,
pattern recognition, and language learning (Grossberg, 1988;
Rumelhart & McClelland, 1986). Supervised neural networks
require the environment to serve as a teacher by presenting
corrective feedback that indicates how the outcome produced
deviates from some target or goal state for the system. Back
propagation learning algorithms use this feedback to adjust the
weights that perform the mappings from inputs to predictions to
improve the network’s accuracy.
Fig. 6 illustrates one neural network model that uses two

types of input nodes: one representing the current state of the
environment and the other representing the current goal for the
task. These inputs feed into the next layer of hidden nodes that
compute the next action given the current state and goal. The
action and the current state then feed into another layer of hidden
nodes, which is used to predict the consequence of the action given
the current state. The connections from the current state and action
to the prediction hidden layer are learned by back propagating
prediction errors; and the connections from the current state
and current goal to the action hidden layer are learned by back
propagating deviations between the observed outcome and the
goal state. A neural network model of this form was developed by
Gibson, Fichman, and Plaut (1997) to describe learning in a sugar
production task, and it provided good accounts of participants’
performance during both training and subsequent generalization
tests under novel conditions. Neural networks are now commonly
used in engineering to automatically learn to control dynamical
systems based on large training data sets (see Bertsekas & Tsitsiklis,
1996; Jordan & Rumelhart, 1992; Miller, Sutton, & Werbos, 1991).
7. Markov decision processes

Markov decision processes (MDP’s) aremost useful for planning
complex paths that evolve in a very discontinuous and discrete
manner across long time horizons. This nicely complements
control theory, which requires a smooth evolution across time
and space. In this case, the set of states, actions, uncertainties
are all finite and discrete. The time index is also usually treated
as discrete. Examples for which this tool has been used include
target search and identification, weapons allocation, robotic tasks,
medical diagnosis, and marketing (see Cassandra, 1998 for a
review).
Markov decision processes were developed by operations

researchers a little bit later than the previously described tools
(Howard, 1960), with a close link to decision theory, but somewhat
independently of control theory. Although there are several very
fundamental differences between MDP’s and stochastic optimal
control theory, these two theories also share a lot of important
principles. As an important example of their similarity, note that
the commonly used linear stochastic control system described
earlier is also a Markov process (with continuous rather than
discrete states).
The generic model for dynamic decision making described

in Section 1 actually includes a MDP, although the latter are
not usually described in this way. We chose this formulation
to facilitate making connections between MDP’s and stochastic
optimal control theory. In the typical formulation of an MDP, what
we call the system function S(xt , at , et) is represented by a state
to state probability transitionmatrix T (xt , at , xt+1). This transition
matrix defines the probability of transiting to the next state xt+1
given the previous state xt , and action at . The two are related by
setting p(S(xt , at , et) = xt+1|xt , at) = T (xt , at , xt+1). Also the
reward function r(xt , at) in the typicalMDP is related to the output
function M(xt , at , et) of our generic dynamic decision model by
the expectation r(xt , at) = E[u(yt)|xt , at ]. The optimal policies
for MDP’s are solved using the dynamic programming algorithm
described in Section 1.

7.1. Bayesian connection with Partially Observable MDP’s (POMDP)

An important extension of MDP’s was achieved allowing for the
possibility that the states of the system are hidden and not directly
observable. For example, referring back to our fishing example in
Section 1, a more plausible case is that fishermen do not know the
actual state of the fish stock in each location. In terms of our generic
dynamic system, the decision maker (fisherman) only observes yt
(amount of fish caught). Markov decision processes assume that xt
is included in yt , so that the state is observable. Partially observable
MDP’s (POMDP’s) assume that this is not the case, and instead xt
must be inferred from yt using Bayes rule (see Littman, 2009, this
issue for a review). This corresponds to the state space model in
control theory, which uses the Kalman filter (also derived from
Bayes rule) to estimate the state from the measurements.
POMPD models assume that there is a transition matrix,

O(xt , at , ot) to the observation ot given the state and action. In
terms of our generic dynamic system model, this is obtained by
setting O(xt , at , ot) = p(M(xt , at , et) = ot |xt , at). Using Bayes
rule, we can derive the updating rule for estimating the state
as follows. Suppose our posterior probability for each state after
incorporating yt−h is p(xt−h|yt−h). Then the prior probability after
action at but before incorporating yt is given by

p(xt |at) =
∑
p(xt−h|yt−h) · T (xt−h, at , xt).

The posterior probability after taking into consideration yt is then
equal to

p(xt |at , ot) = p(xt |at) · O(xt , at , ot)/p(ot |at),
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with p(ot |at) =
∑
p(xt |at) ·O(xt , at , ot). This posterior probability

distribution across theMarkov states is called the belief state of the
POMDP.
On the one hand, the POMDP is a generalization of the MDP by

relaxing the assumption that the state is directly observable. On
the other hand, a POMDP can be turned into aMDP by changing the
definition of states from the finite system states in X to the infinite
set of possible belief states B. This greatly expands the state space
and once this is done the same dynamic programmingmethods for
obtaining the optimal policy can be performed.

7.2. Learning processes

Learning models provide a mechanism for adapting and
improving policies within a MDP environment from experience
with action–outcome pairs using large training sets of examples.
One of the most popular approaches for this task is reinforcement
learning (Bertsekas & Tsitsiklis, 1996; Kaelbling, Littman, &Moore,
1996; Sutton & Barto, 1998). These models are partly motivated
by early work on learning theories by psychologists, and partly
by dynamic programming methods. Unlike supervised learning
algorithms (used earlier for the control problem), reinforcement
learning models do not rely on feedback about an ideal target or
goal state, and instead simply rely on rewards or punishments for
actions.
One version is called the temporal difference (TD) model which

learns the payoff value of a state, given a fixed policy, according to
the following scheme. If the process reaches state xt and observes
the payoff u(yt), then it updates its estimated value for this state
according to

Vt+1(xt) = Vt(xt)+ αt · [u(yt)+ γ · Vt(xt+1)− Vt(xt)],

where αt is a learning rate parameter and γ is a future discount
weight. According to this scheme, u(yt)+ γ · Vt(xt+1) is a sample
estimate of the true value that appears in the recursive form of the
dynamic programming algorithm, and [u(yt)+γ · Vt(xt+1)−Vt(xt)]
is the discrepancy between the observed sample estimate for a
state and the previously learned value for that state. Note that the
termVt(xt+1) is obtained by applying the fixed policy to the current
state xt . If the learning rate αt decreases at an appropriate rate, and
the policy is fixed, then this process is guaranteed to converge to
the true values.
Another reinforcement learning algorithm is called Q-learning,

which learns values for state–action pairs. If the process reaches
the pair (xt , at) and observes u(yt), then the following update rule
is used:

Qt+1(xt , at) = Qt(xt , at)
+αt [u(yt)+ γ · Qt(xt+1, at+1)− Qt(xt , at)].

One important consideration for this algorithm is the method for
selecting at+1 in Qt−1(xt+1, at+1). The pair (xt , at ) observed on
trial t determines xt+1. But what should we use to determine
at+1? A ‘greedy’ algorithm will choose the action that maximizes
Qt(xt+1, at+1), maximally exploiting the environment for rewards.
However, this prevents exploration, and an alternative approach is
to choose this action using a probabilistic rule such as the ratio of
strength rule or softmax equation:

p(at+1 = ak) =
eβtQk∑
j∈A
eβtQj

,

where βt is a parameter that moderates the amount of exploration
(Busemeyer & Stout, 2002; Fu, 2007; Sutton & Barto, 1998).
If βt is small at the beginning of training, then actions are
selected almost randomly, but as βt increases with training,
then the likelihood of choosing the maximum grows to unity.
Neuroscientists are beginning to understand the neural basis of
these types of learning mechanism (Dayan & Balleine, 2002; Niv,
2009). These learning mechanisms are also being integrated into
larger cognitive architectures (Fu & Anderson, 2006)
It is interesting to contrast the supervised learning approach

with the reinforcement learning approach. The former requires an
ideal target or a goal state and learns from deviations from these
targets to inform the learning process; but as a result, the network
can learn the structure of the task and make predictions for
new situations based on this task knowledge. The reinforcement
learning algorithmdoes not require target or goal states; but it only
learns a large set of (state, action)→ reward relations. A combined
use of these learning algorithms is possible to speed up the process
and to facilitate generalization.

8. Markov logic

The final tool discussed in this review introduces a new
area that provides a major extension to probabilistic logical
reasoning systems. Bayes nets provide an effective representation
of uncertainty, but first order logic provides a more compact
and powerful reasoning system. Many applications require both
of these properties. Markov logic provides tools for handling
uncertainty in a sound manner, it tolerates imperfect and
inconsistent knowledge, and it improves the brittleness of first
order logic systems (Richardson & Damingos, 2006). A first order
logic system is brittle because even if one instance in the world
violates a sentence, then it is considered false.Markov logic softens
this constraint — a single violation of a sentence only reduces
the probability of the sentence. This has many applications to
statistical relational learning including collective classification,
social network modeling, and data fusion.
Most of the work in the field of Bayes networks and Bayesian

reasoning is based on propositional logic. For example, based on
some population of married couples, we could ask ‘if the husband
smokes, then what is the probability that the wife smokes?’
These types of propositions are formed by the elementary logical
operations of conjunction (probability of A and B), disjunction
(probability of A or B), and implication (probability of A given B).
A very new development in the area of probabilistic reasoning
combines probability with first order logic, which has been a
long term goal of artificial intelligence. For example, we could
ask, ‘‘What is the probability that if any two people are married
that either they both smoke or neither smoke?’’ These types of
statements involve existential and universal quantifiers: for any
two people, if they are married, then one is a smoker if and only
if the other is a smoker.
In Markov logic, a weight is attached to each statement, and

these weights and the relations among statements form a Markov
net (also known as a Markov random field). Unlike Bayes nets,
Markov nets are composed of a graph of undirected links with
possible loops (which makes them more general than Bayes nets).
Fig. 7 below illustrates a Markov net that has 3 cliques (fully
connected subsets of nodes). One clique is formed by nodes (e1,
e2), a second is (e2, e3, e4), a third is (e4, e5). Each node is a random
variable and the joint distribution is determined by a product of
potentials, where a new potential function is assigned to each
clique.
Considering the example shown in Fig. 7, and let [x1,

x2, . . . , x5] be a vector of values on the five random variables,
one for each node, and define the three potential functions as
φ1(e1, e2), φ2(e2, e3, e4), and φ3(e4, e5). Then the joint distribution
is obtained from

p([x1, . . . , x5]) = φ1(e1 = x1, e2 = x2)
×φ2(e2 = x2, e3 = x3, e4 = x4)φ3(e4 = x4, e5 = x5)/Z,

where Z is a normalizing factor to guarantee that the probabilities
sum to unity. This corresponds to a log linearmodel representation
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Fig. 7. Example of a Markov net.

of the joint distribution with

ln p([x1, . . . , x5]) = − ln Z + lnφ1(e1, e2)
+ lnφ3(e4, e5)+ lnφ2(e2, e3, e4).

Finally, using these Markov nets, one can assess the probability
that a statement logically follows from some knowledge base of
other statements. For large scale problems, it becomes necessary
to rely on Monte Carlo Markov chain simulations to estimate the
statement probabilities.

8.1. Connections to cognitive architectures

Cognitive architectures (such as ACT-R, SOAR, EPIC, and CLAR-
ION) are also very powerful reasoning systems. This leads to the
possibility of using stochastic mental simulations of these systems
to perform the same type of probabilistic reasoning as attempted
by Markov logic methods. Stochastic mental simulations are
performed by generating and sampling alternative worlds, and ap-
plying the reasoning power of cognitive architectures to these al-
ternative worlds to generate probabilities for various statements
about these worlds. Cassimatis (2005) has developed a cogni-
tive architecture called ‘polyscheme’ that is capable of generating
stochastic simulation within a cognitive architecture framework.
An advantage of this approach is that it also provides a way to ex-
plaining human inference judgments based on cognitive architec-
ture principles.

9. Summary and future directions

9.1. Summary of tools

We reviewed the current toolbox for aiding and understanding
dynamic decision making. We summarize them below.

• We beganwith utility theory, which forms the rational basis for
optimal decision theory. Utility functions are used to evaluate
different courses of action. For example, this tool could be used
to evaluate the gain from the success of a mission with respect
to the resource cost of the mission or the risk of failure.
• Second, we considered Bayes nets which provide a coherent
and efficient graphical representation of complex uncertain
relations among events. Bayes nets are used to infer the
probability of a hypothesis or state given a complex set of
evidence or data. For example, this tool could be used to
evaluate the intent of an enemy based on past behavior, or infer
the disease state of a patient basedon a series of diagnostic tests.
• Third, we considered decision trees and influence diagrams.
These tools allow one to combine probability information from
Bayes nets with actions and utilities to make inferences and
plans for decisions with short horizons.
• The fourth topic that we just touched on was game theory,
which introduces two or more competing decision makers into
a decision tree. The concept of Nash equilibrium solutions
was introduced, and we illustrated how equilibrium solutions
(when assuming fully rational players) often produce ruthless
outcomes for all players.
• The fifth topic that we considered was stochastic optimal
control theory, which is used for planning smooth trajectories
in time and space with long or even indefinite time horizons.
A good example is navigational control, but many other
applications are possible such as resource management over
time. Within our brief discussion of control theory, we
also showed how optimal control can be viewed as utility
optimization, and Kalman filtering can be viewed as Bayesian
inference.
• The sixth topic was Markov decision processes, which are
useful for making long and complex plans that are based on
finite states and discrete time. Although this theory is usually
formulated with a decision theory framework, we also showed
how this model is closely related to the stochastic optimal
control theory.
• Finally, we discussed a new tool, called Markov logic, for
probabilistic reasoning. This tool extends Bayes nets, which
are limited to propositional logic statements, to provide a
probabilistic representation of first order logic statements.
Markov logic is more tolerant of inconsistencies and less brittle
than first order logic systems of reasoning.

9.2. Common principles

During our review, we also examined the basic principles
underlying these tools and evaluated these principles with respect
to human performance. Several important key findings arose from
this examination. One key assumption many of the algorithms
used to solve for optimal decision policies is separability (i.e., the
contributions across time are additive).Wepointed out that people
frequently do not evaluate according to a separable utility function.
For example, in a sport game context, the final utility is not the
total number of points accumulated during the game, but rather
it is whether or not you win the game. The latter is a nonlinear
transformation of points, and it is not a separable utility function.
This kind of utility arises inmany important situations (e.g. bidding
for a contract, winning a context, victory in a war). We showed
that if the utility function is not separable, then contrary to popular
opinion, sunk costs domatter.
A second key assumption is that optimal plans are found by

backward induction (plan the final stage and work back to the
current decision). We reviewed evidence from experiments on
decision trees finding that people systematically change their plans
as they work forward in time within a decision tree, thus violating
dynamic consistency. Furthermore, experimental evidence from
strategic games indicates that people do not plan backwards from
the end to the beginning of a game, but instead they start from the
beginning and look forward across a short horizon in the game.
Both of these lines of evidence indicate that people do not use
backward induction to solve dynamic decisions or at least their
ability to do so is heavily dependent on the magnitude of the
incentives.
A third key assumption underlying Bayesian inference is that

humans obey the axioms of probability. In fact, however, their
intuitive judgments frequently violate these axioms. For example,
there are many situations where people judge a joint probability
to be greater than the probability of a constituent event alone.
Apparently humans use a method for reasoning under uncertainty
that departs from the traditional axioms of classic probability
theory. A fourth key assumption is that humans have the cognitive
capacity to intuitively solve optimal decision strategies. Obviously
they do not, but experimental research indicates that they do
use simple learning algorithms (including supervised neural
network algorithms and unsupervised reinforcement learning
algorithms) to improve and evolve toward optimality with
extensive experience. In this sense, they can be viewed as
bounded rational decision makers (Simon, 1982) that are limited
in performance by their information processing and learning
capacities.
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9.3. New directions

There are some important new directions that arise from this
review. New theoretical and empirical guidance is needed to
prescribe maximally effective mixtures of human and machine
decision making (see Gao & Lee, 2006 or Sorkin (submit-
ted for publication) for a recent examples). This is especially
important for environments that are increasingly complex and
demanding as a result of the high uncertainty, complexity, time
urgency, and rapidly changing nature of decisions. Second, in or-
der to rapidly learn or solve complex dynamic decision problems,
it is important to gain knowledge and make use of the structure
of the decision problem. This is important for reducing the solu-
tion space, for reducing the amount of information needed to de-
termine probabilistic relations, and for improving generalizability
to new situations.
Great care, however, must be taken in modeling the structure

of the decision problem because an overly simplistic structure or
misidentified structure wouldmake the analysis overly vulnerable
to model misspecification. One solution to this problem is for the
decision maker to work with a set of possible worlds in parallel,
collect evidence for these structures and plan according to the
probabilities that each structure ismost appropriate. Mixed hybrid
systemsmay be an important step in solving this problem (Mitchel
& Tomlin, 2000).
The last point of system vulnerability is related to a final

important emerging issue in dynamic decision theory, what we
call robust decision making. Dynamic decision environments
are inherently plagued by unexpected events, attacks on and
degradations of the network centric system, and sudden changes
in goals or objectives. Optimal decision systems – maximizing
performance under a fixed set of probability and utility parameters
– are vulnerable to these dynamic characteristics making the
goal of optimality more likely to be a weakness rather than a
strength in constructing dynamic decision systems. An alternative
approach is to design the decision systems to be robust generating
satisfactory performance across a wide range of parameters and
various alternative model assumptions. To a limited extent the
concept of robustness has been treated in statistical estimation
and in control engineering (see ch. 12 of Astrom & Murray, 2008).
Theories of robust decision making, though, would incorporate
these ideas and integrate the tools discussed in this article to
make them potentially more applicable in more complex decision
environments.
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