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Human concepts are complex and varied and serve a
myriad of purposes. One way in which concepts are used
is in learning how to categorize people or things and infer
properties from category membership. Historically, this
view of concepts has dominated the theoretical and em-
pirical literature in cognitive psychology. But this view
of concepts is too restrictive; another important way in
which concepts are used is in learning functional rela-
tionships between continuous variables and in making
predictions about one variable on the basis of another
(Bourne, Ekstrand, & Dominowski, 1971; Uhl, 1963).
There are many examples of such relationships that we
encounter every day, such as predicting job performance
on the basis of intelligence, anticipating mood level on the
basis of stress intensity, forecasting interest rates on 
the basis of inflation rates, predicting harvest yields on the
basis of amount of rainfall, and so on (Hammond, 1955;
Hoffman, 1960). Learning functional relations between
causes and effects is fundamental to the formation of in-
tuitive theories about how the world works, and these
predictions guide subsequent decisions about how to
control the world (Hammond & Stewart, 2001; also see
Murphy & Medin, 1985). For example, in order to con-
trol the economy we need to know how increases in in-

terest rates affect consumer spending, which in turn af-
fects manufacturing and employment rates.

The literature reflects an imbalance in the amount of
attention devoted to categorization relative to function
learning, with extensive progress in both empirical and
theoretical understanding of categorization (Estes, 1994;
Lamberts & Shanks, 1997), and much less empirical in-
terest and theoretical progress in understanding function
learning. Given the importance of function learning for
human conceptual activity, the dearth of theoretical de-
velopment in this area is a serious omission.

The purpose of this article is to provide the founda-
tions for a more formal, systematic, and integrative ap-
proach to function learning that parallels the existing
progress in category learning. This is accomplished by
developing mature and complete models on the basis of
preliminary ideas from the function-learning literature.
We first provide an overview of the initial theoretical ap-
proaches and highlight their limitations. Next, we de-
velop a number of formal models that provide a more
comprehensive specification of function learning than
the initial models have. Finally, we evaluate and contrast
how well the models account for a range of basic learn-
ing and transfer findings.

Before presenting the theoretical approaches, we need
to describe briefly the function-learning paradigm. The
present article focuses on single input–output function-
learning experiments in which a single cue x is mapped
by a continuous function F into a single criterion z. In a
typical experiment, participants are initially provided a
neutral cover story that verbally describes the experi-
mental task but provides little or no direct information
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about the cue–criterion relation. This is followed by
training with a sequence of cue–criterion training pairs.
On each trial, the value of a predictor cue x is presented,
and the participant’s task is to predict the value of a cri-
terion z. Immediately following the individual’s predic-
tion y, outcome feedback about the criterion z and the
prediction error e � (y � z) is provided. After a couple
of hundred training trials, participants form some type
of concept about the functional relation. Following the
training phase, the participants’ conceptual knowledge is
tested during a transfer phase by presentation of novel cue
values without feedback. There are two types of transfer
tests: interpolation and extrapolation. An interpolation
test is defined by presentation of a novel cue value that
falls between two previously experienced training values.
An extrapolation test is defined by presentation of a
novel cue value that falls below or above all of the pre-
viously experienced training values.

INITIAL THEORETICAL FRAMEWORKS
AND LIMITATIONS

For many years, the predominant general view regarding
function learning has been the rule learning approach.
According to this approach, the learner constructs ab-
stract representations that summarize the ensemble of
cue value–criterion (response) value pairings used to
teach the function. Most frequently, polynomial rules
have been proposed as learners’ underlying representa-
tions of the mappings between cue values and response
values (Brehmer, 1974; Carroll, 1963; Koh & Meyer,
1991), although other rules, such as Fourier rules, have
also been suggested (Carroll, 1963). Polynomial rules
have also been used in category learning to partition a
multidimensional stimulus space into categories (Ashby
& Maddox, 1998).

Experiments investigating the polynomial rule models
have been directed at transfer tests, which were designed
to examine interpolation and extrapolation performance.
In several studies, a polynomial rule model has been
evaluated on interpolation performance, and the model
accounted well for human performance (DeLosh, Buse-
meyer, & McDaniel, 1997; Juslin, Olsson, & Olsson,
2003; Koh & Meyer, 1991). However, predictions of the
polynomial rule model for extrapolation performance
have been examined in only two of these studies. Juslin
et al. found that a rule model accounted for extrapola-
tion, whereas in a different paradigm DeLosh et al. found
that the rule model grossly overestimated the extrapola-
tion accuracy that human learners actually display, espe-
cially as cue values became farther from training values.

Busemeyer, Byun, DeLosh, and McDaniel (1997; De-
Losh et al., 1997) considered an alternative model for
function learning based on associative learning mecha-
nisms. Similar to earlier category learning models (cf.
Kruschke, 1992), this model assumes that the learner
forms direct associations between each stimulus and the
corresponding criterion and stores all of these individual
associations without abstracting any summary informa-

tion. Then, a response magnitude is retrieved whenever
the associated cue value is presented.

The attractiveness of the associative model is that it
emanates from a long tradition of learning theory in psy-
chology and incorporates well-specified learning algo-
rithms (Hinton & Anderson, 1981). This model fails,
however, when faced with an extrapolation task based on
cue values outside the training range. Under these con-
ditions, the model grossly underestimates the amount of
extrapolation that humans are willing to generate (Buse-
meyer, Byun, et al., 1997; DeLosh et al., 1997; Juslin
et al., 2003). Accordingly, Busemeyer, Byun, et al. and
DeLosh et al. endowed the associative learning model
with an extrapolation rule response mechanism (extrap-
olation associative model, or EXAM). DeLosh et al.
demonstrated that EXAM reproduced the human extrap-
olation performance much better than the polynomial
rule model did.

In light of the significant failure to account for one set
of extrapolation findings (DeLosh et al., 1997), some the-
orists have tended to discard the polynomial rule models
for function learning (DeLosh et al., 1997; Kalish, Lew-
andowsky, & Kruschke, 2004; Lewandowsky, Kalish, &
Ngang, 2002). However, this conclusion may be prema-
ture. Other researchers continue to argue in favor of the
rule-based models (Juslin et al., 2003), and, furthermore,
formal instantiation of rule-based models has been limited
on several critical dimensions. The upshot is that (1) the
learning data have been ignored in comparing rule-based
versus associative-based models and (2) existing compar-
isons between these models on extrapolation are not de-
finitive. The latter observation follows in part because con-
clusions concerning extrapolation are contingent on the
learning process by which the rules are acquired by the
rule-based model. We expand on these points next.

First and foremost, a major limitation of the function-
learning literature is the absence of comparisons of rule-
based versus associative-based models that focus on the
learning process itself rather than on transfer perfor-
mance. Advocates of the polynomial rule models never
explicitly formulated a learning model, making it diffi-
cult to test these models using learning data. Compar-
isons of rule-based with associative-based models have
been founded mainly on transfer tests after training, and
no systematic comparisons have been made for these two
models in terms of their ability to account for the details
of the trial-by-trial learning data. It remains unknown
whether or not the associative models provide a better
explanation of the learning process than do the polynomial
rule models. We address this gap in two ways: (1) We de-
velop a new formal learning mechanism for rule-based
models, and (2) for the first time, we test the models on
the entire learning sequence during training as well as test-
ing them in the transfer phase. This extends previous work
in which transfer performance with models constrained
only by the endpoint of learning has been evaluated.

Second, the question of whether or not a rule-based
approach to function learning is able to capture extrapo-
lation performance remains open. The past failures of
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rule-based models to account for extrapolation, reported
by DeLosh et al. (1997), were contingent on the use of a
statistical learning model that assumed optimal use of
past experience. Rule-based models based on less than
optimal learning algorithms that are constrained to pro-
duce parsimonious representations (Busemeyer, Mc-
Daniel, & Byun, 1997; Koh & Meyer, 1991) could in
principle produce imperfect extrapolation (as well as
nearly perfect extrapolation for extrapolation stimuli
proximal to training stimuli; Juslin et al., 2003), thereby
making these rule models potentially acceptable. For in-
stance, in casual concept learning (a more complex vari-
ant of function learning in which multiple continuous in-
puts predict multiple continuous outputs), Busemeyer,
McDaniel, and Byun found that a parsimony mechanism
was needed to account for human learning. Although ad-
vocates of rule models have proposed several ways in
which parsimony might operate to constrain rule com-
plexity (Brehmer, 1973; Koh & Meyer, 1991), these have
yet to be implemented in a learning component of a rule
model. Central contributions of this article are to formally
implement the two parsimony principles suggested by
Brehmer (1973) and by Koh and Meyer and to demon-
strate the fruitfulness of these principles for improving
rule models.

A third important consideration is that only polyno-
mial rule models have been tested; other rule forms, such
as the Fourier, have been suggested as alternatives (Bott
& Heit, 2004) and might fare better. To provide an inci-
sive and comprehensive test of rule-based models, in this
article we develop a formal learning algorithm for rule-
based models that has the potential to compete with the
(associative) EXAM, and we include mechanisms that
are intended to achieve parsimonious representations.
We also develop models using logistic and Fourier repre-
sentations, which have never been previously formalized
(but see Bott & Heit, 2004, for use of a single cosine
function). Finally, we extend this evaluation to broadly
test both classes of models on learning and extrapolation
data in a function-learning task.

THE FUNCTION LEARNING MODELS

To convincingly compare formal rule-based and
associative-based accounts of function learning in light
of the empirical findings, it is necessary to focus on con-
trasts between definitive properties and minimize inci-
dental differences. We accomplish this by implementing
both approaches within a general connectionist learning
framework (cf. McClelland & Rumelhart, 1986) that em-
ploys a common background foundation. By using a
common foundation, the two views can be placed on
equal footing in terms of technical advantages conferred
by the connectionist framework. To achieve this, both
models share a set of assumptions about the cue repre-
sentation, the criterion representation, and the learning
algorithm used to learn the connections between inputs
and outputs. The major difference lies in the use of hid-
den nodes to represent rules.

A core assumption of connectionist models is that all
knowledge is represented by connection weights. For the
rule models, conceptual knowledge about the functional
relation is represented by the weights connecting input
nodes to hidden nodes and the weights connecting hid-
den nodes to output nodes. The associative models devi-
ate from the rule models primarily in that knowledge
about the functional relation is represented solely by the
weights mapping inputs directly to outputs (i.e., the hid-
den layer is omitted).

Within this connectionist framework, below we pro-
pose entirely new versions of rule-based models. Fol-
lowing that is a brief summary of the previously devel-
oped (associative) EXAM.

Rule-Based Models
The rule-based model is represented by a connection-

ist network that has three layers of nodes: an input layer
that represents the cue, a hidden layer that represents the
rules, and an output layer that represents the criterion.
Each of these layers and their connections are described
in turn.

Input layer. The cue value x(t), presented on trial t,
activates a set of input nodes for which each node, xi, is
designed to detect a possible value of the input cue. The
activation of input node xi, denoted ai (x), depends on the
distance between the cue value x(t) and the node xi as
follows:

(1)

In this equation, σ is the standard deviation that deter-
mines the width of the generalization gradient and b is a
constant used to normalize the activations (satisfying
Σ ai � 1). Formally, this is called a Gaussian radial basis
unit (cf. Haykin, 1994, chap. 7), which has been used to
represent input activation patterns in earlier category
learning models (Knapp & Anderson, 1984; Kruschke,
1992; Nosofsky & Kruschke, 1992).

Hidden layer. Each hidden unit, denoted Hj, is inter-
preted as an individual component of a rule. These hidden
nodes are used to compute predictions as follows. The
input activation pattern flows from the input layer to the
hidden layer by way of input to hidden node connections.
In particular, the connection weight, wji, represents the
strength of the connection from input node xi to hidden
node Hj. The prediction produced by hidden node Hj (de-
noted hj) is then computed by a possibly nonlinear trans-
formation Q of the weighted sum of input activations:

hj (x) � Q [Σ wji ai (x)]. (2)

There are many types of rules that can be postulated
within this approach. To provide a comprehensive evalu-
ation of this approach, we implemented all of the known
proposals suggested in the literature. Specifically, we ex-
amined what are known as polynomial, Fourier, and lo-
gistic types of rules. For a polynomial rule, each hidden
unit computes a different trend component; for a Fourier
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rule, each hidden unit computes a different cyclic compo-
nent; and for a logistic rule, each hidden unit computes a
different logistic response function. The key idea is that
instantiation of these different rule types is achieved by
the assignments of the connection weights, wji (details
are provided in the Appendix).

Output layer. The hypotheses computed at the hid-
den layer flow to the response layer through a second
layer of connections. More specifically, the hypothesized
value, hj, computed by a hidden node, is weighted by an
estimate of the validity of that hypothesis, denoted vj,
and these weighted hypotheses are summed to form the
prediction from the rule:

y(t) � Σ vj hj (x). (3)

The number of hypotheses entering this sum, denoted n,
determines the complexity of the model.

Conceptually, the general form of a rule is captured in
this framework by the weighted combination of the hid-
den unit activations, which generates the prediction y.
For a polynomial model, the prediction combines the
trend components to form a polynomial series. For the
Fourier model, the prediction combines the cyclic com-
ponents to form a Fourier series. For the logistic model,
the prediction combines the different logistic functions
to form a logistic series.

It is well known from mathematical analysis that poly-
nomial and Fourier series can approximate any smooth
function with a sufficient number of terms. Hornik, Stinch-
combe, and White (1989) have shown that the logistic se-
ries can also provide a reasonable approximation of any
smooth function with a sufficient number of terms. Thus,
all three types of rule models provide a sufficiently general
basis for approximating the functions examined below (see
Table 1A), although this does not guarantee that the ap-
propriate weights will be learned for all training regimens.

Learning the hidden–output weights. A delta learn-
ing algorithm is used to update the validities of each hy-
pothesis after each feedback trial, as is shown in Equation 4.

vj (t � 1) � vj(t) � α [z(t) � y(t)] hj (x). (4)

Intuitively, this algorithm works as follows. The new va-
lidity (v) of the jth hypothesis after feedback on trial t
equals the old validity plus a change. The change is the
product of two parts: (1) the prediction error e � (z � y)
on trial t and (2) the hypothesized value hj generated by
the jth hypothesis on trial t. For example, if a hypothesis
generated a large positive value for the criterion but the
feedback criterion fell far below this prediction, then the
validity of that hypothesis would decrease. The learning
rate parameter, α � 0, controls the amount of change in
the new weight produced by feedback on each trial.

Parsimony. Recall that the delta learning algorithm
was designed with one objective in mind, which is to min-
imize squared prediction errors. Koh and Meyer (1991)
argued that the learner actually has two objectives in
mind when trying to learn rules for prediction: not only
to improve accuracy, but also to do so in the simplest or
most parsimonious way. Parsimonious functions may
generalize or extrapolate more effectively than overly
complex functions.

Koh and Meyer (1991) proposed a penalty for com-
plexity that was measured by an index of curvature—that
is, a deviation from linearity. Although Koh and Meyer
did not propose a learning algorithm for this penalty
term, it can be implemented into the delta learning rule
by making the following modification:

vj(t � 1) � vj(t) � α [z(t) � y(t)] hj(x) � λj vj(t), (5)

where the parameter λj represents a penalty extracted for
using hypothesis Hj (i.e., a particular term of the rule,
such as a cubic trend in a polynomial rule).1

Table 1A
Function Forms Ordered According to Learning Difficulty

Model Function Coefficients MAD

Byun (1995, Experiment 1B)
Linear Z � bX1.0 b � 1.77 .20
Square root Z � bX .50 b � 1.77 .35

Byun (1995, Experiment 1A)
Linear Z � a � bX a � 0.20, b � 1.77 .15
Power, positive acceleration Z � a � bXc a � 0.20, b � 1.77, c � 2 .20
Power, negative acceleration Z � a � bXc a � 0.20, b � 1.77, c � 0.50 .23
Logarithmic Z � a � b ⋅ ln(cX � 1) a � 0.20, b � 0.64, c � 15 .30
Logistic Z � a � b/ [1 � e�c (X � .5)] a � 0.20, b � 1.77, c � 15 .39

Byun (1995, Experiment 2)
Linear Z � a � bX a � 0.15, b � 2.21 .18
Quadratic Z � a � b ⋅ (X � .5)2 a � 1.97, b � 7.87 .28
Cyclic Z � a � b ⋅ sin(cXπ) a � 1.12, b � 0.85, c � 10 .68

DeLosh, Busemeyer, 
& McDaniel (1997)
Linear Z � a � bX a � 0.30, b � 2.21 .10
Exponential growth Z � a(1 � e�bX ) a � 2, b � 4 .15
Quadratic Z � a � b ⋅ (X � .5)2 a � 2.10, b � 8.33 .24

Note—X ranges from 0 to 1. MAD, mean absolute deviation between the subject’s prediction and the train-
ing function criterion on the first training block.
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Brehmer (1973) suggested another psychological prin-
ciple for introducing a parsimony principle into the learn-
ing process for rule-based models. The basic idea is to
include a hypothesis in the prediction only when its valid-
ity begins to exceed a criterion in magnitude, symbolized
as δ. Also, a hypothesis can be removed whenever its va-
lidity falls below this same criterion δ in magnitude.2
This principle is closely related to the Akaike informa-
tion criterion method used in statistics for model selec-
tion (see Akaike, 1973; Bozdogan, 2000), which selects
a more complex model over a simpler one only when the
increment in fit exceeds a criterion (two times the dif-
ference in number of parameters for the AIC index). In
general, both parsimony principles may operate simulta-
neously to different extents, depending on the values of
the parameters λj and δ. Note that rule learning models
without parsimony are special cases in which λj and δ
are both set to zero. In the present article, we compared
models with and models without parsimony to examine
the contribution of this principle.

Learning the input to hidden weights. The hypothe-
ses for the polynomial and Fourier models are assumed
to be learned on the basis of extensive past experiences
in the natural world. The participants are assumed to
begin the task using these previously established hy-
potheses about linear and quadratic trends, or slow- and
fast-moving cycles. Only the validities of these hypothe-
ses (the weights between the hidden and output layers)
are learned during training on the function-learning task.
Therefore, these a priori hypotheses are represented by a
fixed set of initial weights, wji, between inputs and hid-
den units, which do not change during training (see the
Appendix for the method used to fix these weights).

In contrast, the logistic rule model allows the hypothe-
ses to be dynamically adjusted across trials. Accordingly,
the weights wji for the logistic model are learned during
training by back-propagation rather than being fixed by
prior knowledge (see the Appendix for these details).

Parameters for rule-based models. Altogether, rule-
based learning models entail the following model pa-
rameters: One is the standard deviation for the input
nodes, σ ; a second is the number of hypotheses or hid-
den units, n; a third is the learning rate parameter for the
validities, α ; and the fourth and fifth are the penalty for
complexity (λ) and the cutoff threshold for including a
hypothesis (δ ), respectively. A sixth and seventh are used
for the learning rate and momentum, respectively, but
these are needed only for the logistic rule to learn the
weights, wji, connecting input to hidden units. The last
two parameters are not required for the polynomial and
Fourier models because these weights are fixed to a pri-
ori values for these two types of rules.

Extrapolation Associative Learning Model
(EXAM)

EXAM was developed to provide an extension of ear-
lier category learning models (Knapp & Anderson, 1984;
Kruschke, 1992; Nosofsky & Kruschke, 1992) to account
for function learning with continuous rather than cate-

gorical responses (see Busemeyer, Byun, et al., 1997;
DeLosh et al., 1997). In addition, to account for extrap-
olation behavior, the associative learning process was
combined with a linear rule for generating extrapola-
tions. Below, we briefly present these two components
of the model.

Associative learning component. This simple com-
ponent has only two layers: an input layer used to detect
the stimulus cue and an output layer used to select the
criterion response. The cue value presented on a partic-
ular trial produces a pattern of activation across the first
layer of input nodes according to a Gaussian generaliza-
tion gradient. This input activation pattern then flows
through a set of linear connections directly into the sec-
ond layer of response output nodes. The retrieved output
activations of the response nodes are used to select the
prediction for that trial. The connections from input to
output are learned by a delta learning rule. (For details,
see Busemeyer, Byun, et al., 1997).

It is important to note that the associative learning
component implements a very general approach to func-
tion approximation called cubic spline approximation
(Poggio & Girosi, 1990). Thus, with a sufficiently large
number of input and output nodes, the associative learning
component can approximate all of the functions listed in
Table 1A (see Haykin, 1994, chap. 7).

Extrapolation with EXAM. The presentation of a
novel extrapolation stimulus is assumed to evoke the use
of a linear extrapolation response rule. The basic idea for
extrapolation is illustrated in Figure 1, which can be de-
scribed conceptually as follows. When presented with a
novel extrapolation cue, the learner matches the novel
test cue to the training stimuli, retrieves the predictions
from the nearby training values, and estimates the line
formed by these retrieved input–output pairs. Then, the
response to the novel test cue is formed by linear extrapo-
lation outward from the retrieved values using this esti-
mated line. This idea is consistent with the linear extrap-

Figure 1. Illustration of the extrapolation response rule used by
EXAM. The most extreme training values are retrieved from the
associative network, and the slope of the extreme training values
form the basis for linear extrapolation.
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olation results from exponential growth curves reported
by Wagenaar and Sagaria (1975). (See Busemeyer, Byun,
et al., 1997, for details.)

A main difference between rule models and EXAM
regarding extrapolation is the nature of the response rule
for performing the extrapolation. Whereas rule-based
models consistently employ a rule to generate responses
to training as well as extrapolation stimuli, EXAM simply
relies on the retrieved associations to generate responses
to the training stimuli and evokes the linear rule only for
generating responses to extrapolation test stimuli.

Parameters for EXAM. Altogether, EXAM entails
the following model parameters: One is the standard de-
viation for the input nodes, σ ; a second is the learning
rate parameter for the associations, α ; and the third is
the standard deviation, φ, for generalizing extrapolation
cues to training stimuli (used only during extrapolation;
see Busemeyer, Byun, et al., 1997, for details).

MODEL COMPARISONS 
WITH BASIC FINDINGS

Study 1: Function Form and Order of Learning
Difficulty

Historically, the empirical foundation for developing
rule learning models for categorization was based on the
order of difficulty of learning different logical relations
(see Bourne, 1974). We have established a similar em-
pirical foundation for the order of difficulty of learning
different functional relations. To accomplish this, we
have completed a series of experiments using a common
method and procedure (see Byun, 1995; DeLosh, 1994;
DeLosh et al., 1997).

The target results are presented in Table 1A. Within
each experiment, the rules are listed in order of increas-
ing difficulty, as determined by the mean absolute devi-
ation (MAD) between the subject’s prediction and the
training function criterion on the first training block (see
values in the last column). Accordingly, a first general
challenge for the proposed models of function learning
is to reproduce the order of learning difficulty for the
different function forms shown in Table 1A.

Model simulations for Study 1. Simulations for these
learning results were conducted for each model with the
following assumption: The initial weights of the models
were set to produce an initial response corresponding to
the midpoint of the response scale, to reflect a neutral
cover story orientation.

For the rule models, we used only the simplest ver-
sions that contained no parsimony constraints. Varying
the number of hidden units did not affect the results as
long as a sufficiently large number was included (n � 5
hidden units were needed for all the varieties shown in
this table, but the results are shown for n � 17 hidden
units). The standard deviation of the inputs also did not
greatly affect the results as long as it was not too large
(the results are based on σ � 1). The learning rate pa-
rameter did affect the results, and so this parameter was

estimated separately for each model and experiment in
the table.

For EXAM, we did not use the extrapolation response
mechanism, and the predictions were based only on the
associative learning component of the associative learn-
ing model. For this model, the standard deviation was
fixed across experiments, but the learning rate was fit
separately for each experiment.

The relative learning difficulty of each function form
predicted by each model is shown in Table 1B. The em-
pirically observed order (based on Table 1A) is reflected
in Table 1B by the order in which the functions are listed
for each experiment. Deviation between these empirical
outcomes and each model’s predictions is revealed for
columns in which the predicted means do not increase
monotonically within each experiment.3 Examination of
Table 1B shows that all of the models, with the exception
of the logistic rule model, reproduced the order of diffi-
culty reported in all experiments quite well. By contrast,
for two of four experiments the results of the logistic
model showed significant deviations from the results of
the human learners. In Byun (1995, Experiment 1A), the
positively accelerated power function was the second
easiest and the logarithmic function the second most dif-
ficult of five functions for humans. The logistic model
essentially reversed these, the logarithmic function being
tied for second easiest and the positive power function
being one of the two most difficult. Also, the logistic
model violated the fundamental finding that linear func-
tions are easier than curvilinear functions, since it learned
the exponential function faster than the linear function
(see DeLosh et al., 1997).

Thus, the extant empirical literature on order of learn-
ing difficulty provides a basis for disfavoring the logis-
tic rule model. The absence of a more decisive outcome

Table 1B
Model Predictions for Order of Learning Difficulty

Model ALM Poly Fourier Logistic

Byun (1995, Experiment 1B)
Linear .04 .04 .05 .16
Square root .05 .06 .06 .19

Byun (1995, Experiment 1A)
Linear .10 .33 .33 .17
Power, positive acceleration .12 .37 .37 .24
Power, negative acceleration .12 .36 .36 .19
Logarithmic .14 .41 .41 .19
Logistic .18 .51 .52 .33

Byun (1995, Experiment 2)
Linear .01 .18 .19 .12
Quadratic .03 .31 .31 .24
Cyclic .32 .41 .40 .68

DeLosh, Busemeyer, 
& McDaniel (1997)
Linear .04 .11 .11 .04
Exponential growth .05 .17 .17 .02
Quadratic .07 .27 .27 .11

Note—Each cell indicates the mean absolute deviation between the
model’s prediction and the training function criterion on the first trial
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is probably not due to an overly limited sampling of
function forms. Across four experiments, nine different
function forms were tested. In the concept rule-learning
literature, just four rules were used to establish a diffi-
culty ordering that converged on a single rule-learning
theory (Bourne, 1974; Shepard, Hovland, & Jenkins,
1961). By contrast, it appears that for function learning,
once association and rule models are instantiated within
a similar formal platform, discriminating between them
will require consideration of more than one aspect of
performance.

Consequently, we next examined how well the remain-
ing models fared when applied to extrapolation data. The
logistic model was discarded on the basis of its poor per-
formance in accounting for order of function difficulty.
The versions of the polynomial and Fourier models with-
out parsimony were acceptable for order of function dif-
ficulty, and in the next section we continue our exami-
nation of these models. To foreshadow, the empirical
findings for extrapolation encouraged consideration of
the models with parsimony as well.

Study 2: Extrapolation
In one of the seminal studies of function learning,

Carroll (1963) pointed out the importance of examining
extrapolation for distinguishing associative-based versus
rule-based models. Carroll reported that participants
could successfully extrapolate in the direction of the
training function, and he used these results to argue against
associative learning models. Wagenaar and Sagaria (1975)
examined extrapolation for exponentially increasing
growth curves and found that although participants do
extrapolate in the direction of the training function, their
extrapolations seem to follow a linear rule falling short of
the positively accelerated trajectory of exponential growth.

More recently, we (DeLosh et al., 1997) conducted
several experiments to examine extrapolation perfor-
mance. Table 2 shows results demonstrating extrapola-
tion behavior following training on each of the last three
functions shown in Table 1A. The first row of Table 2
represents the criterion for the lowest and highest train-
ing cue values for each type of function. The second row
shows the criterion value generated from the training
function for the extreme stimuli (used in the extrapola-

tion tests) and for each type of training function. The
third row of Table 2 represents the observed mean re-
sponses produced by the human participants for each
type of extreme stimulus and type of function. As can be
seen in the table, the participants extrapolated far beyond
the criterion values experienced during training for all
three functions (we return to the remainder of Table 2
following the next section). In sum, participants are ca-
pable of generating new responses that are outside the
range of their experience and that follow the direction of
trend for the training function. Because the EXAM (as-
sociative learning component), polynomial, and Fourier
models could all account for the order of learning diffi-
culty of the three function forms, we first examined the
ability of these models to reproduce these basic extrap-
olation findings.

Model simulations for Study 2. We first tested the
models that successfully captured the order of learning
difficulty of Table 1A—that is, the associative learning
component of EXAM (without the linear extrapolation
response mechanism) and the polynomial and Fourier
rule models (with n � 17 and without parsimony). All
the models were trained using the training stimuli en-
countered by subjects in the DeLosh et al. (1997, Exper-
iment 1) study. On completion of training, the models
were required to perform extrapolation. To parallel the
procedure for the human participants, each model was
presented with 15 inputs below the lowest trained input
and 15 inputs above the highest trained input, and the
model produced a predicted output for each of the ex-
trapolation inputs.

Examination of responses for the most extreme ex-
trapolation stimuli (one at the lower end and one at the
upper end) indicated that for all models the responses
tended toward the midpoint of the response scale (which
is the response produced by the initial weight matrices
without any learning). Thus, the performances of these
models diverged significantly from the human perfor-
mance in DeLosh et al. (1997). The failure of the asso-
ciative learning component without the use of the ex-
trapolation response mechanism is not surprising (but
see Guigon, 2004). The failure of the polynomial rule
model is somewhat surprising, because this model was
embraced precisely because it can support extrapolation.

Table 2
Extrapolation Responses to Extreme Transfer Stimuli

Linear Training Exponential Training Quadratic Training
Function Function Function

Lower Upper Lower Upper Lower Upper
Region Region Region Region Region Region

Training limit 1.000 1.800 1.400 1.875 1.800 1.800
Function 0.320 2.480 0.080 1.960 0.100 0.100
Observed 0.135 2.347 0.636 2.120 0.714 1.117
EXAM 0.369 2.356 0.821 1.993 1.004 1.040
Poly–pars 0.326 2.474 1.129 2.263 1.167 1.164
Fourier–pars 1.233 1.294 1.209 1.243 1.095 1.095

Note—Poly–pars, polynomial model with parsimony; Fourier–pars, Fourier model with parsimony.
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The reason for the failure in this case is that we deliber-
ately did not force the polynomial model to a simple form.
Instead, the model had to learn the coefficients of the 17
trend components from experience (as humans are re-
quired to do). Many higher order trend components pro-
duce oscillation in extrapolation, with the current weight-
ings producing responses for extreme, novel stimuli that
were at the midpoint of the response scale.

If we constrain the polynomial to take on a simple
form—for example, one including only linear and qua-
dratic trends—then other problems arise. In this case, it
will learn to perfectly extrapolate in the case of the lin-
ear and quadratic training functions, grossly overesti-
mating the amount of extrapolation that humans pro-
duce. More important, the quadratic model extrapolates
in the wrong direction for the exponential growth func-
tion (DeLosh et al., 1997). The lesson from this example
is that simple or lower order polynomials are inadequate
for capturing the wide variety of function forms that hu-
mans are capable of learning. Higher order polynomials
are required for this purpose.

Previous analyses of the polynomial rule model by De-
Losh et al. (1997) avoided the issue of how many trends to
include in the rule in the first place. The present results
show that when a rule model has to learn the number of
trends (as do subjects), it does not necessarily represent
that function with a minimum number of terms. By ac-
quiring high-order forms to represent the training range,
the models become generally inadequate for extrapolation.
This clearly indicates the need to test the rule models with
a parsimony component that adaptively learns and limits
the number of terms in the models (cf. Koh & Meyer, 1991;
Lewandowsky et al., 2002). Accordingly, we next evalu-
ated the rule models with the parsimony parameters and
compared their performance to that of EXAM, which in-
cludes a linear extrapolation response rule.

Simulations of EXAM and the rule-parsimony
models. To give all the models the best possible oppor-
tunity to fit the extrapolation data, the polynomial and
Fourier rule models (with parsimony) and EXAM were
trained with parameters that were estimated to maximize
the fits directly to the transfer test data of DeLosh et al.
(1997). The rule models were fit using n � 3 hidden
nodes and four parameters (the standard deviation of the
generalization gradient, a learning rate parameter, and
two parsimony parameters). Note that the parsimony
mechanisms could reduce the number of hidden nodes
that were operative. EXAM was fit using three param-
eters (the standard deviation of the inputs, the learning
rate parameter, and the standard deviation for generaliz-
ing to extrapolation stimuli).

The rows labeled “EXAM,” “Poly–pars,” and “Fourier–
pars” in Table 2 provide the values of the models’ outputs
for the most extreme lower and upper extrapolation stim-
uli. As can be seen in the table, an important finding from
this analysis is that the Fourier rule model still does not
extrapolate beyond trained criterion values for the linear
function and for the upper extrapolation region of the ex-
ponential function (compare the row labeled “Fourier–

pars” with the first row in Table 2). These results held for
a wide variety of numbers of hidden units (n � 3 to n �
17). These results disfavor the Fourier rule model as a
fruitful account of human function learning, since human
learners extrapolate beyond the trained values in direc-
tions appropriate for the training functions.

By contrast, the polynomial rule model with parsi-
mony extrapolated beyond the training criterion values
and did so in the direction of the function for all of the
function forms (compare the row labeled “Poly–pars”
with the first and second rows in Table 2). The results
shown in Table 2 are based on setting the number of hid-
den nodes to 17, but similar results were obtained with a
smaller number of hidden nodes (e.g., n � 5). In an even
more telling result, the pattern of the extrapolation from
the polynomial rule model dovetails fairly well with the
subject performances shown in the table (third row).

The result described above has significant theoretical
implications. DeLosh et al. (1997) constrained the poly-
nomial rule model to the lowest power (extreme parsi-
mony) needed to achieve the level of accuracy produced
by participants at the end of training. Essentially, this
produced polynomial rules that were biased a priori to
match the polynomial expression of the functions being
learned. Accordingly, by the end of training for the lin-
ear and quadratic functions, the polynomial expressions
of the rule model perfectly paralleled these target func-
tions. The consequence was that in extrapolation, the
polynomial rule model extrapolated perfectly along the
target function, thereby diverging from human perfor-
mance. On the basis of this divergence, DeLosh et al.
concluded that rule models cannot adequately account
for human extrapolation in function learning. As we an-
ticipated in the introduction, the present modeling re-
sults demonstrate that the rejection of rule models on
these grounds was premature. A more general polyno-
mial rule model formalized to incorporate parsimony
produced imperfect extrapolation that better approx-
imated the extrapolation produced by participants in
function-learning experiments. The value of including
parsimony factors in rule learning models of function
learning is also paralleled by similar modeling efforts in
intervening concept learning (Busemeyer, McDaniel, &
Byun, 1997).

The last important result was that the associative-
based EXAM (see the row labeled “EXAM” in Table 2)
also extrapolated at both ends of the three function forms,
in the appropriate direction and with a topography that
overlapped nicely with that seen for the human subjects.
Thus, both the associative-based EXAM and the rule-
based polynomial model captured critical aspects of
human extrapolation performance required for a model
of function learning. To attempt to further distinguish
between these two remaining models, our final study
was an analysis of the models’ ability to account for the
pattern of subjects’ predictions throughout learning and
subsequently to account for the pattern of subjects’ ex-
trapolation responses when the models were transferred
to the extrapolation trials.
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Study 3: Pattern of Responses During Function
Learning and Extrapolation

Thus far in the function-learning literature, no detailed
model comparison has been conducted on the basis of
the learning patterns evidenced during the entire learn-
ing sequence. Thus, it remains uncertain whether the
polynomial–parsimony rule model or the associative
model (EXAM) can account for the trial-to-trial function-
learning patterns observed for human learners.

To conduct these model tests, we applied the polyno-
mial rule model (with parsimony) and EXAM (with lin-
ear extrapolation) to detailed learning and extrapolation
data reported by DeLosh (1994) for a negative linear
function and a quadratic function. In this study, all of the
participants were presented with exactly the same train-
ing sequence: Within each block of 10 trials, the same
systematically increasing sequence of cue values was
presented to each person.

Four parameters of the polynomial rule model were
used (standard deviation of the inputs, learning rate, and
two parsimony coefficients) to fit the learning data. To
provide a comprehensive examination of the polynomial
rule model, we fit models with hidden units ranging in
number from 2 to 17. For EXAM, only two parameters
were used (standard deviation of the inputs and the learn-
ing rate; for extrapolation, we simply set the standard de-

viation for generalization equal to that for training stim-
uli). For both models, the parameters were estimated
from the learning data by minimizing the sum of squared
error. Model performance was measured by R2 � 1 �
SSE/TSS, where SSE � sum of squared deviations from
model predictions and TSS � total sum of squared devia-
tions around the mean. These parameters were then used
to generate predictions for the transfer test. Thus, impor-
tantly, a priori predictions of each model were used to test
interpolation and extrapolation performance. The results
for each function are reported in turn.

Negative linear condition. The learning data for the
negative linear condition are shown as the open circles in
Figure 2 (and again in Figure 3), where each panel pre-
sents performance on 10 consecutive trials. The best-
fitting polynomial model was obtained with n � 7 (R2 �
.96, α � 34.71, σ � .21, λ � .3125, δ � 0), and the as-
terisks in Figure 2 indicate the predictions for this model.
The asterisks in Figure 3 show the predictions for the
learning performance of EXAM (R2 � .94, α � .3056,
σ� .0553). As can be seen by a comparison of Figures 2
and 3, both models did a good job of accounting for
learning of the negative linear function.

Quadratic condition. The learning data for the qua-
dratic condition are shown as the open circles in Figure 4
(and also in Figure 5). Once again, the best-fitting poly-

Figure 2. Learning performance on the negative linear function for the best-fitting polynomial model with par-
simony (hidden nodes set to n � 7) and corresponding data from the learning phase of DeLosh (1994). The data
are aggregated in six blocks with 10 trials per block.
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nomial rule model was obtained with n � 7 (R2 � .70,
α � 17.27, σ � .01, λ � .3372, δ � 0). It is interesting
to note that the quadratic model (with n � 3) fit much
worse (R2 � .60, α � 19.44, σ � 1, λ � .0113, δ � 0).
The predictions of the polynomial rule model (with n �
7) are shown as the asterisks in Figure 4. As can be seen,
the polynomial rule model did not learn as quickly as the
humans did during the first block of training. The pre-
dictions from EXAM are shown as the asterisks in Fig-
ure 5. By contrast, EXAM (R2 � .81, α � .5387, σ �
.051) more closely approximated the learning pattern of
the participants (see Figure 5), although not perfectly.

Transfer performance. Subsequent to learning, these
models were transferred to interpolation and extrapolation
trials. Figures 6 and 7 provide the participants’ perfor-
mances (open circles) and model predictions (asterisks).
Considering first the polynomial rule model, Figure 6
confirms the suggestion above that once the rule model
is extended with a learning component and is fit to the
trial-by-trial learning data, this model will not necessar-
ily extrapolate perfectly along the trained function. For
the linear function, the polynomial rule model produces
a fairly good fit to participants’ linear extrapolation
(R2 � .92). However, the model predictions begin to tail
off from the linear function in a curvilinear (cubic) fash-
ion, whereas the participants’ extrapolation appears to
be more linear. For the quadratic function, surprisingly,

the polynomial rule model showed very little extrapola-
tion as opposed to human learners (R2 � �.54)4 and very
little evidence of acquisition of a quadratic function.

Next, consider EXAM, which assumes a linear ex-
trapolation response from nearby training associations,
as shown in Figure 7. For the linear training function,
EXAM captures the lower extrapolation region fairly
well. On the upper extrapolation region, however, EXAM
extrapolated above the assigned function, but participants
extrapolated below the assigned function. The overall fit
for EXAM (R2 � .89) was only slightly below that ob-
tained for the polynomial rule model for the linear func-
tion. The pattern of f its changed when the quadratic
functions were considered. In this case, EXAM provided
a much better account for extrapolation (R2 � .53), in
that participants again seemed to show fairly linear ex-
trapolation. As can be seen in Figure 7, EXAM’s linear
extrapolation was not as steep as that produced by par-
ticipants or the assigned function. The shallow linear ex-
trapolation displayed by EXAM probably reflects inad-
equate learning of the extreme input–output points given
in training (see DeLosh et al., 1997).

Accordingly, we trained both EXAM and the polyno-
mial rule model (with n � 7 hidden units) until they pro-
duced highly accurate predictions for the training crite-
rion values and then transferred them to the extrapolation
stimuli. These results are shown in Figures 8 and 9 for

Figure 3. Learning performance on the negative linear function for EXAM and corresponding data from the
learning phase of DeLosh (1994).
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the polynomial rule model and EXAM, respectively. As
can be seen in Figure 8, when the polynomial rule model
is trained to produce highly accurate predictions for the
training criterion values, it again fares well for the linear
function (R2 � .95). However, for the quadratic function,
although its predictions are much improved relative to
those above, the rule model does not completely capture
the human data (R2 � .87). The rule model’s divergence
is seen as the extrapolation points get farther from trained
values, for in these cases the model produces an inap-
propriate curvilinear upswing. By contrast, as can be
seen in Figure 9, EXAM’s quadratic extrapolation better
resembles the human data (R2 � .92), and its linear ex-
trapolation almost perfectly captures the human data
(R2 � .96) as well.

GENERAL DISCUSSION

Recent work has challenged the long-standing as-
sumption that rule acquisition underlies the conceptual
basis of human function learning (Brehmer, 1974; Car-
roll, 1963; Koh & Meyer, 1991). DeLosh et al. (1997)
found that a popular polynomial rule model of function
learning did not produce extrapolation, as did human
learners. Because the DeLosh et al. study provided pre-

liminary evidence (in terms of extrapolation performance)
countering a particular polynomial rule model, some
theorists have been tempted to discard polynomial rule
models altogether (cf. Kalish et al., 2004; Lewandowsky
et al., 2002). The dismissal of rule models on the basis
of a single study of one particular rule model is prema-
ture, however (see, e.g., Juslin et al., 2003). There are a
number of possible rule forms, most of which have not
been formalized or evaluated. Moreover, no rule model
has yet implemented a psychologically based learning
component, and, accordingly, the instantiation of any
particular rule examined in models has been constrained
by theorists rather than by model-specified learning. We
comprehensively addressed these issues by developing
several new rule models that incorporated learning mech-
anisms with parsimony, and we considered two addi-
tional rule forms (Fourier and logistic) not examined in
previous models. We first discuss the results of the mod-
eling and evaluation of rule models, and then those of
EXAM.

Rule Learning
Our results clearly established that the form of the rule

is critical in terms of its being able to account for human
function learning. The logistic rule that we examined

Figure 4. Learning performance on the quadratic function for the best-fitting polynomial model with parsi-
mony (hidden nodes set to n � 7) and corresponding data from the learning phase of DeLosh (1994).
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could not handle benchmark results of order of learning
difficulty across function forms. The Fourier and poly-
nomial rule-learning models, however, were able to ac-
count for order of learning difficulty (Study 1).

Because the learning difficulty data could not com-
pletely legislate among all of the candidate rule-learning
models, we next considered extrapolation (transfer) per-
formance. None of the rule models without parsimony
could account for the basic patterns of human extrapola-
tion behavior (see Study 2). Extreme parsimony as well
produces important divergences from human function-
learning patterns. DeLosh et al. (1997) imposed the con-
straint that the rule models adopt the lowest possible num-
ber of terms in learning linear and quadratic functions.
With this constraint, the rule model was limited to a linear
form for the linear function and a quadratic form for the
quadratic function, and subsequently produced extrapola-
tion that exactly reproduced the intended function. In a
similar vein, Juslin et al. (2003) found that a minimal-term
rule abstraction model produced extrapolation that fol-
lowed the trained function and, importantly, that this
model accounted for human extrapolation performance in
a multiple-cue-learning task with continuous responses.
In Juslin et al., extrapolation testing was limited to two ex-
amples, one near the lower ends and one near the upper

ends of the trained examples. In contrast, DeLosh et al.
tested extrapolation across a range of untrained values.
Here, human learners’ extrapolation increasingly devi-
ated from the intended function as the extrapolation stim-
uli became more distant from trained points, a result that
has been obtained in other studies in which extrapolation
was examined across a range of functions (Byun, 1995;
DeLosh, 1994). Thus, accurate extrapolation for new
stimuli proximal to trained points may not prove decisive
in evaluating the merits of various rule models.

Critically, the present work indicated that when parsi-
mony was included as one of the objectives during learn-
ing (but not the overriding component) the polynomial rule
model (and the Fourier model) did not extrapolate per-
fectly, in line with human extrapolation behavior. Thus,
perfect extrapolation is not necessarily inherent to rule
models, so the absence of perfect extrapolation cannot
be used to dismiss rule-learning models of function learn-
ing in general. The importance of including parsimony in
the learning component of rule models supports and con-
verges with formal theoretical work in another complex
concept-learning domain, that of intervening concept
learning (in which multiple continuous inputs are asso-
ciated with multiple continuous outputs; Busemeyer,
McDaniel, & Byun, 1997). Our formal instantiation of

Figure 5. Learning performance on the quadratic function for EXAM and corresponding data from the learn-
ing phase of DeLosh (1994).
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parsimony also appears to dovetail with Lewandowsky
et al.’s (2002) suggestion that expediency is an important
principle of human function learning. Expediency is the
desire to find an efficient solution, and rules with fewer
terms (higher parsimony) represent simpler, more effi-
cient approximations of an unknown function.

The new rule models with parsimony still produced
some divergence from human extrapolation, however. In
Study 3, for both the linear and the quadratic functions,
for extrapolation points that were distant from trained
points the polynomial rule model (the only rule model
not already disfavored by Studies 1 and 2) began to pro-
duce predictions that curled back toward the trained out-
put values of the intended function. In contrast, human
learners continued to produce more extreme outputs, and
did so in a more linear fashion.

For the first time, we also examined learning patterns
for the rule models in detail. In some cases, a rule model
may fare well in accommodating human performance
when fits are restricted to asymptotic learning perfor-
mance and the learning pattern is ignored (cf. Juslin
et al., 2003). We considered the best polynomial rule
model over the entire learning process, and this model
was not very successful in accounting for human learning
performance for a quadratic function in either a quanti-

tative (R2 � .70 vs. R2 � .81 for EXAM) or a qualitative
aspect. Human responses seemed to approximate some-
what a quadratic shape in the first 10 trials, with some
responses overlapping with the criterion (see Figure 4).
At least 20 more trials were needed to adjust these pre-
dictions to a more symmetrical quadratic form. By con-
trast, the polynomial rule model was accurate in approx-
imating only few, if any, of the intended criterion values
in the first 10 learning trials (see Figure 4), but then
quickly acquired a symmetrical quadratic form in the
next 10 trials.

In sum, the best rule model of the five examined—
namely, the polynomial rule model with parsimony—
although not exhibiting the problem reported for previ-
ously formalized rule models, did fall short of adequately
reproducing human function learning and extrapolation
performance on other dimensions. Unless other types of
formal rule models can be successfully implemented, it
appears that a more fruitful candidate for a model of
function learning is needed.

EXAM
Busemeyer, Byun, et al. (1997) proposed a hybrid

model of function learning (EXAM) in which learning of
the experienced input–output points was accomplished

Figure 6. Transfer performance (interpolation and extrapolation) on the negative linear (left panel) and
quadratic (right panel) functions for the best-fitting polynomial rule model with parsimony (hidden nodes
set to n � 7), along with the interpolation and extrapolation data from the transfer phase of DeLosh (1994).
The extrapolation responses are those with cue values below 30 and above 70.
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with associative mechanisms similar to those proposed
in earlier category models (Knapp & Anderson, 1984;
Kruschke, 1992; Nosofsky & Kruschke, 1992) and ex-
trapolation was accomplished with a linear response
generation mechanism (Wagenaar & Sagaria, 1975). An
initial study in which EXAM was tested with regard to
human extrapolation behavior showed that humans exhib-
ited linear extrapolation (after learning training points
presented with a neutral cover story) and that EXAM ap-
proximated this extrapolation behavior well (DeLosh
et al., 1997). Although their results were encouraging,
DeLosh et al. did not evaluate EXAM’s learning perfor-
mance or extrapolation performance after simulation of
the entire learning session. The present study provided a
more extensive test of EXAM through examination of
these dimensions of human function learning.

We were able to show that EXAM consistently accounts
for patterns of acquisition in human function learning
and that it does so better than rule models instantiated in
a similar formal platform. Study 1 showed that EXAM
accounted for the order of difficulty in learning different
function forms. In a challenging competitive test of EXAM
versus the polynomial rule model with parsimony, Study 3
applied the models to detailed trial-by-trial learning data
for a negative linear function and a quadratic function.
For the negative linear function, EXAM almost perfectly

captured the human learning data, but so did the polyno-
mial rule model. EXAM did not approximate the human
learning data for the quadratic function quite as well, but
it did so better than did the polynomial rule model.

As an extension of this competitive test, after both mod-
els were fit to trial-by-trial learning data, the models
were transferred to extrapolation without adjustment of
parameters, thereby allowing genuine competitive pre-
dictions (cf. DeLosh et al., 1997; Juslin et al., 2003). For
the quadratic function, EXAM accounted for a signifi-
cantly larger proportion of the variance in extrapolation
than did the polynomial rule model (�.44 for EXAM vs.
�.54 for the polynomial rule model when only the ex-
trapolation points were considered). Furthermore, the
linear extrapolation produced by EXAM appeared to
capture the topography of human extrapolation better
than did that produced by the rule model. In agreement
with this claim, when the models were trained until they
achieved maximum learning accuracy, EXAM but not
the rule model almost perfectly reproduced human ex-
trapolation performance for the quadratic function.

Thus, the present study supports EXAM as the most
viable formal model of function learning thus far pre-
sented in the literature. Still, as we have just noted, EXAM
did not comfortably span the learning and extrapolation
data for the quadratic function with regard to being able

Figure 7. Transfer performance (interpolation and extrapolation) on the negative linear (left panel) and
quadratic (right panel) functions for EXAM and the corresponding transfer data from DeLosh (1994). The
extrapolation responses are those with cue values below 30 and above 70.
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to transfer from the simulated learning state to a good
quantitative approximation of human performance (see
Study 3), thereby suggesting that some modifications
might be fruitful. Perhaps some fine-tuning of starting
values or learning parameters (e.g., addition of a parsi-
mony parameter) is needed for EXAM to better account
for extrapolation after simulating the human learning
performances. Or, perhaps the assumption that the lin-
ear output response mechanism is based on generaliza-
tion to nearby training points needs some modification.
Clearly, none of these changes would alter the basic the-
oretical approach embodied by EXAM.

New Developments
Very recently, a number of new models for function

learning have appeared (Bott & Heit, 2004; Guigon, 2004;
Kalish et al., 2004).5 We briefly evaluate the strengths
and weaknesses of these new developments in comparison
with EXAM.

Mixed associative and rule model. On the basis of
their experimental findings that participants produced
nonmonotonic extrapolation for a learned cosine (cyclic)
function, Bott and Heit (2004) argued that EXAM was
incomplete. In its stead, they proposed a hybrid model
that consists of an exemplar module similar to the asso-

ciative learning component of EXAM, plus a rule mod-
ule based on a cosine function. This cosine-based rule
module supported the nonmonotonic extrapolation pro-
duced by the participants. An advantage of this model is
that it is flexible enough to account both for the linear ex-
trapolation observed in previous studies and for the non-
monotonic extrapolation performance observed by Bott
and Heit. However, it remains to be seen whether a dual
module approach captures the psychological processes
underlying the behavior reported by Bott and Heit.

First, as acknowledged by Bott and Heit (2004), their
model does not yet include a learning algorithm. Second,
our original EXAM may capture the nonmonotonic pre-
diction behavior outside the training range if we assume
that once participants have learned the periodic nature of a
mapping, they recode the inputs at the end of each period
to repeat the cycle. For example, when learning to predict
weather across time, humans could learn to recode time
into months that range from 1 through 12 after each pe-
riod of a year. Thus, predicting the weather in the first
month of 2003 yields virtually the same input as predict-
ing the weather in the first month of 2004. These two time
points are treated as the same inputs rather than as an ex-
trapolation into a new temporal region. Essentially, this
process would not require nonmonotonic extrapolation.

Figure 8. Transfer performance (interpolation and extrapolation) on the negative linear (left panel) and
quadratic (right panel) functions for the polynomial rule model after accuracy at end of learning is max-
imal (with n � 7 hidden units), along with the transfer data from DeLosh (1994).
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Neural network model. Guigon (2004) recently pro-
posed a neural network model of function learning that
postulates an associative learning approach similar to
that used in EXAM, except that a cumulative input acti-
vation function is used rather than the Gaussian radial
basis function employed by EXAM (see Guigon, 2004,
for details). Guigon has shown that this model can ac-
commodate the basic findings reported by Busemeyer,
Byun, et al. (1997), as well as some additional perceptual
motor learning findings. The advantage of this model is
that it does not require an additional rule-based extrapo-
lation mechanism as postulated in EXAM; instead, it can
extrapolate beyond experience simply by using the asso-
ciative network. The disadvantage of this approach, how-
ever, is that training the network is very slow, so that the
model cannot learn within the same number of training
cycles as humans can. Note that the associative learning
model used in EXAM provides a very good approxima-
tion to the learning rates of humans, at least for the func-
tions examined in Study 3 of the present article.

Function partitioning. Lewandowsky et al. (2002)
proposed a nonformalized theory of human function
learning that relies on partitioning the function into differ-
ent segments and “either finding the one [linear] function
that works for all stimuli or putting together a piecewise-
linear approximation of the correct function” (p. 191). This

view was motivated by experiments in which various
segments of the function were associated with different
contextual cues, with these cues appearing to promote
segmentation of the function in a manner consistent with
the proposed partitioning approach. Lewandowsky et al.
argued that an extension to EXAM based on current as-
sociationistic category models (ALCOVE) would not be
able to accommodate their results showing participants’
reliance on contextual cues to mediate function learning.
Modifications of EXAM’s assumptions regarding inter-
polation and extrapolation could possibly accommodate
those results. This challenge is left for future research.

EXAM seems to straightforwardly accommodate
Lewandowsky et al.’s (2002, pp. 190–191) core assump-
tion that the desire to acquire an efficient solution to a
problem—that is, expediency—is pervasive in function
learning (which is the claimed motivation for knowledge
partitioning). First, with regard to Lewandowsky et al.’s
particular findings, the suggestion is that participants as-
sociated a particular context (cover story) with a partic-
ular kind of function that was then applied in that con-
text. In EXAM, the knowledge associated with particular
cover stories is implemented by setting the initial weights
W(0) equal to the weights obtained from prior training
on a function consistent with the cover story. For exam-
ple, if participants are told to predict the height of a ball

Figure 9. Transfer performance (interpolation and extrapolation) on the negative linear (left panel) and
quadratic (right panel) functions for EXAM after accuracy at end of learning is maximal, along with the
transfer data from DeLosh (1994).
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as a function of the time it is in the air, then the initial
weights are obtained from preliminary training on in-
verted U-shaped quadratic functions in consistency with
the cover story. A second assumption appears to be that
expediency may bias subjects toward linear and positive
functions. If such were the case, then initial weights in
EXAM could easily be set to produce a linear and posi-
tive bias rather than the neutral weights used in the pres-
ent and previous works (DeLosh et al., 1997) with neu-
tral contexts (cover stories).

The partitioning approach was amplified and formal-
ized by Kalish et al. (2004) in a new model of function
learning, the population of linear experts (POLE) model.6
POLE specifies how stimuli and responses are partitioned
into independent linear mappings under conditions like
those examined in most existing function-learning para-
digms, in which the context does not provide clear cues
for partitioning the function into segments. Briefly, when
confronted with a function-learning task, POLE activates
a large number of linear functions (N � 64 in Kalish
et al., 2004) that provide the basis for producing re-
sponses during learning and underlie the acquired knowl-
edge about the target function. When a cue value is pre-
sented on a trial, each of the linear functions produces a
prediction. The selection of the prediction that serves as
the response on the trial is probabilistically determined
on the basis of the acquired strength of association be-
tween the cue value and each function and on that of the
strength of the association between the context cues (if
context cues are present, as in Lewandowsky et al., 2002)
and each function.

A critical implication of this model is that across tri-
als responses to a cue value will be multimodally dis-
tributed. The idea is that on different trials the response
can be produced by a different linear function, and so re-
sponses should cluster around these different competing
linear functions. Kalish et al. (2004) tested this predic-
tion in two experiments using functions based on con-
flicting separated linear segments (e.g., vertically offset
separated functions). In consistency with POLE but not
with EXAM, Kalish et al. found that when learners were
transferred to untested cue values that were between the
values of the endpoints of the trained linear segments,
responses were multimodally distributed. Kalish et al.
also found that POLE fared well when evaluated against
benchmark function-learning findings regarding function
difficulty (see Busemeyer, Byun, et al., 1997; Study 1 of
the present article). Finally, POLE accounted for the
transfer (extrapolation) findings of DeLosh et al. (1997)
focused on in the present Study 2.

Accordingly, support for POLE is thus far impressive.
We believe there are notable limits as well. In the exper-
iments reported by Kalish et al. (2004), training consisted
of only three trials (across blocks) of over 50 cue values
(Experiment 1). In many function-learning situations, in-
cluding real-world examples identified by Kalish et al.
(e.g., how much to water the lawn as a function of tem-
perature), it is unlikely that the learner encounters or en-

codes over 50 cue values for the function. Arguably, in
everyday function learning the learner more characteris-
tically encounters (or encodes) a handful of cue values
and perhaps encounters these values numerous times (cf.
the paradigm of DeLosh et al., 1997). Furthermore, in
Kalish et al.’s paradigm, participants are informed that
their response is accurate if it is within four units of the
function response; such feedback is less fine-grained in
this paradigm than in others. Under any or all of these al-
ternative conditions, it is possible that learning processes
assumed by EXAM prevail. Moreover, the behavior di-
rectly established by Kalish et al.’s results is that transfer
to untested values between endpoints of conflicting lin-
ear segments produces uncertainty about which segment
to activate to support transfer. In these special cases,
EXAM might be modified to display uncertainty in terms
of which learned values are applied to the extrapolation
response rule.

A more significant limitation is that, to account for the
extrapolation performances reported in DeLosh et al.
(1997), POLE’s parameters were fit directly to the trans-
fer data. POLE’s representation is based on linear func-
tions, so it is not surprising that POLE could fit the lin-
ear extrapolation observed by DeLosh et al. POLE has
not yet been shown to predict extrapolation performance,
as does EXAM. That is, it is uncertain how POLE would
succeed relative to EXAM if the model were additionally
challenged to first learn the training stimuli (as in Study 2)
or to simulate detailed learning performance (as in Study 3)
before attempting to account for extrapolation. Further-
more, it is uncertain that POLE would even produce
learning topographies reported by others (e.g., Byun,
1995; DeLosh, 1994) and modeled in the present study.

Conclusions
The significance of the present study is that it repre-

sents the most comprehensive specification and evalua-
tion to date of formal models of function learning, with
the results arguing strongly against long-standing rule
models. An alternative formal hybrid model, EXAM, ap-
pears promising. The theoretical appeal of EXAM is
that, by assuming a basic associative learning mechanism,
it integrates theories of human categorization learning
and function learning to provide a general approach to a
range of human conceptual behaviors. The study also re-
inforces the fruitfulness of formalizing models and con-
ducting comprehensive tests of models using benchmark
data, since such formalization and testing provide clear
markers for the capabilities and shortcomings of function-
learning theories.
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NOTES

1. For all models, no penalty was extracted for the constant and the
first term (which reflects the linear component for the polynomial model
and the fundamental frequency for the Fourier model). Additional terms
were penalized proportionally to the order of the hypothesis for the
polynomial model and Fourier model so that λj � λ ⋅ ( j/n) for j � 2. For
the logistic model, λj � λ, for j � 2.

2. For all parsimony rule models, the intercept and first hidden rule
(linear component for the polynomial model; fundamental frequency
for the Fourier model) were always included in the model, independent
of their magnitudes, but no other term was entered until its validity vj
was driven by error reduction to exceed a cutoff δ in magnitude.

3. The reader should focus on the order of difficulty implied by the
model, because the absolute magnitudes are not directly comparable.
When the model predictions in Table 1B are compared with the empirical
data in Table 1A, it is important to note that the human data represent
responses of a single subject on a single trial averaged across trials and
subjects, whereas the model’s predictions represent the expectation, or
mean response, averaged over the probability distribution of responses.
Thus, the variance of the model predictions is smaller than the variance
of the human data for each condition.

4. The R2 is negative here because the mean response fits better than
the model for the quadratic data, and thus the total sum of squared de-
viations around the mean is less than the sum of squared deviations
from model predictions (TSS � SSE).

5. These all appeared while the present article was under review.
6. The formal model of the knowledge-partitioning approach ap-

peared (Kalish et al., 2004) while the present article was under review.

(Continued on next page)
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APPENDIX
Weights Connecting Inputs to Hidden Units for the Rule-Based Models

Polynomial Rule
The weights, wji, for this model are defined by a (n � 101) matrix. The first row is simply constant across

the columns and is normalized to have unit length. Each subsequent row was constructed from an orthonor-
mal polynomial: The j th row contains the 101 scores for the jth-order orthogonal polynomial, corresponding
to x j for x � 0, .01, .02, . . ., 1.0 and j � 0, 1, 2, . . ., n. For example, the first row contains the flat or zero-
order orthogonal polynomial (corresponding to x0), the second row contains the linear or first-order orthog-
onal polynomial (corresponding to x1), the third row contains the quadratic or second-order orthogonal poly-
nomial (corresponding to x2), the fourth row contains the cubic or third-order orthogonal polynomial
(corresponding to x3), and so on. In this case, Q is simply an identity function, Q(x) � x, in Equation 2.

Fourier Rule
The weights, wji, for this model are defined by a (n � 101) matrix. The first row is simply constant across

the columns and is normalized to have unit length. Each subsequent pair of rows was constructed from a pair
of orthonormal harmonics: sin[2 ⋅ π ⋅ ( j/101)x] defines the first of each pair, and cos[2 ⋅ π ⋅ ( j/101)x] defines
the second of the pair for x � 0, 1, 2, . . ., 100 and j � 1, 2, . . ., (n � 1)/2. For example, the first pair of rows
contains the fundamental frequency (corresponding to the frequency for j � 1), the second pair of rows con-
tains the first harmonic (corresponding to the frequency for j � 2), the third pair of rows contains the second
harmonic (corresponding to the frequency for j � 3), and so on. In this case, Q is simply an identity function,
Q(x) � x, in Equation 2.

Logistic Rule
For this model, Q(x) � (1 � e�x)�1 in Equation 2. In this case, the weights, wji, form a (n � 101) matrix in

which each element is defined as an affine transformation of the input node index: wji � wj ⋅ (i/100) � θj. Each
row contains 101 scores that form a linearly increasing function of the input node index i with a different slope
wj and intercept θj selected for each row. The first row is a special case in which the slope is fixed equal to
zero and the intercept is fixed equal to a large value, so that the output of the first logistic unit H1 always equals
1.0. For the remaining rows, the slopes and intercepts (wj, θj) for each logistic node Hj are learned during train-
ing using back-propagation:

wji(t � 1) � wji(t) � β ai(x) Q′(hj) vj (t) [z(t) � y(x)] � γ [wji(t) � wji(t � 1)],

where β is a learning rate parameter, Q′(x) is the derivative of the nonlinear transformation Q(x), and the last
term represents the momentum term moderated by a parameter γ.

Comparing Rules Using a Common Architecture
Note that the only change in the model required to represent the polynomial and Fourier rule models was a

change in the weights, wji, used to map inputs to the hidden units. Nothing else in the connectionist architec-
ture is changed with this comparison. Furthermore, the weight matrices for both cases are orthogonal and nor-
malized to unit length, which further equates the two representations. Thus, this representation provides a
comparison that holds all architectural features constant except for the representation of the rules by the
weights.

The logistic model was formed not only by a change in weights but also by the use of a logistic output func-
tion Q(x). All other aspects of the cognitive architecture are the same as for the polynomial rule and Fourier
rule models.
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revision accepted for publication April 22, 2004.)


