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Comparison of basic assumptions embedded
in learning models for experience-based
decision making
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The present study examined basic assumptions embedded in learning models for predicting behav-
ior in decisions based on experience. In such decisions, the probabilities and payoffs are initially un-
known and are learned from repeated choice with payoff feedback. We examined combinations of two
rules for updating past experience with new payoff feedback and of two choice rule assumptions for
mapping experience onto choices. The combination of these assumptions produced four classes of
models that were systematically compared. Two methods were employed to evaluate the success of
learning models for approximating players’ choices: One was based on estimating parameters from
each person’s data to maximize the prediction of choices one step ahead, conditioned by the observed
past history of feedback. The second was based on making a priori predictions for the entire sequence
of choices using parameters estimated from a separate experiment. The results indicated the advan-
tage of a class of models incorporating decay of previous experience, whereas the ranking of choice

rules depended on the evaluation method used.

Recently, interest has been rising in learning models
that are applied to choices from repeated-play games.
Recent studies of choice behavior in individual (see, e.g.,
Busemeyer & Myung, 1992; Erev & Barron, in press; Sarin
& Vahid, 1999) and multiplayer (see, e.g., Camerer & Ho,
1999b; Cheung & Friedman, 1997; Erev & Rapoport,
1998; Erev & Roth, 1998; Fudenberg & Levine, 1995;
Sarin & Vahid, 2001; Stahl, 1996) games have shown that
learning in repeated-choice problems can be summarized
by using surprisingly simple mathematical models. The
purpose of this article is to provide a systematic com-
parison of the basic assumptions used to construct mod-
els for decision making based on experience from re-
peated play.

We evaluated four classes of models that were formed
by combining two basic assumptions about learning
rules with two basic assumptions about choice rules (see
Table 1). The learning rules in these models differed ac-
cording to the manner in which past experience was up-
dated on the basis of new feedback: In one class, called
the interference models, only the chosen option was up-
dated, and unchosen options remained unchanged; in the
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other, called the decay models, the chosen option was up-
dated and the unchosen options were discounted by some
amount. The choice rules differed according to the man-
ner in which past experience was mapped onto choice be-
havior: In one class, the option producing the maximum
expectation was always chosen (with some guessing al-
lowed); in the other, choices were probabilistically de-
termined by the strength of expectation.

Two methods were used to compare the empirical va-
lidity of the models. The first was based on “one-step-
ahead” predictions, and the second on simulation of the
entire game. Under the first method, the model predicted
the player’s next choice ahead using the past history of
payoffs actually experienced by a player. In this case, the
model parameters were estimated separately for each
player to maximize the likelihood of the observed choices.
Using the second method, model simulations were gen-
erated to predict the proportion of choices, averaged
across players, for the entire length of the game. In this
case, parameters estimated from one experiment were
used to generate a priori predictions for a second exper-
iment. The advantage of the first method was that it al-
lowed tests of the model at the individual level, but it also
had two disadvantages: (1) It had to rely on actual past
choices of an individual, and (2) it relied on fitting pa-
rameters to the data. The second method circumvented
both of these disadvantages, but it could not be used to
test models at the individual level. By using both meth-
ods, we hoped to achieve a convergence of evidence.

Copyright 2005 Psychonomic Society, Inc.
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Table 1
General Design for Examining Basic Assumptions
of Competing Models
Maximizing Probabilistic

Choice Rules Choice Rules

Interference Learning Models
Decay Learning Models

A four-alternative choice task was chosen for model
comparison rather than a simple two-alternative (binary)
task because it allowed us to explore the main difference
between interference and decay models. In interference
models, only experience related to the selected alterna-
tive is updated following a choice. Thus, whereas in a bi-
nary task an update in the experience of the chosen al-
ternative implies a mirroring update in the unchosen
alternative, this is not so in a multiple-alternative task.
The particular task we selected was a highly studied
problem called the lowa gambling task (Bechara, A. R. Da-
masio, H. Damasio, & Anderson, 1994). This gambling
task has been extensively studied in its association with
decision-making deficits of individuals with brain dam-
age (for a review, see Busemeyer, Stout, & Finn, in press;
see also Bechara & H. Damasio, 2002; Clark & Robbins,
2002).

The present article begins by presenting the lowa gam-
bling task and summarizing the basic empirical results.
Second, the models to be compared are described. Rather
than contrasting specific models, we will compare basic
assumptions made by these models about the updating
of expectancies and examine different choice rules. Third,
different methods for evaluating learning models are de-
scribed—one method is based on predicting the choices
of individuals in a one-step manner, the other on simu-
lating the choice probabilities of the group average for
the entire sequence of choice trials. Finally, the models
are empirically evaluated on the basis of data (Yechiam,
Stout, Busemeyer, Rock, & Finn, 2005) collected under
different payoff conditions of the lowa gambling task.

EXPERIMENT AND BASIC FINDINGS

In the Iowa gambling task, participants are presented
with four card decks, labeled A, B, C, and D. They are
told to accumulate as much (real) money as possible by
picking cards from the decks. Initially, they know noth-
ing about the payoffs produced by each deck, and this
has to be learned from trial-by-trial feedback. Decks dif-
fer with respect to the payoff for each card selection and

Table 2
Choice Alternatives in the Iowa Gambling Task
Deck Wins Losses Net
A $1 every card .5 to lose $2.50 Loss
B $1 every card .1to lose $12.50 Loss
C $0.50 every card .5 to lose $0.50 Gain
D $0.50 every card .1 to lose $2.50 Gain

the frequency and severity of penalties, as indicated in
Table 2.

Note that Decks C and D may appear to be disadvan-
tageous when considering the gain domain. However, in
each trial the winnings are also paired with losses on
many cards in such a way that Decks A and B are disad-
vantageous overall, leading to an average expected loss
of 25 cents per trial, whereas Decks C and D are advan-
tageous overall, leading to an average expected gain of
25 cents per trial.

Yechiam et al. (2005) examined the choices of young
adults, mostly (85%) college students, in the lowa gam-
bling task.! Two primary conditions were manipulated
in their study: In the first, the standard “partial-
information” version of the task was used; in this version,
only the payoff for the chosen gamble was shown on each
trial. The second condition featured a modified “full-
information” version of the task; in this version, the pay-
offs from all four gambles were shown on each trial (al-
though earnings were based solely on the chosen option).

Yechiam et al. (2005) also performed a secondary ma-
nipulation involving the size of the payoffs. In the low-
payoff condition, disadvantageous decks (A and B) had
the exact wins/losses indicated in Table 2. In the high-
payoff condition, these payoffs (wins and losses) were
multiplied by a constant factor of 1.5. This manipulation
had little effect, and results from the two versions were
pooled in the study. In the present analysis, the two pay-
off magnitude conditions were utilized to provide a
cross-validation test of the models (as described in the
Simulation Method section below).

Method

Participants. The original study included 162 young men and
women. The participants were 22 years old on average and had
14 years of education. Because of a technical problem, the trial-by-
trial data of 7 individuals were lost, permitting the modeling of the
behavior of 76 participants in the partial-information condition and
79 participants in the full-information condition.

Apparatus. The experiment used a computer-simulated version
of the gambling task developed by Bechara et al. (1994). Images of
four card decks labeled A, B, C, and D were displayed horizontally
and “face down” on a monitor controlled by a desktop computer.
The participants were instructed to make a series of selections from
the decks using the mouse and to try to win as much money as pos-
sible. They received a $20.00 credit at the start of the task and were
informed that their winnings would be paid at the end of the session
as long as they continued until the game was completed (150 trials).
Gains and losses were shown on two tally bars at the top of the dis-
play, the top one revealing the cumulative net win/loss and the bar
below it indicating the win/loss for the most recent selection (see
Figure 1).

Results

The results in the partial-information condition (see
Figure 2) show a slow but significant effect of learning,
with fewer choices from disadvantageous decks (A and
B) and more from advantageous decks (C and D) as a
function of time (first versus last block of 25 trials).2
Note that these results deviate from Bechara et al.’s
(1994) original results, in which control participants
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Tally:  $21.00

You won $1.00

Win
$1.00

Figure 1. A screen shot from the simulated Iowa gambling task.

(who had lesions in the left somatosensory area and were
about 20 years older than our participants on average)
learned to choose Decks C and D consistently over
Decks A and B. However, note that the present task did
not include constraints on the order of losses as Bechara
et al.’s did, and thus it might have been more difficult in
our study to learn the contingencies. Also, the charac-
teristics of the populations were different.

In contrast to most follow-ups of Bechara et al. (1994),
Yechiam et al. (2005) focused on choices of specific
decks (rather than grouping Decks C and D together as
“advantageous”). The results revealed that for the par-
tial-information condition, Decks B and D were chosen,
on average, more often than Decks A and C [.62 vs. .38;
t(75) = 6.12, p < .01]. The low-frequency decks (B and
D) with respect to negative payoffs (p = .1 for a nega-
tive payoff) were chosen more often on average, despite
having expected values equal to those of the high-fre-
quency decks (A and C, respectively). This result was
observed for both the advantageous and disadvantageous
decks (B chosen more than A, D chosen more than C); it
replicates previous findings in simpler binary tasks (Bar-

Partial-Information Condition
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ron & Erev, 2003; Erev & Barron, in press; Hertwig, Bar-
ron, Weber, & Erev, 2004) and signal detection tasks
(Barkan, Zohar, & Erev, 1998), showing that decision mak-
ers underweight small-probability events with experi-
ence.

A comparison of the partial- and full-information con-
ditions (see Figure 2) reveals the following important dif-
ferences: In the full-information condition, on average,
more choices were made from decks with a low frequency
of negative payoffs [B and D, .70 with full information vs.
.62 with partial information; #(153) = 3.07, p < .01] and
fewer choices from advantageous Deck C [.15 vs. .24;
t(153) = 3.95, p < .01]. Furthermore, for Deck C, choices
decreased over time (although the decrease was largely
limited to the first 50 trials). This finding is interesting,
since it indicates that more information led to poorer per-
formance in the task (and a $2 decrease in earnings from
$23 to $21). It also replicates previous results indicating
that forgone payoffs can, under certain conditions, increase
risk seeking (see, e.g., Yechiam & Busemeyer, 2005).
Thus, the results replicate some of the robust regulari-
ties in the performing of experience-based choice tasks.
The next step was to systematically compare mathemat-
ical learning models that can capture these regularities.

EXPERIENCE-BASED
DECISION-MAKING MODELS

An examination of the learning models used by previous
researchers reveals that most models employ three groups
of assumptions: First, a utility function is used to represent
the evaluation of the payoff experienced immediately after
each choice. Second, a learning rule is used to form an ex-
pectancy (or propensity) for each choice alternative that
summarizes the experience of all of the past utilities pro-
duced by each choice alternative. Third, a choice rule is
based on the comparison of the expectancies formed for
each choice option. Various learning theories posit one set
of assumptions about the process for updating expectan-
cies and another set about the choice rule. We first present
the formulation of the models for the partial-information

Full-Information Condition

5
.‘if‘ ~
a | o ) "
4. " " I b A \'1 W, NN Y
E My F’\l e :J ‘ll \TY v ‘\JU ¥
S 3- A ‘ - A
£ %3 o ST A RN W B
> ! c
8 2] 2T% —0D
19
<
O 1 —]
0 — — — — — T T T
1 25 49 73 97 121 145 1 25 49 73 97 121 145
Trials Trials

Figure 2. Proportions of choices from the four decks as a function of time for the partial- and full-information conditions. For pur-
poses of comparison with the simulation, the high-payoff results are presented.



390 YECHIAM AND BUSEMEYER

condition, in which the decision maker only experiences
the payoff for the chosen alternative. Later, we will extend
the formulation to the full-information condition, to in-
clude forgone-payoff information.

Utility

The evaluation of the gains and losses experienced
after making a choice is represented by a prospect-theory
type of utility function (Kahneman & Tversky, 1979).
The utility is denoted u(?) and is calculated as a weighted
average of gains and losses in value for the chosen option
(or deck) in trial ¢:

u(t) = W-win(t)¥ — L - loss(¢)". (1)

The term win(?) is the amount of money won on trial ¢
the term loss(?) is the amount of money lost on trial #; W
and L are parameters that indicate the weights to gains
and losses, respectively; and ¥ is a parameter that deter-
mines the curvature of the utility function. Note that for
the small amounts of money used in the present experi-
ment (less than $20), ¥ = 1 was found to be sufficient
(estimation of ¥ produced only minor improvements).

Updating of Expectancies

A general linear model is used to represent all of the
previously proposed learning models. (See Bush & Mos-
teller, 1955, and Estes & Burke, 1953, for the original
work on such models.) The expectancy E; for deck j is
updated as a function of its value in the previous trial
(which reflects past experience), as well as on the basis
of new payoffs, as follows:

Ej(1) = oy~ E(t — 1) + By~ u(D), ()

where @, and 8, denote the weight given to the old ex-
pectancy E(¢f — 1) versus the value of the new informa-
tion in the present trial u(f). The expectancy (accumu-
lated experience from past outcomes) of an alternative is
determined by the previous expectancy and the weighted
new outcome following a choice. For all models, the ini-
tial expectancies were set to £,(0) = 0, reflecting the lack
of any prior knowledge about the payoffs from each deck.
Different assumptions about the learning weights result
in different specific learning models.

Two general classes of models have been proposed to
account for how new information is accumulated in a
learning task. Under one class of models, the weight of
the old expectancy from an alternative changes only if
new information is added about that alternative. Thus,
the old expectancy from an alternative is discounted only
if new information about outcomes from that alternative
is presented. This class of models can be labeled inter-
ference models, because memory is only changed by rel-
evant events and not simply as a function of time (see,
e.g., Newell, 1992; Oberauer & Kliegl, 2001). Examples
include the delta learning model (see, e.g., Busemeyer &
Myung, 1992; Sarin & Vahid, 1999) and Bayesian learn-
ing (see, e.g., J. R. Anderson & Matessa, 1992).

In a second class of models, the weight of the old ex-
pectancy of an alternative can decrease on each choice
trial even if no new information about a particular alter-
native is presented. Thus, expectations about one option
can change as a result of selections of other alternatives.
This class can be labeled decay models, because decay of
memory occurs purely as a function of time, even with-
out the occurrence of interfering events (see, e.g., Atkin-
son & Shiffrin, 1968; Broadbent, 1958). Examples in-
clude the reinforcement learning model used by Erev and
Roth (1998) and the EWA model (Camerer & Ho, 1999a,
1999b). The different learning models are reviewed next.

We will initially present the specific assumptions of the
models for the partial-information condition. Recall that in
this condition, the decision maker is only given feedback
about the payoff for the chosen alternative on each trial.

Models That Assume Interference

Delta rule model. Connectionist theories of learning
usually employ what is called the delta learning rule (see
Gluck & Bower, 1988; Rumelhart, McClelland, & the
PDP Research Group, 1987; Sutton & Barto, 1998). This
type of learning rule was applied to learning in the re-
peated play of individual decision tasks by Busemeyer
and Myung (1992). It has also been applied to repeated-
play games by Sarin and Vahid (1999). According to this
model, the two learning weights are defined as follows:

o, =1 6(1) 9, 3)
and

B = 6(1)- ¢, “4)
where @(t) = 1 if payoff information about option j is
presented on trial ¢, or it is 0 otherwise. Formally, Equa-
tion 2 can be developed as follows:3

E0 =[1 = 8@ ¢]- Bt = 1) + §0)- ¢-u(t
= Bt = 1) = §0)- 9+ Eft = 1) + §(0)- ¢~ u(t)
=E(t—1D+0-80 [uo - E¢-D]L

In particular, for the partial-information condition, the
delta rule assumes that no changes are made to expectan-
cies unless a deck is chosen, in which case the expectancy
is changed in the direction of the prediction error given
by [u(?) — E;(#)]. The parameter ¢ is the learning rate pa-
rameter, which dictates how much of the expectancy is
changed by the prediction error. According to this model,
if 0 < ¢ < 1, then the effect of a payoff on the expectancy
for a deck decreases exponentially as a function of the
number of times a particular deck has been chosen. Thus,
recently experienced payoffs have larger effects on the
current expectancy than do payoffs that were experi-
enced in the distant past.

Bayesian learning. A model that is popular among
economists is the Bayesian learning model (see, e.g., Brown,
1951; Cournot, 1960). For the present application, we as-
sume a beta prior distribution, which leads to the follow-
ing learning weights (see the Appendix for derivation):
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P+ N (1-1)

& :[1_5j(t)]+6j(t).m (6)
_ 1

B;, =06,(1) PN (7

For the partial-information condition, N(¢) is the number
of times that deck j is chosen up to and] including trial ¢.
Like the delta rule, the Bayesian model also assumes that
no changes in expectancies occur unless payoff infor-
mation is presented for that deck. However, unlike the
delta rule, the Bayesian model assumes that the effect of
a payoff on the expectancy for a deck remains the same,
independent of the number of times a particular deck
was chosen. Thus, the Bayesian model implies no serial-
position effects at all.4

Reinforcement learning with decreasing learning
rate. Early reinforcement learning theories (see Luce,
1959) posited an additive effect of reinforcement on
propensities. We implemented this idea by using the fol-
lowing set of learning weights:

o = 1;

S.(1)
ﬁjt i l:]qj].
1+ N] (1)

Once again, N,(7) denotes the number of choices from
deck j up to and including trial z, and as with the models
described above, no change is made unless a deck is cho-
sen and a payoff is received. The parameter ¢ allows
some flexibility in the effect of reinforcement with ex-
perience. For example, if ¢ = 0, reinforcement does not
depend on amount of experience; if ¢ = 1, the effect de-
creases with experience.’

®)

€))

Models That Assume Decay

Decay reinforcement model. More recently, Erev
and Roth (1998) added a decay or discount parameter to
the reinforcement learning model, which can be repre-
sented by the following learning rates:

% = ¢; (10)
By = (0. (11)

This implies that Equation 2 can be expressed simply as:
E(t) = ¢-E(t — 1) + 5(1) - u(?). (12)

Note that for this model, the past expectancy is always
discounted, regardless of whether or not any new payoff
information is experienced. In particular, for the partial-
information condition, the expectancies for unchosen op-
tions are decayed toward zero. In other words, if an option
is not chosen, so that no information is provided about it,
then a payoff of zero is used to update the expectancy.

Experience-weighted attraction (EWA) model.
The EWA model (Camerer & Ho, 1999a, 1999b) pro-

391

vides more general assumptions about learning than do
the previous models. It makes the following assumptions
about oy, and f;:

C=pC+1; (13)
C

o =9 Ct (14)
_1

= (15)

The new term C, represents an estimate of the count
for the number of trials experienced by the decision
maker. If we set p = 0, there is no count, and this model
reduces to the updating rule used by Erev and Roth (1998).
In order to examine a different model class, we need to
impose different constraints on the count for the number
of trials. Here we consider two other special cases of the
more general EWA model. In the first case, we set p =
¢, which assumes a common discounting rate for esti-
mating the count and the expectancies. The second case,
p = 1, assumes no discounting of the count and allows
for an independent discount of expectancy. In both cases,
the expectancy formula is the same:

Gy 9 E(t=D+u(t)-8, (1)
- .

t

E ()= (16)

As with the decay reinforcement model, the weight on
past experience can decrease on each trial even if no new
payoff information is provided. In particular, for the
partial-information condition, expectancies for uncho-
sen options are discounted toward zero. Note that all
three versions of the EWA model (p = 0, ¢, or 1) have
the same number of parameters.

Choice Rules

The choice on each trial is assumed to be determined
by the expectancies for each deck according to a choice
rule. In the present study, three choice rules are compared.

Max rule with guessing. In the expectation maxi-
mization model (see Harless & Camerer, 1994), decisions
are based on a comparison of the expected utilities esti-
mated for the different decks. A strict maximizing rule
would imply that on each trial, the deck producing the
maximum expectancy would be chosen. A more lenient
and general rule allows for occasional random guessing.
We define Pr[G,(7)] as the probability that deck j will be
selected on trial ¢ by the model and g, as a free parameter
denoting the probability of guessing. Formally:

% = Vif E; = Max{E,, Eg, E¢, Ep };
otherwise zero. (17)
Pr[G(0)] = (1 — g) (1) + g/4. (18)

We compared two common assumptions about the guess-
ing parameter. One alternative is constant guessing, in
which g, = g. An alternative suggestion is that guessing
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decreases with time (see, e.g., Barron & Erev, 2003).
This can be formally presented as:

g =0 +197, (19)

where c is a free parameter that denotes the decrease in
guessing as a function of time.¢

Ratio choice rule. The ratio rule assumes that the
choice made on each trial is a probabilistic function of
the relative expectancies of the alternatives. This princi-
ple implies that decision makers do not optimize utilities
but rather use a matching rule in which the probability of
choosing a deck is proportional to the relative strength of
its expectancy (Luce, 1959). This can be formalized by
the following ratio-of-strengths rule:

0(1)-E, (1)
SOE

3 SOED”
k

Pr[ G, (1)]= (20)

where the parameter 6(¢) controls the sensitivity of the
choice probabilities to the expectancies. On the one hand,
setting 6(f) = 0 produces random guessing; on the other,
as 0(t) — o we recover a strict maximizing rule. The
probability of choosing the deck producing the largest
expectancy increases according to an S-shaped logistic
function with a slope (near zero) that increases with 6(¢).

It is assumed that the sensitivity to expectancies, which
is denoted by 6(f), may change as a function of experience.
Potentially, the sensitivity can increase in magnitude, re-
flecting more confidence in the expectancies as experience
is accumulated. It can also decrease, reflecting fatigue
or boredom. This is parameterized by a power function
for the sensitivity change over trials:

o) = (t/10)e, Q1)

where c is a free parameter. If ¢ = 0, sensitivity does not
change over time; positive values of ¢ indicate increas-
ing sensitivity over time; and negative values indicate
decreasing sensitivity.

Full-Information Models

Recall that in the full-information condition, the deci-
sion maker receives feedback about the payoffs from all
options (although payment is based solely on the chosen
option). In most economic theories, it is understood that
decision makers use all available information in making
decisions. However, this is more controversial in exper-
imental economics, particularly among those studying

adaptive choice behavior. We considered three promi-
nent assumptions concerning the effect of full informa-
tion: The first assumes that weight is given only to feed-
back from the chosen option (the one that actually pays
out), thus ignoring forgone payoffs (see, e.g., Roth &
Erev, 1995; Sarin & Vahid, 2001). A second assumes that
equal weight is given to feedback from all four decks, in-
dicating an identical effect of forgone and actual payoffs
(Fudenberg & Levine, 1998). A third assumes that more
weight is given to the chosen option, but some weight is
also given to unchosen options (Busemeyer & Myung,
1992; Camerer & Ho, 1999b). In this model, an addi-
tional parameter is added to account for the weight given
to forgone payoffs. Including this weight parameter in
the general learning model produces the following up-
dating equation:

Ej(t) = aj,-Ej(t -1+ /3]1
{8 + 7 [1 = D1} - ul0).

In particular, the delta (Equation 5), decay reinforcement
(Equation 12), and EWA (Equation 16) models are mod-
ified as shown at the bottom of this page.

The parameter y denotes the weight assigned to pay-
off feedback from unchosen options, and u,(7) is the util-
ity of the payoff for option j: u,() is the actual payoff if
deck j was chosen on trial #, or it is the forgone payoff if
deck j was not chosen on trial z. A 7y value of 0 implies
no weight, in which case the models all reduce to the
same forms used above for the partial-information con-
dition; a y value of 1 implies full weight, in which case
there is no longer any difference between the delta and
decay reinforcement models; and values between 0 and
1 indicate decreased weight to forgone in comparison
with experienced payoffs.

(22)

MODEL EVALUATION

Prediction Method

The first method of model evaluation examined the
accuracy of the one-step-ahead predictions generated by
each model for each individual. To be more specific,
Y,(¢) is defined as a ¢ X 1 vector, representing the se-
quence of choices made by individual i up to and in-
cluding trial ¢, and X;(7) as the corresponding sequence
of payoffs produced by these choices. Each model was
given X,(f) and used this information to generate
Pr[G,(7 + 1) [ X{(#)] for choice trials # = 1 to 149 and for

E=E@—1+¢-{50) +v-[1 = 501} [u® - Er = D];

Delta
Reinforcement E)=¢-E(t— 1)+ {(Si(t) +y-[1- 51(1‘)]} “u(t);
EWA E ()=

C 9 Et-D+{8,(0)+y-[1-8,() ]}-u,0)
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choice options j = 1 to 4. The accuracy of these predic-
tions was measured using the log likelihood criterion:

In(Z|model) = %, ¥, In{Pr[G,(t + 1) | X;()]}

S+ 1), (23)

where 5]-(t) = 1 if deck j was chosen on trial 7 or 0 otherwise.

For the partial-information condition, each model has
four parameters {W, L, ¢, ¢} estimated from each per-
son’s choices on 150 trials. For the full-information con-
dition, one additional parameter, ¥, is added. To optimize
the log likelihood for each participant and model, we
searched for parameters using a robust combination of
grid-search and simplex search (Nelder & Mead, 1965)
methods. Each point on the grid served as a starting po-
sition for the simplex search algorithm, which was then
used to find the parameters that maximized the log like-
lihood for an individual. This generated a set of solu-
tions, one for each starting point on the grid. Occasion-
ally, these solutions would differ due to local maxima, so
we selected the grid point that produced the maximum
overall starting positions for the final solution. The pa-
rameter search was done to satisfy the following con-
straints: The values of the /¥ and L parameters were lim-
ited between 0 (indicating no attention) and 3. The value
of ¢ was limited between —2 and 2 (values lower than 0
for ¢ allow for the gambler’s fallacy).” The value of the
guessing parameter g in the case of a constant guessing rate
was set between 0 and 1, allowing the full range between
a deterministic and a random choice. The value of the sen-
sitivity parameter ¢ was set between —5 and 5, allowing
for similar flexibility. Finally, for the full-information
condition, the value of the ¥ parameter was set between
0 and 1, denoting the range between no weight and full
weight to forgone payoffs.

In addition to the learning models presented above, we
employed a baseline statistical model. The baseline model
assumed that the choices were generated by a statistical
Bernoulli process. That is, the choice probabilities for
each deck were assumed to be constant and statistically
independent across trials:

Pr[G;() | X(0), Y(D] = p;.

The baseline model had three parameters {p,, p,, p3,
ps=1—p, — p, — p3}, which corresponded to the pro-
portions of choices of Decks A, B, and C pooled across
all 150 trials (the last proportion, for Deck D, was deter-
mined from the previous three). Therefore, a learning
model could do better than the baseline model only if it
explained learning effects or trial-to-trial dependencies.
The different cognitive models were evaluated by com-
paring log likelihood scores for the baseline and each of
the learning models:

G2 = 2 [In(L |model) — In(L | baseline)].

(24)

(25)

Because the baseline model had only three param-
eters, whereas the learning models had at least four, we
adjusted for the difference in number of parameters. This

393

was accomplished by using the Bayesian information
criterion (BIC; Schwartz, 1978) statistic to compare
models. The BIC is a correction in a model fit that pe-
nalizes models with additional parameters:

BIC = G2 — k- In(N), (26)

where £ is the difference in number of parameters and N
is the number of observations. For our comparisons, we
had k£ = 1 (one additional parameter in the learning mod-
els in comparison with the baseline model) and N = 150.
Thus, 1-1n(150) = 5. This number could be thought of
as the deduction from the G2 of the learning models. Pos-
itive values of the BIC statistic indicate that a learning
model performs better than the baseline model.

Simulation Method

The second method of model evaluation did not use
any information about the actual choices made by any of
the participants. In other words, this method was based
on evaluation of the predictions of each model (Buse-
meyer & Wang, 2000), which was done as follows.

Recall that our experiment included two different pay-
off conditions. We used parameters estimated from the
first payoff condition to generate new predictions for the
second payoff condition, and then these predictions were
evaluated using the independent data from the second
payoff condition. Thus, the parameters used to generate
the predictions for the second payoff condition were
based on the parameter estimates obtained in the first
condition (see Rieskamp, Busemeyer, & Laine, 2003).
This procedure is relatively parsimonious, since it is based
on no further parameter estimation. However, because
the two payoff conditions were relatively similar, the pro-
cedure cannot be considered a true test of generalization,
but rather a cross-validation of the robustness of the set
of parameters to changes in the evaluation method and in
the payoff magnitude.

The parameters of the model were estimated in the
low-payoff condition for one-step-ahead predictions (as
detailed in the previous section). Then, the same param-
eters were used to generate the full simulation path in the
high-payoff condition. A total of 1,000 simulations were
generated to produce a distribution of choice sequences
from a given model in the high-payoff condition, and
these results were averaged to produce the probability of
choosing each deck on each trial. We then examined the
mean square deviation (MSD) of the model’s predicted
probability as compared with the observed proportion of
choices on each trial, averaged across participants.

EVALUATION USING THE
PREDICTION METHOD

Partial-Information Condition

For examining the (standard) partial-information con-
dition, eight alternatives for the updating of propensities
were compared. Five of these alternatives were essen-
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tially interference models: the delta rule, the original and
modified Bayesian rule, and a reinforcement rule as-
suming a decreasing learning rate (as a function of either
time or number of choices from a deck). The other alter-
natives were decay models, including the decay rein-
forcement model and the two instantiations of the EWA
model. Three choice rules were simultaneously evaluated:
a deterministic maximization rule, with or without a de-
crease in guessing, and a probabilistic ratio-of-strengths
rule. These models were evaluated in an 8 (learning) X
3 (choice) table of models, which allowed decomposing
the unique contribution of each component of a model.
A BIC score was obtained for each participant and each
model.

Table 3 presents the median BIC scores of models
compared using the prediction method, pooled across
participants. The results show that it is possible to dis-
tinguish the competing models empirically using the
BIC index. Most importantly, the models that had the
highest BIC scores were all in the decay category, which
included the decay reinforcement and the EWA models.
The decay reinforcement model produced the highest
BIC scores across all assumptions about the choice rule.

An examination of different choice rules shows that,
overall, models including the ratio choice rule produced
higher BIC scores than did models including either of
the two max rules. This result was consistent for all
learning models. Thus, the learning model with the high-
est BIC score (22.17) was the reinforcement learning
model that featured decay and ratio choice, although the
two instantiations of the EWA model had high fit scores
as well.

In addition to examining group medians, we assessed
between-participants heterogeneity. Table 4 summarizes
the percentages of participants whose average choice
proportions were approximated best (had the highest
BICs) under the different models. As in the previous
comparison, the three decay models outperformed the
five interference models. The single model that had the
highest BIC for the largest proportion of individual par-
ticipants was the decay reinforcement model with a ratio
choice rule (31.6%). Across all choice rules, the two in-

stances of the EWA model put together had the highest
BIC for 29.3% of the participants. These results also
show that, interestingly, some of the models that produce
a low average BIC for all participants still approximate
best the behavior of a small proportion of the players.
Notably, the delta learning model under the ratio rule
captured best the behavior of about 7% of the partici-
pants, as did also the modified Bayesian learning model.
The clear bottom line, however, is that a decay model
with the ratio-of-strengths choice rule produces better
approximations of the next choice ahead.

To examine the effect of individual differences in decay
and interference updating, we conducted post hoc Spear-
man correlation tests between the fit of the model (ex-
pressed by the BIC score) and choice proportions from
specific decks. The only significant result was a negative
correlation between the fit of the delta model and choice
from disadvantageous Deck B, the deck with a 10% chance
for large losses [r(76) = —.28, p < .05]. Thus, it appears
that the delta model was less successful in predicting the
behavior of those who had many choices from Deck B.
The decay models were impartial to this behavior, be-
cause the preference for Deck B is easily captured by a
decay formula with an extreme recency parameter.®

Full-Information Condition

For the full-information condition, three learning mod-
els were selected for further testing. The delta learning
model was selected as the one with the highest BIC from
the interference models. The decay reinforcement and
the EWA (with p = ¢) models were selected for their
high BIC scores in the decay group. These learning mod-
els were examined under two choice rules: the proba-
bilistic ratio rule and the maximization with constant
guessing rule. In addition, three basic assumptions regard-
ing full information were compared: (1) Decision makers
may simply ignore the forgone payoff information. In
this case, the difference between decay and interference
models is exactly the same as in the partial-information
condition. Under this assumption, expectancies are up-
dated with y = 0—that is, weight is given only to feed-
back from the chosen deck. (2) Decision makers may

Table 3
Partial-Information Condition: Bayesian Information Criterion (BIC)
Medians and Standard Deviations of the Models

Max, Max,
Constant Guess Decrease Guess Ratio Choice

M SD M SD M SD
Delta learning (I) —1.72 26.0 —-7.97 46.1 3.01 21.0
Bayesian learning (I) —9.50 28.8 —11.50 30.1 —3.55 20.6
Modified Bayesian learning (I) —3.67 47.6 —4.29 47.4 0.94 40.3
Reinforcement learning—Time dependent (I) —8.60 21.0 —12.07 20.8 1.11 15.9
Reinforcement learning—Choice dependent (I) —8.30 21.1 —9.33 20.9 1.21 17.8
Decay reinforcement (D) 5.32 44.9 5.15 45.6 22.17 37.9
EWA, p = ¢ (D) 4.90 46.0 5.10 47.0 19.48 39.9
EWA,p=1(D) 4.00 46.2 2.87 47.6 18.72 344

Note—I, interference models; D, decay models.
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Table 4
Partial-Information Condition: Percentages of Individual Participants Whose Average Behavior
Was Best Approximated (According to BIC) by the Different Models

Max, Max,
Constant Guess (%) Decrease Guess (%) Ratio Choice (%)
Delta learning (I) 1.3 0 6.6
Bayesian learning (I) 0 0 2.6
Modified Bayesian learning (I) 1.3 1.3 6.6
Reinforcement learning—Time dependent (I) 0 0 3.9
Reinforcement learning—Choice dependent (I) 0 0 6.6
Decay reinforcement (D) 4.8 6.6 31.6
EWA, p = ¢ (D) 3.5 4.6 10.5
EWA,p=1(D) 22 7.2 1.3

Note—I, interference models; D, decay models.

give equal weight to actual and forgone payoffs, so that
v = 1 and equal weight is given to payoffs observed for
all four decks. In this case, there is no mathematical dif-
ference between the delta and decay reinforcement mod-
els.? (3) Decision makers may give more weight to actual
payoffs, but still give smaller weight to forgone payoffs.
In this last case, y is a free parameter, and the difference
between interference and decay models depends on the
weight assigned by the model to unchosen alternatives.

Table 5 presents the BIC scores of the models. The re-
sults indicate that as in the partial-information condition,
the BIC scores differentiate between competing models.
First, as in the partial-information results, the BIC scores
under the ratio choice rule were relatively higher than
under the maximization rule (the latter scores were all
negative). Second, under the ratio rule, the most flexible
of the assumptions, assigning more weight to the chosen
deck produced the highest BIC scores for all three learn-
ing models. Finally, again as in the partial-information
condition, the decay reinforcement model produced the
highest BIC score (7.76).

Note that using both choice rules, the difference be-
tween the delta model’s BIC and the two other models’
is largest under the assumption of giving weight only to
chosen decks (with the ratio rule, a difference 0f 9.8 from
the best BIC; with the max rule, a difference of 10.5).
Under the assumption of equal weight to both payoffs, in
which case all decks are updated regardless of choice,
there is mathematically no difference between the delta
and the decay reinforcement models, and both are slightly

better than the EWA model with p = ¢. Under the as-
sumption of differential weighting among decks, the dif-
ference between the delta model and the best BIC in-
creases again (with ratio, 9.9; with max, 4.5). Thus, it
appears that the poorer performance of the delta model
for predictions of one step ahead is largely due to the
facts that (1) models that assign low weight to unchosen
decks are more successful and (2) the delta model as-
sumes that expectancies of unchosen decks are updated
at a different rate than those of chosen decks.

EVALUATION USING THE
SIMULATION METHOD

Partial-Information Condition

The simulation focused on the combination of the best
three learning rules from the interference and decay
classes and the two choice rules examined above. To re-
call, the simulation was an examination of the models
using the parameters estimated in the previous section
with the prediction method. Table 6 summarizes the pa-
rameters of each model. These parameters were com-
puted by averaging across the individual estimates ob-
tained using the prediction method for participants in the
low-payoff condition.

The parameters were used to generate the simulations
for the high-payoff condition. Note that a priori predictions
were generated for the high-payoff condition because the
parameters were based on the estimates obtained from
the low-payoff condition. Table 7 (top) presents the MSDs

Table 5
Full-Information Condition: Bayesian Information Criterion (BIC) Medians and Standard Deviations
of the Models Under the Assumption of Partial Weighting of Forgone Payoffs

Weight Only to Equal Weight to More Weight to

Chosen Deck All Decks Chosen Deck
Choice Rule Learning M SD M SD M SD
Ratio choice Delta model —6.60 19.9 —4.95 50.8 —2.10 32.1
Decay reinforcement 3.19 23.0 —4.95 50.9 7.76 235
EWA model, p = ¢ 0.95 239 —17.4 54.1 3.10 242
Max, constant guessing Delta model —18.27 25.1 —15.60 345 —13.66 26.4
Decay reinforcement —7.75 273 —15.60 345 -9.14 26.6
EWA model, p = ¢ —13.99 39.6 —20.96 52.7 —9.52 26.5
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Table 6
Partial-Information Condition: Averages and Standard Deviations
of the Estimated Parameters in the Low-Payoff Version

/4 L c/g

Choice Rule Learning M SD M SD M SD M SD
Ratio choice Delta model 0.31 0.44 0.25 0.51 0.18 0.34 0.33 1.97
Decay reinforcement 0.37 0.47 0.73 0.90 0.69 1.04 0.68 1.42

EWA model, p = ¢ 0.49 0.38 1.60 1.20 0.99 1.10 0.75 1.11

Max, constant guessing Delta model 0.66 0.65 0.55 0.91 0.51 0.82 0.40 0.18
Decay reinforcement 0.54 0.77 0.64 1.06 0.35 0.74 0.43 0.23

EWA model, p = ¢ 0.01 1.32 0.67 1.06 0.67 1.00 0.34 0.15

Note—¢, learning rate; W, win weight; L, loss weight; ¢, sensitivity; g, guessing rate.

of the different models for the high-payoff condition.
Note that the MSDs are based on percentage scores rather
than proportions.

The results indicate that the simulation method shows
smaller differences between models than does the pre-
diction method. In terms of updating propensities, the
best model for both payoff conditions was the EWA model
with p = ¢, but the delta model with the maximization
choice rule had slightly better fit than did the decay re-
inforcement model. As for choice rules, it appears that
the large advantage of the ratio choice rule over the max-
imization rule that appeared for the prediction method
diminished in the simulation. This result is likely due to
the fact that, averaged over many individuals, sensitivity
in the simulation remained constant in time. Thus, the
assumption of changing sensitivity over time embedded
in the ratio choice rule was unnecessary.

To understand these results, we plotted in Figure 3 the
path estimated by the decay reinforcement and the delta
models with either the ratio rule or the maximization
rule. The trial-by-trial predictions were smoothed by
using a moving average filter of seven trials. The results
show that the delta model with the ratio rule predicts
fewer choices made from Deck B, the deck with the in-
frequent but high losses. In fact, under any combination
of parameters (that we examined) the delta plus ratio
model cannot reproduce the strong preference for Deck B.
Under the delta plus ratio rule, B cannot be preferred
over both D, which produces smaller gains than B, and
A, which produces smaller losses. Guessing and decay
both lead to a recovery of the expectancies of B, because
most of the time this deck produces results that have a
high expected value.

Under the maximization rule, the fit of the delta model
improves, but it predicts no learning. The maximization
rule likewise predicts no learning with the decay rein-
forcement model. For example, for the decay reinforce-
ment model with the ratio choice rule, the average pre-
dicted change in a participant’s choices (between the
first block of 25 trials and the last) is 8.9%. Under the
maximization choice rule, the change is much smaller
(only 2% on average). Thus, the maximization choice
rule produces a prediction that is less changeable in time,
which fits the relatively flat average choice path.

Full-Information Condition

As in the partial-information condition, the parameters
obtained with the prediction method were used to gener-
ate simulations for the high-payoff condition with full in-
formation. Table 8 summarizes the estimated parameters
(using the prediction method) for the low-payoff condi-
tion. Table 9 (top) presents the MSDs of the different
models for the high-payoff condition. Only the simula-
tions for the unequal-weight model, which produced the
highest BICs, are shown.

The results show that in the full-information condi-
tion, both decay models (decay reinforcement and EWA)
were advantageous over the delta model. In addition,
they show (as in the partial-information condition) that
the clear difference between choice rules that was observed
using the prediction method disappeared. The maximiza-
tion choice rule led to better fits than did the ratio rule
for the delta model, and the two choice rules produced
roughly similar fits for the EWA model.

Figure 4 presents the paths estimated in the full-
information condition for the decay reinforcement and

Table 7
Partial-Information Condition: MSDs of the Models Examined Using Simulations With
Parameters Extracted From the Low-Payoff Version by the Prediction Method (Top)
or by Estimation for the Entire Game Path (Bottom)

Ratio Max,
Origin of Parameters Model Choice Constant Guess

Prediction method (low-payoff condition) Delta model 1.50 0.62
Decay reinforcement 0.86 0.68

EWA model, p = ¢ 0.59 0.92

Simulation method (low-payoff condition) Delta model 1.10 0.48
Decay reinforcement 0.48 0.52

EWA model, p = ¢ 0.50 0.50
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Figure 3. Partial-information condition: Simulated choices in the high-payoff version using four alternative models.

delta models with either the ratio or the maximization
rule. The figure indicates that one likely reason for the
advantage of decay over interference models is the abil-
ity of the decay models to predict the increase in choices
from disadvantageous Deck B in the full-information
condition as compared with the partial-information con-
dition. It appears that in the full-path simulation, the
delta model cannot predict the extent to which this deck
(with its low-frequency but high negative payoft) is pre-
ferred. The MSD for this particular deck for the delta
model with maximization is 0.11, in comparison with
0.07 in the corresponding decay reinforcement mode (a
37% difference). For the other decks, the MSD of the
delta model is better (A, 0.04; C, 0.09; D is not indepen-
dent) and more similar to the decay reinforcement model
(A, 0.06; C, 0.08).

In summary, although an evaluation of the learning
models in the partial-information condition using the
simulation method yielded less conclusive results, in the
full-information condition decay models were clearly
advantageous. The differences in the degree of fit be-
tween interference and decay models can largely be at-
tributed to the fact that decay models can more easily
capture the preference for the deck that featured large
losses occurring 10% of the time.

Verification Using an Alternative
Simulation Method

One potential limitation of the results using the simu-
lation method is that they rely on the generalization of
parameters estimated for one-step-ahead predictions to
simulations of the entire average choice path. An alter-

Table 8
Full-Information Condition: Averages and Standard Deviations of the Estimated Parameters
in the Low-Payoff Version Under the Assumption of Partial Weighting of Forgone Payoffs

) w L c/g Y

Choice Rule Learning M SD M SD M SD M SD M SD
Ratio choice Delta model 0.73 0.66 0.36 0.70 0.30 0.66 0.19 1.72 0.42 0.42
Decay reinforcement 0.50 0.50 0.67 0.91 0.76 1.16 0.31 1.32 0.25 0.38

EWA model, p = ¢ 0.53 0.43 1.64 1.26 1.07 1.16 0.70 1.08 0.22 0.37

Max, constant guessing Delta model 0.61 0.75 0.39 0.63 0.65 0.84 0.38 0.16 0.36 0.31
Decay reinforcement 0.65 0.56 0.94 1.04 0.59 0.87 0.40 0.18 0.37 0.36

EWA model, p = ¢ 0.58 0.37 0.92 1.04 0.45 0.76 0.40 0.17 0.45 0.35

Note—¢, learning rate; W, win weight; L, loss weight; ¢, sensitivity; g, guessing rate; ¥, weight for unchosen options.
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Table 9
Full-Information Condition: MSDs of the Models Examined Using Simulations With
Parameters Extracted From the Low-Payoff Version by the Prediction Method (Top) or by
Estimation for the Entire Game Path (Bottom)

Ratio Max,
Origin of Parameters Model Choice  Constant Guess

Prediction method (low-payoff condition) Delta model 1.20 0.79
Decay reinforcement 0.58 0.68

EWA model, p = ¢ 0.69 0.71

Simulation method (low-payoff condition) Delta model 1.90 0.49
Decay reinforcement 2.00 0.43

EWA model, p = ¢ 0.59 0.41

Note—Only results for unequal weights to all decks are presented, since these produced the highest

Bayesian information criterion scores.

native view (Haruvy & Erev, 2002) argues that such gen-
eralization is not always possible.

Supporting the latter view is the present finding that
using the prediction method under all models, the atten-
tion to gains parameter / was on average higher than the
attention to losses parameter L, indicating that gains
loom greater in the mind than do losses (see Tables 6 and
8). This finding appears to be inconsistent with Barron
and Erev’s (2003) simulation results, and with other ro-
bust findings obtained using the simulation method,
showing that people are more sensitive to losses than to
gains. An alternative explanation is that, in the gambling
task, losses occur frequently and are therefore less salient.

To guard against the possibility that the parameters as-
sessed by the prediction method do not generalize to the
simulation method (see Haruvy & Erev, 2002), we reesti-
mated the parameters by fitting the simulations to the en-
tire average choice path in the low-payoff condition. An
examination of the two best-fitting models in this simu-
lation (delta plus maximization and decay reinforcement
with the ratio rule) shows that for both, the losses param-
eter was higher than the gains parameter in the partial-
and full-information conditions (for conciseness, the full
results are not detailed). That is, in this simulation, losses
loomed greater than gains. However, the simulation with
estimated parameters replicated the small advantage of
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Figure 4. Full-information condition: Simulated choices in the high-payoff version using four alternative models.
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decay models in the partial- and full-information condi-
tions (for MSDs, see the bottom sections of Tables 7 and
9). Furthermore, the results with this method distinctly
show that the maximization with guessing rule was as
adequate as the ratio rule in the partial-information con-
dition and that it improved fits over the ratio rule in the
full-information condition.

GENERAL DISCUSSION

The present study highlights the importance of exam-
ining the different assumptions that underlie learning
models about the components of the learning and choice
processes. Regarding the learning process, an important
difference emerged between decay and interference mod-
els. The results of the analysis using the prediction method
showed that, in the standard lowa gambling task, decay
models were superior to interference models under ro-
bust assumptions pertaining to the choice rule. In the
simulation, the advantage of decay models was less dis-
tinct for the partial-information condition, but it was
clear nonetheless that decay models were not outper-
formed, indicating that their advantage in predictions of
one step ahead is not an artifact due to post hoc model
fitting of parameters using information about past choices.

The advantage of decay models appeared more strongly
in the full-information condition. In this condition, the
advantage of decay over interference models was high-
est when the model ignored forgone payoffs. In this case,
interference models update only the selected alternative,
and they are therefore most distinct from decay models.
Models assuming partial weighting of forgone payoffs
take into account the experience of unchosen alterna-
tives. Hence, under such partial weighting the similarity
of the interference and decay models increases, because
interference models update expectancies for unselected
decks as well; the value of the interference models also
appears to increase in this case. Yet, the fact that inter-
ference models do not fully update the expectancies of
unchosen alternatives still appears to lead to poorer pre-
dictions. Most people’s behavior is best described by a
model that discounts past expectancies of alternatives,
regardless of whether they were selected.

Previously, it has been suggested that in repeated-
choice tasks decision makers are extremely sensitive to
the value of the last three or four choices made (Hertwig
et al., 2004). This is considered to be one of the factors
that leads to underweighting small probabilities in re-
peated choices (Barron & Erev, 2003; Hertwig et al.,
2004), as opposed to overweighting them in single choices
(Kahneman & Tversky, 1979). In the present context, un-
derweighting was explained on the basis of the tendency
to discount large losses that occur infrequently. Indeed,
there was a positive correlation between the amount of
decay in the decay reinforcement model (expressed by
the recency parameter) and choices from disadvanta-
geous Deck B, which produced rare but large losses.
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One plausible interpretation for the tendency to decay
expectancies of unchosen decks is that decay in expectancy
is a motivational phenomenon similar to the recency ef-
fect. The advantage of the decay model implies that play-
ers are sensitive to what has happened in the last couple
of trials and discount outcomes from the more distant
past. This tendency, coupled with a nondeterministic
choice rule, seems to be important for adapting to a
rapidly changing choice environment in which the most
recent trials provide a good sample of the present state of
the environment (Gonzalez, Lerch, & Lebiere, 2003).
Extreme decay fares less well (in terms of performance
level) in a static environment with rare negative payoffs.
Such rare negative payoffs can be discounted more eas-
ily, which allows the expectancy of the alternatives that
produced them to recover.

An alternative explanation is that the tendency of past
expectancies to decay is a result of working memory lim-
itations. That is, keeping track of unselected decks re-
quires mental effort, especially in the full-information
condition. This can reduce the attractiveness (i.c., the ex-
pectancies) of unselected decks as a function of the lag
in their selection (see C. J. Anderson, 2003), as is for-
malized in the decay model. Future studies will be nec-
essary to examine whether the decay in expectancy is a
purely motivational phenomenon or is affected by mem-
ory constraints.

In our study, we examined the advantage of decay
models using a choice task in which not updating un-
chosen alternatives was expected to have significant out-
comes. In simpler binary choice tasks (which are more
commonly examined in studies of individual decision-
making tasks), the difference between the two classes of
models is assumed to be relatively small, because both
models change the ratio of the expectancies between the
two alternatives. In the Jowa gambling task, where there
are four alternatives, this difference appears to create
significant disparities between models that update and
those that do not update the expectancy of unchosen al-
ternatives.

In contrast to the converging evidence pertaining to
the updating of expectancies, the results of our two eval-
uation methods, prediction and simulation, showed less
similarity regarding choice rules. Using the prediction-
of-one-step-ahead method, the ratio-of-strengths rule
was advantageous under all assumptions pertaining to the
updating of expectancies. Using the simulation method,
the differences in results between the choice rules were
smaller, and in some cases (most notably, in the full-
information condition) the maximization rule with con-
stant guessing actually outperformed the ratio rule. We
argue that this difference derives from the value of the
ratio rule for capturing individual differences in sensi-
tivity changes over time. The ability of the ratio rule to
tap varying changes in sensitivity in different performers
leads to improved fit in the prediction of individual per-
formers’ choices. However, when aggregated over dif-
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ferent performers, the change in sensitivity is marginal,
and modeling it does not improve predictions.

A Note on Methodology

The present study employed two methods for evaluat-
ing the accuracy of the assumptions of learning models.
The first was to use the prediction of the next step ahead
made by individual decision makers. Under this method,
an advantage of decay models was due to their allowance
for a steeper reduction in the weight of old expectancies
as a function of time. The predictions of decay models
may therefore mimic a regression model based on the
player’s previous choices. This implies that the advan-
tage to decay models observed in the prediction method
could be specific to the method of predicting the next
choice ahead based on the player’s past experiences.

For this reason, we extended our investigation in two
ways. First of all, we examined an agent-based simula-
tion of an entire game path that predicted the aggregated
choice pattern. This simulation method did not have
input from previous choices made by a player, but rather,
only received prior choice of the model itself (i.e., the
agent). Second, we examined the generality of the simu-
lation for a data set in which the parameters were not es-
timated. This was done by using the parameters esti-
mated in one payoff condition to simulate the behavior
observed in another payoff condition.

Some researchers have suggested that the value of dif-
ferent models may be highly specific to the precise game,
its parameters, and the evaluation method (Feltovich,
2000; Haruvy & Erev, 2002; Salmon, 2001). For exam-
ple, it has been argued that model evaluation based on
the examination of group averages can lead to different
results than the examination of individuals’ choices. Like-
wise, an evaluation based on the prediction of the next
choice ahead may lead to different results than another
evaluation based on the prediction of many choices ahead
(see Rapoport, Daniel, & Seale, 1998; Stahl, 1996).

In the present study, differences between the rankings
of basic assumptions under different evaluation tech-
niques did appear in the ranking of choice rules. The
ratio-of-strengths rule was clearly advantageous when
using the prediction method, but it fared less well in a
simulation of the entire average choice path. However,
for another basic assumption, the updating of expectan-
cies, there were more similarities than differences under
the distinct evaluation methods.

Thus, the present study goes one step farther than pre-
vious studies have, by showing an implicit embedded as-
sociation between basic assumptions and the evaluation
method. It is the belief of the authors that we were en-
abled to observe this interaction by insisting on two
methodological constraints: First, our predictions were
driven at the individual level of analysis (see Hertwig &
Todd, 2000). Second, we simultaneously compared dif-
ferent assumptions of learning models rather than whole

modeling approaches. For example, consider a pair of
modeling approaches: One has better predictions re-
garding the updating of expectancies, whereas the other
has better predictions regarding the choice rule. A global
comparison of the predictions of the two approaches (the
common method in experimental economics) would, in
this case, miss the value of particular assumptions in
each model that lead to better predictions. Under the
present approach, the different components were evalu-
ated simultaneously by examining all of the possible
combinations of assumptions, and an examination of dif-
ferent data sets prevented potential overfitting due to
multiple comparisons. The present approach therefore
provides an attempt to examine learning models in a way
that would ensure the accumulation of knowledge regard-
ing the value of basic assumptions for predicting behavior.
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NOTES

1. The study examined the relationship between drug abuse and per-
formance in the lowa gambling task.

2. Choices of Deck A decreased from an average proportion of .18 to
13 [#(75) = 2.62, p < .05]. Choices of B decreased from an average of
.36 to .28 [#(75) = 2.85, p < .01]. Choices of advantageous Deck C in-
creased from an average of .23 to .29 [#(75) = 2.11, p < .05]. Choices of
D likewise increased from an average of .24 to .31 [#(75) = 2.55, p < .05].

3. Equation 5 was further developed as follows: E,(r) = E;(r — 1) +
98,0 -[u(t) = Eft — D] = E(t = 1) + ¢- &) [~ win(r) -
L-loss(f) — Et — D] = Et — 1) + &) [W:¢-win(t) —
L-¢-loss(t) — ¢-E(t — 1)] = E(t — 1) + 6(t)- [by - win(t) —
by -loss(?) — ¢~ E,(t — 1)]. This last step was taken to make parameter ¢
independent of the loss and gain parameters, as it is in the decay models.

4. A modification of the Bayesian learning model can be made to
allow for serial-position effects:

N.(t)
@ =[1-6,()]+8,(1)

Y go§ ) —L
+N,@f Aimo®

1+ N, (¢

5. An alternative reinforcement learning model defines o, = 1 and
B = & (t)/(1 + 19), where ¢is a free parameter. In this model, the weight
is given to the current payoff decreases as a function of time rather than
of number of choices.

6. We also examined a decrease in guessing as a function of the num-
ber of choices of a deck, but since this model did not improve predic-
tions, for the sake of conciseness we do not report these results.

7. Camerer and Ho (1999b) suggested that in the EWA model, values
of ¢ that are greater than 1 require a modified learning rule. We there-
fore constrained the value of the ¢ parameter in both versions of that
model to be between 0 and 1. Thus, for the sake of parsimony, our mod-
els capture only specific cases of the more general EWA model.

8. This conclusion is further supported by correlations between the
recency parameter and choices from the different decks under the ratio
rule. There was a positive correlation between the recency parameter of
the decay reinforcement model and choices from disadvantageous
Deck B, which produces rare but large losses [#(56) = .28, p < .05; only
for 0 < ¢ < 1; see Yechiam, Veinott, Busemeyer, & Stout, in press]. In con-
trast, there was no such association for the delta model [#(42) = .06, n.s.].

9. In this case, the difference between the EWA model and the other
two is a result of the inclusion of the C, factor in the EWA model. Note
also that, although the delta model is identical mathematically to the
decay reinforcement model, small differences may emerge as a result of
parameter constraints.
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APPENDIX
A Derivation of the Bayesian Formula for Choice of Gambles

Ej(t) = plose,j(t) “Ujpse + pwin,j(t) Uyin
Following a choice of gamble j, we update using beta priors:

_ nlose, 0 + nlose, J (t) _ nlose, 0 + nlose, j(t - 1)+ 5j (t)

Prose (t) - -
lose, j Ny+ N, (1) Ny +N, (1)

oy e O M g (=D)+[1-8,(0)]
win, j

Ny +N, (1) B Ny+N.(1)
u(t)=06,(1) ., + [1 - S_i(t)J U

Inserting these terms yields

ose. + ose. ’(t_l) nwin +nwin '(t_l)
Ej(t):rll LN " “Uose = " U “(0)
Ny+ N, (1) N+ (1) Ny +N (1)
N, +N,(t-1)
S e (8 ) S —e)
Ny+N.() Ny + N, (1)

=0, E,(t=1)+ B -u().
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