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Abstract

This article starts out with a detailed example illustrating the utility of applying quantum
probability to psychology. Then it describes several alternative mathematical methods for mapping
fundamental quantum concepts (such as state preparation, measurement, state evolution) to
fundamental psychological concepts (such as stimulus, response, information processing). For state
preparation, we consider both pure states and densities with mixtures. For measurement, we
consider projective measurements and positive operator valued measurements. The advantages and
disadvantages of each method with respect to applications in psychology are discussed.

Keywords: quantum probability, quantum(-like) cognition and psychology, order effects,
violation of the law of total probability, quantum measurement approach to cognition, projective

measurements, positive operator valued measures

1. Why apply quantum theory to psychology?

Twenty years ago, a group of physicists and psychologists
introduced the bold idea of applying the abstract principles
from quantum theory outside of physics to the field of human
judgment and decision making [1-4]. In contrast to some
recent proposals concerning the quantum physics of the brain,
e.g., [5-7], this new framework does not rely on the
assumption that the brain is some type of quantum computer,
and instead it uses a probabilistic formulation borrowed from
quantum theory that involves non-commutative algebraic
principles [8—11]. This new field, called quantum cognition,
has proved to be able to account for puzzling behavioral
phenomena that are found in studies of a variety of human
judgments and decisions including violations of the ‘rational’
principles of decision making [12], conjunction and disjunc-
tion probability judgment errors [13], over- and under-
extension errors in conceptual combinations [14, 15],
ambiguous concepts [16], order effects on probabilistic
inference [17, 18], interference of categorization on decision
making [19], attitude question order effects [20] and other
puzzling results from decision research [21-24]. In short,
quantum models of judgment and decision have made
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impressive progress organizing and accounting for a wide
range of puzzling findings using a common set of principles.

1.1. Example: Categorization-decision (C-D) experiment

To see more concretely how quantum theory can be applied to
psychology, consider the following psychology experiment
used to investigate the interference of categorization on decision
making. Often decision makers need to make categorizations
before choosing an action. For example, a military operator has
to categorize an agent as an enemy before attacking with a
drone. How does this overt report of the category affect the later
decision? This paradigm was originally designed to test a
Markov model of decision making that is popular in psychology
[25]. Later it was adapted to investigate ‘quantum like’ inter-
ference effects in psychology [19].

We begin by briefly summarizing the methods used in
the experiments. On each trial of several hundred training
trials, the participant is first shown a picture of a face that may
belong to a ‘good guy’ category (category G) or a ‘bad guy’
category (category B), and they have to decide whether to
‘attack’ (action A) or ‘withdraw’ (action W). The trial ends
with feedback indicating the category and appropriate action
that was assigned to the face on that trial. There are many

© 2014 The Royal Swedish Academy of Sciences Printed in the UK


mailto:Andrei.Khrennikov@lnu.se
http://dx.doi.org/10.1088/0031-8949/2014/T163/014007

Phys. Scr. T163 (2014) 014007

J R Busemeyer et al

different faces, and each face is probabilistically assigned to a
category, and the appropriate action is probabilistically
dependent on the category assignment. Some of the faces are
usually assigned to the ‘good guy’ category, while other faces
are usually assigned to the ‘bad guy’ category. The category
is important because participants are usually rewarded (win
points worth money) for ‘attacking’ faces assigned to ‘bad
guys’ and they are usually punished (lose points worth
money) for ‘attacking’ faces assigned to the ‘good guys;’
likewise they are usually rewarded for ‘withdrawing’ from
‘good guys’ and punished for ‘withdrawing’ from ‘bad guys.’
Participants are given ample training during which they learn
to first categorize a face and then decide an action, and
feedback is provided on both the category and the decision.
Although the feedback given at the end of each trial is
probabilistic, the optimal decision is to always ‘attack’ when
the face is usually assigned to a ‘bad guy’ category, and
always ‘withdraw’ when the face is usually assigned to a
‘good guy’ category. The key manipulation occurs during a
transfer test phase which includes the standard C-D trials
followed by either ‘category alone’ (C-alone) trials or ‘deci-
sion alone’ (D-alone) trials. For example, on a ‘decision
alone’ trial, the person is shown a face, and simply decides to
‘attack’ or ‘withdraw,” and recieves feedback on the decision.
The categorization of the face on the D-alone trials remains
just as important to the decision as it is on C-D trials, and
some implicit inference about the category is necessary before
making the decision, but the person does not overtly report
this implicit inference.

Note that the C-D condition in the psychology experiment
allows the experimenter to observe which ‘path’ the participant
follows before reaching a final decision. This is analogous to a
‘double slit” physics experiment in which the experimenter
observes which ‘path’ a particle follows before reaching a final
detector. In contrast, for the D-alone condition in the psychol-
ogy experiment, the experimenter does not observe which
‘path’ the decision maker follows before reaching a final
decision. This is analogous to the ‘double slit’ physics experi-
ment in which the experimenter does not observe which ‘path’
the particle follows before reaching a final detector”.

According to the Markov model proposed in [25], for
the D-alone condition, the person implicitly performs the
same task as explicitly required by the C-D condition. More
specifically, for the D-alone condition, once a face (denoted
) is presented, there is a probability that the person impli-
citly categorizes the face as a ‘good’ or ‘bad’ guy. From
each category inference state, there is a probability of tran-
siting to the ‘attack’ or ‘withdraw’ decision state. So the
probablity of ‘attack’ in the D-alone condition (denoted as
p(Alf)) should equal the total probability of ‘attacking’ in
the C-D condition (denoted as py (Alf)). The latter is defined
by the probability that the person categorizes a face as a
‘good guy’ and then ‘attacks’ plus the probability that the

4 We remark that here the picture of path is used only for illustrative
purpose; therefore we placed path in quotation marks. In QM there is no such
concept as a ‘path’ (trajectory) of a particle. We can only ascertain, and then
only statistically, a singular event of an electron ‘passing’ through a slit. In
fact this way of seeing the situation even provided a better parallel here.

person categorizes the face as a ‘bad guy’ and then ‘attacks’
(pr Alf) =p(G NAIf) + p(B N AIf)). Using this C-D
paradigm, one can examine how the overt report of the
category interferes with the subsequent decision. An inter-
ference effect of categorization on decision making occurs
when the probability of ‘attacking’ for D-alone trials differs
from the total probability pooled across C-D trials. The
Markov model for this task originally investigated by [25]
predicts that there should be no interference, and the law of
total probability should be satisfied.

Beginning with our first study [19], we have conducted
a series of four experiments on this paradigm. The results of
these experiments all generally show the same results, but
we briefly report a summary of findings from the fourth
experiment that included 246 participants (a minimum 34
observations per person per condition). When a face most
likely is assigned to the ‘god guy’ category (we denote these
faces as g), the law of total probability is approximately
satisfied (pr(Alg) = .36, p(Alg) = .37). However, when a
face most likely is assigned to the ‘bad guy’ category (we
denote these faces as b), the probability of ‘attack’ (i.e. the
optimal decision with respect to the average payoff) is sys-
tematically greater for the D-alone condition as compared to
the C-D condition’ violating the law of total probability
(p(Alb) = .62 > pp(Alb) = .56)5. More surprising, the
probability of ‘attack’ for the D-alone condition (which
leaves the ‘good’ or ‘bad’ guy category unresolved) was
even greater than the probability of ‘attack’ given that the
person previously categorized the face as a ‘bad guy’
(p(Alb) = .62 > p(Alb, B) = .61) on a C-D trial! For some
reason, the overt categorization response interfered with the
decision by reducing the tendency to ‘attack’ faces that most
likely belonged to the ‘bad guy’ category. These violations
of the law of total probability run counter to the predictions
of the Markov model proposed by [25] for this task.

1.2. A Quantum decision model

The details of a quantum model for the C-D task are presented
in [19], and here we only present a brief summary. The human
decision system is represented by a unit length state vector | )
that lies within an four-dimensional Hilbert space spanned by
four basis vectors. Each basis vector represents one of the four
combinations of categories and actions (e.g., | GA) is a basis
vector corresponding to category G and action A). The state
W) = wea | GA) + wgw | GW) + wiy | BA) + ygy | BW) is
prepared by the face stimulus f that is presented on a trial. The
question about the category is represented by a pair of pro-
jectors for good and bad categories Cg = | GA)(GA | +
| GW){(GW |, Cg = (I - CG). The question about the action is
represented by a pair of projectors for attack and withdraw
actions D, = Upc | GA)(GA | Upc+Upc | BAY(BA | U},
Dy = (I - DA), where Upc is a unitary operator that changes
the basis from the categorization to the decision basis.

5 This difference are statistically significant: 7 (245) = 4.41, p = .0004. Also
this same effect was replicated in four independent experiments.
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The probability of first categorizing the face as a ‘bad
guy’ and then ‘attacking’ equals p (B, Alf) = p(B) - p(AIB)
= 1 Caly P - 1Dy . with ) = 77
bining the terms in the product we obtain
p(B,Alf)=||Das- Cp - Iy NI?; similarly, the probability of
first categorizing the face as a ‘good guy’ and then ‘attacking’
equals p(G, Alf) = [|[Da - Cg - lyp)l’s and so the total
probability of attacking under the C-D condition equals
prAIN)=Da - Co - NP + D4 - Cs -y ). The prob-
ability of attack in the D-alone condition equals
PAI) = IDa- P = |IDa-(Co+ Cplwp)P =
1Da - Clwp) + Da- Coly P = [IDs- Colwp)lF +
IDa- Cowp )P+  Int, Int=2"Re
[(y(fICGDACBII/(f)]. If the projectors for categorization

and com-

where

commute with the projectors for action (e.g., Upc = I), then
the interference is zero, Int = 0, and we obtain
PAIf) = IDa - Coly P + 11Da - Coly MIP = pr(Alf), and
the law of total probability is satisfied. However, if the pro-
jectors do not commute (e.g., Upc # I), then we obtain an
interference term. We can select the unitary operator Upc to
produce an inner product Int = —.06, and account for the
observed violation of the law of total probability.

We originally conducted these experiments because we
predicted that an interference effect of categorization on
decisions would occur based on past research using quantum
models of decision [26]. However, we could not predict the
direction or quantitative size of the interference. Now that we
have this estimate, we can use it to make new predictions for
new experiments. Along this line, we carried out a second
condition in our fourth study to test our model. During the
transfer phase of the second condition, we included two dif-
ferent types of transfer test trials: (a) D-alone trials as
described earlier in which the participant did not categorize
but only made an action decision, and (b) trials on which we
informed the participant about the correct category and the
person made an action decision. Note that for the second
condition (b), the participants did not make any categorization
response and only made a decision, but this decision was
based on information provided by the experimenter about the
category. According to our theory, providing information
about the category produces the same effect as taking a
measurement of the category—if the person is told the face
belongs to the ‘bad guy category,” then the state is updated

Cply,)
from ly;) to ly) = ||cglu/ff>||

surement was made. Therefore, if we use the choice prob-
abilities from this second condition to compute the total
probability, then this second condition should produce exactly
the same interference effect as the first. Supporting this pre-
diction, the interference term for the second condition equaled
Int = —.05, which closely approximates the interference obtain
from the first condition. The great challenge for quantum
cognition models is to use the same principles then to predict
new findings (e.g., see [20, 27], further a priori tests of the
theory).

in the same way as if a mea-

2. Step by step application of quantum theory to
psychology

How does one apply quantum principles to psychological
experiments? How are the stimuli and responses of a psy-
chology experiment related to the state preparation and
measurements of quantum theory? How does one determine
the observables, initial states, and unitary operators for psy-
chology? The above application involved several important
assumptions regarding the mapping of basic concepts in
physics (e.g., state preparation, state evolution, measurement
operators) into basic concepts of psychology (e.g., stimuli,
information processing, responses). The next sections exam-
ine these mappings more carefully, explores different ways to
formulate this mapping, and discusses the advantages and
disadvantages of different mappings.

2.1. Choosing a Hilbert space

Both physicists and psychologists are faced with the scientific
task of making predictions about the probability that different
kinds of events occur in their experiments. For example the
psychologist wants to predict whether a person will ‘attack’ or
‘withdraw’ when a face is presented; a quantum physicist
wants to predict whether a particle is detected by one detector
or another after it is emitted from a source. Traditionally,
psychologists have used classic theory (axiomatized by Kol-
mogorov), whereas quantum physicists use quantum theory
(axiomatized by Dirac and von Neumann) to make these
predictions.

Classic theory represents events as subsets of a universal
set called the sample space. Quantum theory represents events
as subspaces of universal vector space called the Hilbert
space. Technically, a Hilbert space is a vector space defined
on a complex field and endowed with an inner product that
satisfies completeness. The adoption of a vector space instead
of a sample space to represent events may be the most
important assumption that is made in the application of
quantum theory to psychology.

Physicists work with both finite and infinite dimensional
Hilbert spaces. For example, an infinite dimensional space is
used to represent the position of a particle, but a finite n-
dimensional space is used to represent the spin of a particle.
There is no a priori reason why a psychologist could not use
infinite dimensional spaces, but as in the field of quantum
computing, almost all of the previous work in quantum
cognition has used finite dimensional spaces. Choosing the
dimensionality of the Hilbert space is critical first step for
constructing a quantum cognition model. The dimension
depends on the number of variables and the number of values
on each variable.

Two issues need to be considered when choosing the
dimension of the Hilbert space. The first issue is whether the
measurements of a variable are considered coarse (degen-
erate) or complete (non-degenerate) (see, e.g., [28]). The
second issue arises when there are two or more variables and
the question is whether or not the variables should be com-
bined to form what is called a tensor product space.
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First consider the issue of completeness. The measure-
ment of a variable is complete if the outcomes cannot be
refined, and so each outcome can be represented by a single
ray or a single dimension. Consider an example such as
asking a juror to rate the probability of guilt on a five level
scale (1 = very low probability, 2 = moderately low prob-
ability, 3 = uncertain, 4 = moderately high probability,
5 = very high probability). This variable is measured by five
mutually exclusive and exhaustive outcomes and so one
might wish to represent this variable by a five dimensional
space. However, a person may be capable of rating con-
fidence on a much finer scale. Suppose the finest scale is a 21
level scale (0 = certainly not guilty, 10, ..., 50 = equally likely,
60, ..., 90, 100 = certain guilty). Then the 21 level scale forms
a complete measurement and requires a 21 dimensional space.
If the experimenter uses a five level scale, then this represents
a coarse measurement defined within a higher 21 dimensional
space (e.g., levels 70-100 could be mapped into category 5).
In reality, we do not know how fine is the internal scale of the
human decision maker.

Next consider the tensor product space issue. Often in
psychology experiments, the participant is asked more than
one question. Consider our previous example of the C-D
experiment. In this study, there are two variables: one is the
categorization (categorize as good versus bad) and the other
is the action (choose between attack versus withdraw). The
problem is how to represent both variables within a single
vector space. The simplest possible representation is
obtained by using the same two dimensional space to
represent both variables. This is done by using a different
basis to represent each variable within the same two
dimensional space. A more complex representation is
obtained by using a four dimensional space that represents
each combination of values for the two variables. The latter
is called a tensor product space.

How does one decide whether to represent the two
variables within the same space or to combine the variables
into a tensor product state? The tensor product representation
assumes that it is possible for a person to simultaneously
consider the values of both variables at the same time. The
consideration of one value on one variable does not disturb
the evaluation of the second variable, and there should be no
order effects when the two variables are considered simulta-
neously6. If this simultaneous evaluation is not possible, and
the consideration of the value of one variable disturbs the
evaluation of the other variable, producing order effects, then
the variables have to be evaluated sequentially by changing
the basis within a common space.

Ultimately, picking the dimension becomes an empirical
question. This must be done by balancing accuracy and par-
simony. One starts with the simplest model, and if that fails
empirically, then one is forced to gradually increase com-
plexity. In [19] we initially tried the simplest two dimensional
space with different bases for each variable, but this failed
empirically. Then we tried the next simplest representation

Simultaneity is an important condition, because if a unitary transformation
occurs in between the measurements, then order effects can occur.

based a four dimensional (tensor product) vector space, and
this was empirically satisfactory.

2.2. Choosing a basis to construct projectors and observables

A basis is a set of orthormal basis vectors that span the Hilbert
space. Once we select a basis, we can construct a projector for
the subspace representing an event by using its basis vectors.
The projector for a subspace is formed by the sum of the outer
products of basis vectors that span the subspace. Consider
once again the C-D task, and suppose that the four ortho-
normal vectors (| GA), | GW), | BA), | BW)) form the basis
for the categorization. These four vectors can be represented
numerically by [1, 0, 0, 01',[0, 1, 0, OT’, [0, O, 1, O]’ [0, O, O,
17, respectively. If we wish to measure the event ‘bad guy
category’ then we choose the basis vectors | BA), | BW)
representing this category, and form the projector
Cp =|BA)(BA | + | BW){BW|, which numerically corre-
sponds to the matrix diag[0, O, 1, 1]. Likewise we can define
the projector for the ‘good guy’ category using the basis
vectors | GA), | GW), and numerically this projector corre-
sponds to the matrix diag[1, 1, 0, O]. If a set of projectors are
pairwise orthogonal and sum to the identity, then it forms a
complete set that represents a mutually exclusive and
exhaustive set of events. In this example, the two projectors
are orthogonal, C;Cp = 0, and they sum to the identity,
Cs + Cp =1, and so they form a complete set.

Using the projectors of a complete set, we can form an
observable by assigning a real number to each projector. For
example, suppose we assign +1 to the ‘bad guy’ event and —1
to the ‘good guy’ event; then the observable for the cate-
gorization variable is defined as C=(1):
Cs + (+1) - Cg = Cp — Cg. This observable is constructed
from the four categorization (| GA), | GW), | BA), | BW))
basis vectors. These four basis vectors are eigenvectors of this
observable because each one satisfies the eigenvector
equation, for example C | BW) = (+1) - | BW). The same
eigenvalue (+1) is assigned to both eigenvectors | BA), | BW).
A repeated eigenvalue like this is called a degenerate eigen-
value—any linear combination of eigenvectors | BA), | BW),
which share the same (+1) eigenvalue is also an eigenvector of
C with the same (+1) eigenvalue. A degenerate eigenvalue
implies that the observation of that value is a coarse mea-
surement because there is more than one basis vector asso-
ciated with that value.

There is, however, an infinite number of choices for the
basis. Different questions might require a different choice of basis
to represent the answers. Consider once again the categorization
decision task described earlier. One basis could be used
to judge the strength of evidence favoring each category
(good versus bad categories), but a different basis may be
needed to evaluate the consequences of actions (attack versus
withdraw actions). In the above example, the unitary operator
Upc was used to change the basis from the one used for cate-
gorization to the one used for action. The new basis for the action
decision is (UDC | GA>, UDC | GW>, UDC |BA>, UDC |BW>)
Then the projector for the ‘attack action’ is Dy =
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Upc (| GAY(GA | + | BA)(BA |)Uj)c. Likewise the projector for
the ‘withdraw” action is Dy = (I — Dy ). If we assign —1 to the
‘withdraw’ action and +1 to the ‘attack’ action, then the obser-
vable is D = D, — Dy. Note that the observable for the action
does not commute with the observable for the categorization
because the commutator DC — CD # 0 does not equal zero.
The most difficult task is determining the form of the
unitary operator, Upc, used to change the basis. A completely
general form for a wunitary operator to a Dbasis
Y = |Y,->, i=1,N fromanotherbasiinsUYX=ZJ‘IG><Xj ,
but this does not give much guidance. One general way to
construct a unitary matrix is to use the exponential function of
the operator H, Upc = exp(—iH), where H is a self adjoint

linear operator (H =H T) called the Hamiltonian. Any unitary

operator can be formed in this manner. Using this method, the
problem then becomes one of choosing the form of the
Hamiltonian. In [19], we designed a specific Hamiltonian
based on the rewards and punishments of the categorization—
decision task.

If we present different faces but ask the same questions
about categories and actions for each face, then the same
observables C, D can be applied to each face. Thus, according
to this interpretation, the observable only depends on the
question and it does not depend on the stimulus. We should
point out, however, that the separation between state pre-
paration and selection of the observable is not always clear
cut, and one could argue that they can’t be separated, so there
are alternative viewpoints on this issue that we discuss later.

2.3. Preparing states

In quantum theory, the system under investigation is repre-
sented as a unit length vector, | y), in the Hilbert space. In
physics the system often refers to a particle, but in psy-
chology the system usually refers to a person. The state
vector | ) can be expressed as a linear combination of the
basis vectors and the coordinates of the state vector with
respect to a basis are called the amplitudes. For example,
referring back to the C-D task, if we choose the categor-
ization basis, then the state vector is defined by
W) = a | GA) + yew | GW) + ypa | BA) + yy | BW),
and yyg,, is for example the amplitude assigned to | GW).
Generally, these amplitudes can be complex numbers and
the sum of the squared magnitudes equals one. The inter-
pretation of these complex numbers is difficult for many
psychologists, but there is no a priori reason for limiting
psychological applications to real numbers, just as there is
no reason to limit electrical engineering applications to real
numbers. In fact, Fourier analysis, using the complex
transform, is commonly used in both electrical control
engineering, neural signal processing, and human psycho-
physics. Ultimately the answers that we obtain and need to
interperet are always real.

In physics, the experiment begins with some physical
system in some state and then the experimenter prepares the
state of the system by applying physical devices before
testing begins. Different types of physical tests can be

performed on systems after they are prepared in the same
state. In psychology, the person begins with some state, and
then the experimenter manipulates the state of the person by
presenting information or a stimulus prior to questioning. In
our C-D experiment, the participant is presented a new face
on each trial, and the experimenter asks questions about the
category and the action to take for that face. Different types
of questions (which category, which action) can be asked
about the same face. Therefore the state before questioning
is conditioned on the stimulus, |l//f ), where f indicates that
the person was shown a face labeled f before asking any
questions. Thus, according to this interpretation, the pre-
sentation of a stimulus in a psychology experiment corre-
sponds to state preparation in a physics experiment and the
state (before the question) does not depend on the question
that is asked later. Any question can be asked from this state,
and the probability of answers will vary across questions for
the same state. Once again we should point out that this
separation between state preparation and selection of the
observable is debatable, and later we consider are alter-
native viewpoints on this issue.

There are two different ways to prepare the state in
quantum physics. One is by a measurement that projects the
state to a subspace followed by normalization to unit length.
The other is by application of a unitary operator that ‘rotates’
the state in the Hilbert space while maintaining unit length.
Both of these methods could be used in a psychology
experiment.

There is also a thorny problem of interpretation here, as
concern the status of ‘quantum state’ as a mathematical
object, a state vectorthat is, whether it corresponds to any
actual reality, say, a physical state of a particle in quantum
physics, or only provides, as Schrodinger called, a prob-
ability catalog for future predictions concerning possible
experiments. During the last hundred years of stormy
debates on quantum foundations this problem, the problem
of the interpretation of the wave function, was not solved.
The quantum(-like) cognition approach borrowed not only
advances of QM, but also all its problems and, in particular,
this problem. Is it really the belief state of an individual
person? Is it just a probability catalog? For a moment, we
cannot provide the definite answer and we proceed prag-
matically by using the mathematical formalism of QM for
analysis of statistical data, i.e., in fact, we interpret the
belief state as a probability catalog. However, we cannot
exclude that the ‘individual interpretation’ of the belief state
can also be justified.

The stimulus information that the participant experiences
changes the state of the person. For example, in the C-D
experiment, the face that is presented at the beginning of a
trial will influence the state of the person before making a
categorization. For example, if the face looks like a ‘bad guy’
the state will move toward the subspace for that category.
There are various ways that this change could happen. One
way is to use a unitary operator Uy that depends on the face
stimulus. If the initial state, before the face is presented, is
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defined as ly; ), then the state becomes ly,) = Uy ly;) after
presentation of the face’.

The experimenter could present the participant some
facts, which if accepted to be true, would cause the person’s
state to be projected onto the subspace consistent with those
facts, and normalized to have unit length. For example, in
the C-D experiment, the participant could be informed that
the face actually belongs to the ‘bad guy’ category before
being asked to make an action decision. Define ly;) as the
state after seeing the face but before any category informa-
tion is presented on a trial. After the new category infor-
mation is presented, the state is updated to become
lyp) = (1/c) - Cplws), c = |Cplys) || and then the deci-
sion to attack is based on this updated state.

2.4. Computing probabilities and updating states

The purpose of using quantum theory for both physicists and
psychologists is to predict the probability of events. For a
given state, the probability of an event is obtained by pro-
jecting the state vector onto the subspace for the event and
computing is squared length. For example, referring again to
the C-D study, if the person sees a face and is asked to
categorize it, then the probability of ‘bad guy’ equals
pBIf) = || Cplyy N?. In physics, the state of the system
changes following a measurement. The same process occurs
in psychology—asking a question and deciding on a definite
answer changes the state of the person. According to Liider’s
rule, if the person categorizes the face as a ‘bad guy,’ then the
new state equals lyg) = (1/c) - Cply,), ¢ = || Cplyy) ||
From this it follows that the probability of categorizing as a
‘bad guy’ and then deciding to ‘attack’ equals p (B, Alf) =
D4 - )P - 1 C - b P=11Da - Cp - lyrp )l At the very
end of the trial, with acategorization of ‘bad guy’ and the
decision to ‘attack’ for example, the final state becomes
ly,p) = (1/d) - D4 lyg), where d = || D4 lyg) |I.

2.5. Sequential effects

An important question that still needs to be addressed con-
cerns the changes in the state of the person from one trial to
the next. For example, in the C-D paradigm, each trial begins
with the presentation of a face and ends with feedback about
the correct category and action. This trial structure is part of
the instructions given to the participant at the beginning of the
experiment. In this way, the person is trained with feedback
on the probabilities of faces being assigned to categories and
appropriate actions. How can this change from learning by
feedback be incorporated into the system? There are many
way to do this, but one way is to use the feedback to update
the Hamiltonians that are used to form the unitary transfor-
mations. For example, in the category-decision making task,
the unitary matrix Uyin the transformation ly;) = Uy ly;) can

7 To be more precise, we should use the notation |l//1'f> = Uy ly;), because
the transformed state also depends on the initial state. But to avoid using too
many subscripts, and keeping in mind the history, hereafter we use the shorter
notation.

be updated through feedback about the category. Also the
unitary matrix Upc that changes the basis from categorization
to decision can be updated based on feedback about the
correct action.

A separate question concerns possible carry over effects
from answers on one trial to the next trial. In other words,
how does the final state at the end of one trial, say ly,g, t)
after categorizing a face as a ‘bad guy’ and deciding to
‘attack’, evolve during the inter-trial interval into the initial
state ly;, ¢ + 1) before the face is presented for the next trial?
Usually the information accumulated on one trial is not
relevant for the next trial, and the participants are instructed to
treat the trials separately and independently. The inter-trial
interval separating trials is made clear to the participant and
sufficiently long to prepare for the next trial (e.g. a reasonable
pause with a blank screen). The state needs to be reset during
this inter-trial interval from some final state (e.g., lyyp, 1))
after the previous trial back to a common neutral state
lyg, t + 1) = ly) before the next trial begins. To accomplish
this reset task, some unitary operation or projection is
required to change the state during the inter-trial interval. This
process is an important issue but little is understood about it.
By the way, the same issue arises with more traditional
cognitive models such as Markov models, and so the problem
is not unique to quantum models.

In some experiments, however, the information accu-
mulated during one episode remains relevant for another
episode and so both episodes together form a trial. In this
case, there is little or no inter-trial interval separating the
episodes. If a person is shown a face and asked to categorize it
with respect to aggressiveness, and the same face is continued
to be shown but now the person is asked to categorize it with
respect to intelligence, and the trial is defined by the pair of
episodes, then the participant can connect these two episodes
together so that the state following the answer to the first
question (agressiveness) is carried over and used as the state
for answering the second question (intelligence). In other
words, no unitary transform to reset the system intervenes
between the two questions. The experimental instructions and
conditions that determine whether the reset versus the carry
over occurs is an important matter for future research [29].

2.6. Positive operator value measures

So far we have limited our discussion to measurement defined
as projectors which satisfy D4 = D ); =D X. A more general
type of measurement is one that does not need to satisfy either
of these two properties, and instead only satisfies positivity
and completeness properties, defined below. These general-
ized measurements form what are called the positive operator
value measurements (POVM’s). As recommended in [29],
POVM’s could be an important tool for psychologists who
need to work with more complex types of measurements. As
an example, consider the linear operator Pyz = D4 Cp, which
is a measurement of the sequence of events ‘categorize as bad
guy’ and then ‘attack.” If the projectors D4, Cp commute,
then P,p defines the projector for the conjunction of these two
events, which is represented as the intersection of subspaces
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A, B. Of course, this implies no order effects. If there are order
effects, then the events D4, Cp do not commute and the
conjunction (which is commutative) is not defined. For the
non-commutative case, the linear operator P,p is not a pro-
jector, it does not correspond to any single subspace, and it is
not an event. Instead this measurement operator represents a
sequence of two events. There are three other measurement
operators for the other three sequences of events in this task:
PAG = DACG, PWB = DWCB, PWG = chg. Note that PXBPAB
is a positive operator because <1//IP§BPAB|1//> > 0 for all | ),

and the sum PjzPig + PigPic + PugRys + PygRvc = I
satisfies completeness. (Technically, P,p is the measurement
operator and P} Py is the positive operator corresponding to
this measurement). These two properties guarantee that the
probabilities of these four mutually exclusive and exhaustive
sequences to sum to unity. Positivity and completeness are the
two requirements needed to define a complete set of POVM’s.
The four measurement operators provide one way to model
sequences of events when there is order dependence. A more
general way to model conjunctions of events in psychology
using a POVM formulation was recently proposed by [30].

Applications of POVMs to the problems of decision
making in the framework of theory of open quantum systems
were considered in [31]. General discussion on a possibility to
describe cognitive phenomena solely by using only observables
represented by Hermitian operators can found in [32]. Here it
was shown that some statistical data from cognitive psychology
cannot be represented with the aid of Hermitian operators; one
has to use POVMs and even their generalizations.

2.7. Constructing mixed states

The state vector ly) is called a pure state. This pure state can
also be expressed as a density operator p = ly) (y| and then the
probability of an event, such as to categorize a face as ‘bad
guy,” is given by the rule p(Cg) = tr [Cp - p], which is
equivalent to the previously defined rule. However, this repre-
sentation of state allows one to define a more general mixture
state p = Xp; ly;){y;l, 0 < p; < 1, ¥p; = 1, and apply the
same rule for computing probabilities from densities. The
advantage of using the density operator is that this more general
form can be used to represent a probability obtained from a
mixture of participants, where each participant is represented by
a different pure state [33]. One complicating factor that arises
when working mixed states is that their decomposition is not
unique. Given a particular mixed density operator, there is an
infinite number of ways to decompose it into pure states. This is
not necessarily bad because mixed states provide a more gen-
eral way to represent uncertainty.

3. Alternative interpretations

3.1. Quantum-cognition system

We have presented one view of the mapping of psychological
concepts into quantum concepts. Let us briefly summarize

them more formally. First we choose the dimension N of the
Hilbert space. The stimulus that is presented to the participant
(e.g., stimulus f) along with other experimental information
prepares the state Iy, ). A specific question (is the face to be
presented a ‘bad guy?’, is it ‘handsome?’, ‘does the person
look intelligent?,” ‘should you attack this face?,” or whatever
question you wish) determines the basis for the Hilbert space.
The basis vectors are used to define the projectors (e.g.,
D4, Dy), and a linear combination of the projectors forms the
observable (e.g. observable D). Let us call this the ‘quantum
cognition’ system [9]. Now we consider some alternative
systems that have been proposed. This comparison was
inspired by working together on [29], as well as [35].

3.2. Stimulus-response system

Another approach, called the stimulus-response system, does
not assume that the stimulus changes the state. Instead the
state only depends on the individual ly;) (see, e.g., [29]). The
stimulus and question together define the observable D(f).
Consider again the C-D task in which the person sees a face
and then decides an action. Before any face or other stimulus
information is presented, the person is in the initial state ly; ).
The face stimulus together with the decision determine the
observable D(f). Actually this mapping turns out not to be
very different than the quantum cognition mapping. Starting
from the quantum cognition system, we have
2
PALN)=1Da - [w, )

=1Da - Uf - |y )
=||(Uf Dy - Uf’f) . |l/,1>

=104(f) - |wi ).

2

2
I

which is the stimulus response system  with
D4(f) =UsDy - U}. In this way, the stimulus-response sys-
tem is a generalization of quantum cognition system
(equivalent when D(f) is a projector); alternatively, the
quantum cognition system unpacks and breaks the general
function of the stimulus-response system down into its cog-
nitive components. This difference between the two systems
corresponds to the difference between the Heisenberg and
Schrdinger pictures for a quantum system.

3.3. State context property system

Aerts and Gabora and colleagues apply slightly different
rules, which they call the State Context Property or SCoP
system [34]. They frequently work with conceptual combi-
nation problems. For example, a person may be informed
that they will be considering the concept of say ‘pet insect.’
They are shown an example, such as a spider, and then they
are asked to decide whether or not the example is a member
of the concept ‘pet insect.” When asked to consider a con-
cept, like a pet, the person starts in a ‘ground’ state for the
pet concept denoted ly, ). When asked to consider the con-
cept of pet in the context of it being an insect ‘is this a pet
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insect’, the ground state is projected onto the subspace for
this insect context to produce a new state lyy,). The
experimenter then asks a question: is this example spider a
member of the category pet insect? The pet insect state is
then defined as a superposition with regard to the example,
i.e., superimposed about whether or not a spider is a member
of pet insect. The yes, no answers to the membership
question correspond to the projectors My, My = (I — My),
respectively, and together they determine the membership
observable M =1-M,+ 0-M,. The same membership
observable M is used for all membership questions regard-
less of the examples that are presented. If the example is
changed from spider to beetle, then the same observable M is
applied to this new question.

Now we apply the SCoP system to the C-D task fol-
lowing [14]. We can define the ground state ly;, ), as the
concept ‘do I want to attack this face?” when the category is
unknown or undecided. When placed into the context ‘this is
a good guy’ the state changes to ly; ), but when placed into
the context ‘this is a bad guy’ the state changes instead to
ly ). The observable M represents (yes, no), which is applied
to all three of these states to determine the probability of
‘attack.” In [14], a simple three dimensional model was used
to work out a SCoP model in detail. In this simple three-
dimensional model, the states ly; ), ly) were designed to be

orthogonal, and the unknown state ly;, ) = %('%ﬁ + lyg))

was assumed to be a superposition of the two known states.

SCoP sometimes works differently than the quantum
cognition system and the stimulus response system. If we
applied the quantum cognition system to the conceptual
combination problem, then the person’s state ly;) is prepared
by the example ‘spider,” which is the stimulus that is dis-
played to the person The person knows that he or she is
dealing with a spider, and this is not uncertain. What is
uncertain is whether or not it is a pet, or more specifically,
whether or not it is a pet insect. The question ‘is this a pet’ is
represented by one observable Mp, and the question ‘is this an
insect’ is represented by another observable M;. Likewise, the
stimulus-response system would form the observable M (s, P)
from the combination of the stimulus (spider) and question (is
this a pet?).

3.4. Comparison

Let’s see how these systems work with a different exam-
ple®. Quantum theory has been successfully applied to
question order effects in attitude surveys [27]. Suppose a
person is asked to judge whether or not a political admin-
istrator (yet to be presented) is honest and trustworthy. For
half of the respondents, the picture and name of one
administrator (e.g, Clinton) is shown first and a judgment is
made, and this followed by the picture and name of another
administrator (e.g., Gore) and another judgment is made; for
the other half of the respondents, the pictures and names are
shown in the opposite order. These questions form two
related episodes, answers to one are relevant for answering

8 This section is related to issues recently brought up by [35].

the other, and they are asked back to back with little or no
time interval between questions, and so they can be treated
as one trial. Completely unrelated types of questions are
presented on other trials”. For these closely related type of
trials with back to back measurements, large order effects
are observed with all sorts of attitude questions. Consider
the probability of saying ‘yes’ to the Clinton question and
then ‘yes’ to the Gore question.

Using the stimulus-response approach, we define C, as
the projector for the answer ‘yes Clinton is honest and
trustworthy’ to the Clinton stimulus, and we define G, as the
projector for the answer ‘yes Gore is honest and trustworthy’
to the Gore stimulus. Using the stimulus response approach
we obtain the result p (Cy, Gy) = || G,Cyly, YI>. Now suppose
we define the projectors as follows C, = Ucy M, Uy
G, = UsnM, UgN, where M, is the generic projector for ‘yes
he is honest and trustworthy’ applicable to any person, Ucy,
Ugy are a unitary operators. The projector Ugy M, UgN
represents the idea that we are examining the issue of honest
and trustworthy from the Clinton perspective. Alternatively
Usn M, Uly represents the same question but now from the
Gore perspective.

Now we show that the predictions from the quantum
cognition system agree with those from the stimulus-response
system for this example. The stimulus-response system
expresses the probability as (see appendix for more details)

p(Cy, Gy)= ||( Usn M, UéN)( Ucn M, ngv)‘lllz >||2

=11 My U Uen Y,( Uy [ )T

where we made use of the length preserving property of
unitary operators. The second line expresses the quantum
cognition approach—the initial state (before the first sti-
mulus) is unitarily transformed by the Clinton stimulus,
then the projector for the question ‘yes he is honest and
trustworthy’ is applied, and then the resulting state is uni-
tarily transformed by the Gore stimulus, and then the pro-
jector for ‘yes he is honest and trustworthy’ is reapplied to
the new state.

It remains an empirical question whether one system will
ultimately provide a better representation for psychological
studies as compared to another. The field is too new and we
need to be in an exploratory mode. All three systems need to
be investigated in a more competitive way to see which one
evolves and survives to become most successful.

4. Concluding comments

Our goal for this article was to form correspondences between
fundamental concepts based on quantum formalisms (such as
state preparation, measurement, state evolution) and funda-
mental psychological concepts (such as stimulus, response,
information processing). We also described several

° This is the actual procedure for some of the surveys examing order effects,
see [11].
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compelling examples where these concepts have been suc-
cessfully applied to psychology.

It is sometimes difficult for physicists to accept the idea
that the mathematical formalisms of quantum theory can be
applied outside of physics. It seems to many physicists that
this type of mathematics was specifically developed for
quantum physical problems only. However, we disagree with
this view, and instead we think that the mathematics dis-
covered to solve problems in physics are highly suitable for
solving analogous problems in psychology and even social
sciences more generally [36]. The reason is that psycholo-
gists, like quantum physicists, must work with contextualized
probabilistic systems that are highly sensitive to measure-
ment, as well as ‘entangled’ systems that are strongly inter-
connected and difficult to decompose into separate and
independent parts. We argue that the mathematical formal-
isms of quantum theory are highly suitable for any kind of
complex system that exhibits these general kinds of
properties.

5. Appendix

The purpose of this appendix is to analyze the sequence of
projections  (Ugy M, UéN)(UCN M, UgN)Iy/O). Suppose the
Hilbert space is N-dimensional. We will focus on the use of
three different bases for spanning this space. One is the
‘neutral’ basis {IN;), i = 1, N} used to represent the question
‘is the person honest and trustworthy’ for any person, which
is used in the quantum cognition system. The other two
{IC;), i =1, N}, {IG;), i =1, N} are used to represent the
Clinton/Gore questions about honest and trustworthy used in
the stimulus-response system.

Define Ucy = Y, IC){N,| as the unitary operator used
to change from the neutral to the Clinton basis and
Uly = Zk|Nk><Ck| is the inverse; Ugy = zk‘Gk><Nk|
changes from the neutral to the Gore basis and
U(;N = Zk|Nk><Gk| is the inverse. It follows that Ugc =
Uon Uly = (Z1G) (N IN)(Ch = 3,)1Gi ) (Nl - IN))
(Cjl = X41G)(Cy| changes to from the Clinton to the Gore
basis, and U = Y, 1Ci) (Gl is the inverse.

When expressed in terms of either the neutral or Clinton
basis, the N x N matrix for Ugy equals Voy = [(N;1G)],
(transition to row j from column i), with <N_,~|C,- > = <Nj‘ Ek| Ck>
(Ne| - [N)=(Cj| Zi| € ) (Ne] - | €)= (NJICi). Note  that
VCTN = [(CjIN;)]. Likewise, when expressed in terms of
the either the neutral or Gore basis, the N x N matrix for Ugy
equals Voy = [(N;IG;)], and Vly = [(G,IN;)]. When
expressed in terms of the either the Clinton or Gore basis,
the N x N matrix for Uge equals Ve = Viy Von = [{C1G)],
and note that the
VinVen = [(GJIC)).

Define the initial state, at the trial beginning and before
any stimulus is presented, as ly,) = XIN:)(Nilyy) =
YACH(Cilyy) = X1Gi)(Gily,) and |||'l/()>||2 =1. When

matrix for Ule equals Vi =

expressed in terms of the neutral basis, the N X 1 matrix of
coordinates equals Vy(0) = [(N:ly;)], when expressed in
terms of the Clinton basis, the N X 1 matrix of coordinates
equals V¢ (0) = [{Cily,) ], and when expressed in terms of the
Gore basis, the N X 1 matrix of coordinates equals

V6 (0) = [(Gilyg) 1.

Finally, we define the projector for the answer ‘yes’ to
the question ‘is the person honest and trustworthy’ for any
person. This is defined in terms of the neutral basis as
My = ¥ icyes!Nj) (N;l. When expressed in terms of the neutral
basis, this equals an N x N indicator matrix
W, = [(N;IM,IN;)], with ones on the diagonal corresponding
to yes, and zero otherwise.

We start by analyzing the first the Clinton question
(Uen M, UgN)h//O). First, we  obtain Uy lyy) =
TNl - TN N lry) = TilNi) (G Nl ).
This corresponds to the matrix product Vy - Vi (0). Second,
we apply the measurement to obtain M, Uly |1//0>=ZkeyeS
INg) (Nl - Z]|N1>Zz<cjllvl><]vlh//0> = ZkeyeslNk>Zj
(CrIN;){N;lyp), which corresponds to the matrix
W, - Viy - Vv (0). Third, we apply the last unitary operator to
obtain the projection lyy) = (Ucn My UgN)Iy/O) =
Zklck><Nk| ! Zjeyesle>Zi<Ci|Nk><]Vih//()> =Zkeyeslck>2j
(CrIN;){N;jlyg). This corresponds to the matrix product
W@ = Vew - W, - VgN) - W (0). Using the fact that
(Cjlyy) = X ;(CkIN;)(N;lyy) the result of the first mea-
surement can be expressed as Iy, )=3;c . |Ci ) (C)lyg ). The
probability of yes to the first question equals the squared
length [yl = Vi (D V(1) < iy P = V§(0)Vy (0) = 1.
(Notice that we have not normalized this projection).

Hereafter, we operate on the projection ly;) =

Zkeyeslck)(ckll//0>:Zkeyeslck>2j<ckle><Nj|l//0>' This
projection can be also be expressed in the Gore basis as
lyy) = Y 0GY(Gily,). It’s matrix representation equals

W)= (Vey - W - Viy) - W0).

Now we repeat these operations for the Gore question
(UsnM, Uiy)ly). First, we obtain Uly ly;) = X, IN:)
(Gl - Zlej><Gj|’l/1> =2kINe) - X4 (Gelyy). This corre-
the Vin - W(l) = Vi
ey - W, - VgN) - Vv (0). Then we apply the measurement to
M,VUGTN lyy) = ZkEyeslNk><Nk| ) Zlej)(Gjhl’l):
Zkeyes!Ni) (Gelyy) - which - corresponds  to  the  matrix
W, - VgN “Ven - W, - VgN - Vy(0). Then we apply the last
unitary operator to obtain the second projection
ly, ) = (UGNMvUéN)|W1>=Zk|Gk><Nk| ) Zjeyesle><Gj|l//1>
=Zkeyesle) - (Gylyy). This corresponds to the matrix pro-
duct Vy (2) = (Von - Wy - Vn) Ve - Wy - Viy) - Vi (0). The
final probability of yes to the first and then the second
question equals the squared length of the second projection

)P = Vi@ W) < )P = Vi V(D) < llypP=
Vi) Vy (0) = 1.

sponds to matrix  product

obtain
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In sum, using the convenient matrix representation, we
find that the answer from the stimulus response system

¥ 2
(Vow - W, - Vi) (Ve - W, - Viy) - VaO)l

W, - Vie - W, - Viy - Vw(O)I', where the effect of Vgy in the
last step is ignored because it does not change length. The
latter expression describes the same answer in terms of the
quantum cognition system: first, the initial state Vy(0),
before any stimulus, is changed by a unitary matrix to the
state (VgN - Vv (0)) based on the information provided by the
stimulus. Second, a measurement is taken using the general
measurement matrix W, that does not depend on any sti-
mulus. Third the state is changed again by the unitary matrix
V¢ that depends on the second stimulus. Finally, the second
measurement is taken using the same general measurement
matrix.

equals
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