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A recent trend in decision neuroscience is the use of model-based functional magnetic
resonance imaging (fMRI) using mathematical models of cognitive processes. How-
ever, most previous model-based fMRI studies have ignored individual differences
because of the challenge of obtaining reliable parameter estimates for individual
participants. Meanwhile, previous cognitive science studies have demonstrated that
hierarchical Bayesian analysis is useful for obtaining reliable parameter estimates in
cognitive models while allowing for individual differences. Here we demonstrate the
application of hierarchical Bayesian parameter estimation to model-based fMRI using
the example of decision making in the Iowa Gambling Task. First, we used a simulation
study to demonstrate that hierarchical Bayesian analysis outperforms conventional
(individual- or group-level) maximum likelihood estimation in recovering true param-
eters. Then we performed model-based fMRI analyses on experimental data to examine
how the fMRI results depend on the estimation method.
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How we make decisions to obtain rewards
and avoid punishments is a fundamental topic
across research areas including psychology,
economics, neuroscience, and computer sci-
ence. In the past decade, decision neuroscience
researchers have begun to approach decision
making from an interdisciplinary perspective—
integrating quantitative models with neural sig-
nals. For example, early pioneering studies
demonstrated that the phasic responses of mid-
brain dopamine neurons can be well described
by the temporal-difference reinforcement learn-
ing algorithm (Montague, Dayan, & Sejnowski,
1996; Schultz, Dayan, & Montague, 1997).
More recently, human functional magnetic res-
onance imaging (fMRI) studies have shown that

blood-oxygen-level-dependent (BOLD) activa-
tions in brain regions including the striatum and
orbitofrontal cortex correlate with prediction er-
ror signals from the temporal-difference learn-
ing model (McClure, Berns, & Montague, 2003;
O’Doherty, Dayan, Friston, Critchley, & Dolan,
2003). These fMRI studies used the method of
“model-based fMRI,” in which a mathematical
model of behavior provides a framework to
study neural mechanisms of reward learning. In
model-based fMRI, predictions derived from a
mathematical model of choice behavior are cor-
related with fMRI data to determine brain areas
related to postulated decision-making pro-
cesses. This method is increasingly popular in
decision neuroscience because it provides in-
sight into the neural correlates of predicted cog-
nitive processes and can be useful to discrimi-
nate competing theories of brain function (see
O’Doherty, Hampton, & Kim, 2007, for a re-
view and methodological recipe).

The first step in model-based fMRI is to
estimate the free parameters in the mathematical
model of behavior. Getting accurate parameter
estimates is important not only because param-
eter estimates reflect psychological traits (e.g.,
the learning rate or the balance of exploitation

Woo-Young Ahn, Adam Krawitz, Woojae Kim, Je-
rome R. Busemeyer, and Joshua W. Brown, Department
of Psychological and Brain Sciences, Indiana University
Bloomington.

Adam Krawitz is now at Department of Psychology,
University of Victoria, Victoria, Canada.

Correspondence concerning this article should be ad-
dressed to Joshua W. Brown, Department of Psychological
and Brain Sciences, 1101 East 10th Street, Indiana Univer-
sity, Bloomington, IN 47405. E-mail: jwmbrown@
indiana.edu

Journal of Neuroscience, Psychology, and Economics © 2011 American Psychological Association
2011, Vol. 4, No. 2, 95–110 1937-321X/11/$12.00 DOI: 10.1037/a0020684

95



and exploration), but also because they affect
the results of the subsequent model-based fMRI
analysis (e.g., Tanaka et al., 2004). Most previ-
ous studies with model-based fMRI have used
group-level analysis with maximum likelihood
estimation (MLE). In group-level analysis, free
parameters are assumed to be homogenous
across participants and no individual differ-
ences are taken into account. It might be toler-
able to ignore individual differences in simple
conditioning tasks where most participants be-
have similarly, but it is inappropriate in com-
plex tasks where substantial individual differ-
ences exist. To take into account individual
differences, an alternative approach is individual-
level analysis. However, using MLE for individ-
ual-level analysis can lead to noisy and unreliable
estimates if the amount of information from each
individual is limited, as is often the case in neu-
roimaging studies. We propose the use of hierar-
chical Bayesian analysis (HBA) to reconcile the
tension between individual differences and reli-
able parameter estimation.

HBA is an advanced branch of Bayesian sta-
tistics (Berger, 1985) that uses the basic princi-
ples of Bayesian statistical inference (Gelman,
Carlin, Stern, & Rubin, 2004). One of the ad-
vantages of HBA is that, whereas MLE finds a
point estimate for each parameter that maxi-
mizes the likelihood of the data, HBA finds a
full posterior distribution of belief across the
range of values a parameter can take on. A
second advantage of HBA is that it allows for
individual differences while pooling informa-
tion across individuals in a coherent way. Both
individual and group parameter estimates are
found simultaneously in a mutually constrain-
ing fashion. By capturing the commonalities
among individuals, each individual’s param-
eter estimates tend to be more stable and
reliable because they are informed by the
group tendencies.

In this article, we apply HBA to model-based
fMRI analysis of the Iowa Gambling Task
(IGT; Bechara, Damasio, Damasio, & Ander-
son, 1994) and compare it with other estimation
methods. The remainder of this article is orga-
nized as follows. First, we briefly explain the
IGT and a mathematical model for the task.
Second, we briefly explain the procedures of
MLE and HBA and then use simulated data
with known true parameter values to examine
which method recovers the values more accu-

rately. To tease apart the relative contributions
of Bayesian estimation and the use of a hierar-
chical approach, we estimate parameters using
each of the following methods: MLE at the
group level (MLE-Group), MLE at the individ-
ual level (MLE-Ind), nonhierarchical Bayesian
analysis (Bayes-Ind), and HBA. Third, we pres-
ent model-based fMRI analyses using parame-
ter estimates from MLE-Group, MLE-Ind, and
HBA and show how the choice of method in-
fluences the fMRI results.

IGT

The IGT is a well-established task used to
study decision-making processes in control par-
ticipants and decision-making deficits in clini-
cal populations including substance abusers and
patients with brain lesions (Bechara, Damasio,
Tranel, & Damasio, 1997; Bechara et al., 2001).
The goal of the task is to maximize monetary
gains while repeatedly choosing cards from one
of four decks. Each selection results in a mon-
etary gain, draw, or loss. There are two “good”
decks with long-term gains and two “bad” decks
with long-term losses. However, the typical win
is larger for the bad decks than the good decks,
putting the magnitude of the potential immedi-
ate gain into opposition with the long-term cu-
mulative outcome from the decks. Furthermore,
one bad deck and one good deck have infre-
quent larger losses, and the other bad and one
good deck have more frequent smaller losses.
Participants need to learn from experience
which decks are advantageous for good perfor-
mance. It is a challenging task and even healthy
control participants show substantial individual
differences in behavioral performance.

Prospect Valence Learning (PVL) Model

We used the PVL model (Ahn, Busemeyer,
Wagenmakers, & Stout, 2008) to mathemati-
cally model participants’ decision-making pro-
cesses. The model assumes that the evaluation
of outcomes follows the prospect utility func-
tion, which has diminishing sensitivity to in-
creases in magnitude and loss aversion; that is,
different sensitivity to losses versus gains. Spe-
cifically, the utility, u!t" on trial t of each net
outcome x!t" is expressed as:

u!t" ! ! x!t"# if x!t" " 0
$%"x!t""# if x!t" # 0. (1)
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Here # is a shape parameter (0 # # # 1) that
governs the shape of the utility function, and % is
a loss aversion parameter (0 # % # 5) that
determines the sensitivity of losses compared
with gains. Net outcomes were scaled for cog-
nitive modeling so that the highest net gain
becomes 1 and the largest net loss becomes
$11.5 (Busemeyer & Stout, 2002). As # gets
close to 1, the utility gets close to the objective
outcome amount, and as # gets close to 0, it
becomes more like a step function. If an indi-
vidual has a value of loss aversion (%) greater
than 1, it indicates that the individual is more
sensitive to losses than gains. A value of % less
than 1 indicates that the individual is more
sensitive to gains than losses.

On the basis of the outcome of the chosen
option, the expectancies of decks were updated
on each trial using the decay-reinforcement
learning rule (Erev & Roth, 1998). When tested
with the Bayesian information criterion
(Schwarz, 1978), previous studies consistently
showed that this rule had the best post hoc
model fit (Ahn et al., 2008; Yechiam & Buse-
meyer, 2005, 2008) compared with others in-
cluding the delta rule (Rescorla & Wagner,
1972). The decay-reinforcement learning rule
assumes that the expectancies of all decks decay
(are discounted) with time, and then the expec-
tancy of the chosen deck is added to the current
outcome utility:

Ej!t" ! A · Ej!t $ 1" % &j!t" ! u!t". (2)

The parameter A is a recency parameter
!0 # A # 1", which determines how much
the past expectancy is discounted. &j!t" is a
dummy variable that is 1 if deck j is chosen
and 0 otherwise.

With the updated expectancies, the softmax
choice rule (Luce, 1959) was then used to com-
pute the probability of choosing each deck j. It
has a sensitivity (or exploitiveness) parameter,
' !t", which governs the degree of exploitation
versus exploration.

Pr(D!t % 1" ! j) !
e'!t"!Ej!t"

#
k*1

4

e'!t"!Ek!t"

. (3)

Sensitivity, ' !t", is assumed to be trial inde-
pendent and was set to 3c $ 1 (Ahn et al.,

2008; Yechiam & Ert, 2007). Here c is called
consistency and was limited from 0 to 5 so that
the sensitivity ranges from 0 (random) to 242
(almost deterministic). In summary, the PVL
model used in this study has four free parame-
ters reflecting distinct psychological constructs:
A, recency; #, utility shape; c, choice sensitiv-
ity; and %, loss aversion.

Simulation Study

To compare the performance of HBA to the
other methods in accurately recovering param-
eter values, we simulated 30 participants per-
forming the IGT (100 trials per participant)
assuming that they behaved according to the
PVL model. To be as realistic as possible, we
based the simulated data on the actual fMRI
study reported in a later section. The number of
participants and trials were matched to those of
the actual study, and when generating stimu-
lated data, we used parameters estimated from
the actual data set. Specifically, the parameters
of the simulation agents were the posterior
means of the parameters found with HBA for
the real participants.1

The four free model parameters of each sim-
ulated participant were then estimated in four
different ways and compared to determine
which method recovered the true parameter val-
ues most accurately. The four methods are:
MLE at the group level (MLE-Group), MLE at
the individual level (MLE-Ind), nonhierarchical
Bayesian analysis at the individual level
(Bayes-Ind), and HBA. HBA yields posterior
distributions of the group parameters (HBA-
Group) and each individual’s parameters
(HBA-Ind), so we report them separately. MLE-
Group and MLE-Ind are the most widely used
approaches in the decision neuroscience field,
so we were most interested in comparing esti-
mates from these approaches with those from
HBA. The inclusion of Bayes-Ind allowed us to
learn something about the degree to which the
advantages of HBA were due to the use of

1 We also compared the estimation methods using an
independent data set (i.e., randomly generated parameters
for simulation agents), and it yielded the same conclusions
as reported in the main text. We report the findings using the
“nonindependent” data set because the parameters of the
simulated agents are more realistic and more likely to be
directly comparable with the actual data.
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Bayesian estimation versus being due to the use
of a hierarchical model.

Parameter Estimation Methods

Maximum likelihood estimation. For
MLE-Group, point estimates were made for
each parameter that maximized the sum of log-
likelihood across all participants (e.g., Daw,
O’Doherty, Dayan, Seymour, & Dolan, 2006).
We used a combination of grid-search (100
different initial grid positions) and simplex
search methods (Nelder & Mead, 1965) imple-
mented in the R programming language (R De-
velopment Core Team, 2009).2 For MLE-Ind, a
set of parameters were estimated that maxi-
mized the log-likelihood of each individual’s
one-step-ahead model predictions, again using
the combination of grid-search and simplex
search methods in R.

Bayesian estimation. For HBA, it is as-
sumed that the parameters of individual partic-
ipants are generated from parent distributions,
which are modeled with independent beta dis-
tributions for each parameter:

#i $ Beta!+#, ,#", (4)

%i
- $ Beta!+%, ,%", %i ! 5 ! %i

-, (5)

Ai $ Beta!+A, ,A", (6)

ci
- $ Beta!+c, ,c", ci ! 5 ! ci

-. (7)

As implied in these equations, #i and Ai were
limited to values between 0 and 1 and %i and ci

were limited to values between 0 and 5. Here +z
and ,z are the mean and the standard deviation
of the beta distribution of each group-level pa-
rameter z (i.e., #, %, A, and c).3 The Bayesian
method needs the specification of the prior dis-
tributions for the parameters, and we used uni-
form distributions for +z and ,z, which provide
flat priors and thus assume no a priori knowl-
edge about these parameters. The range of each
+z was set between 0 and 1 and each ,z was set
between 0 and %+z!1 $ +z"/3 so that each dis-
tribution was prevented from being bimodal.
Different diffuse priors were also tested (e.g.,
uniform distributions for the beta means and
diffuse gamma distributions for their preci-
sions), and they resulted in almost identical

posterior distributions. The hierarchical Bayes-
ian model is represented graphically in Figure 1.

Finally, the observed data matrix from all
participants was used to compute the posterior
distributions for all parameters according to
Bayes rule (Kruschke, 2010). Posterior infer-
ence was performed with the Markov chain
Monte Carlo (MCMC) sampling scheme in
OpenBUGS (Thomas, O’Hara, Ligges, &
Sturtz, 2006), an open source version of Win-
BUGS (Spiegelhalter, Thomas, Best, & Lunn,
2003), and BRugs, its interface to R (R Devel-
opment Core Team, 2009). WinBUGS (and
OpenBUGS) implements various MCMC com-
putational methods, and it is relatively user
friendly and easy to program; thus, it has greatly
facilitated Bayesian modeling and its applica-
tions (Cowles, 2004). A total of 50,000 samples
were drawn after 70,000 burn-in samples with
three chains.

For nonhierarchical Bayesian analysis, we
again used beta distributions for each partici-
pant’s parameters. However, no hyper (group)
parameters were assumed, and priors of each
participant’s parameters were uniform beta dis-
tributions; for example, #i $ Beta!1,1". We
used the same number of burn-in samples and
real samples as the HBA analyses. For each
parameter, the Gelman–Rubin test (Gelman et
al., 2004) was conducted to confirm the conver-
gence of the chains. All parameters had R̂ val-
ues of 1.00 (in most parameters) or, at
most, 1.04, which suggested MCMC chains
converged to the target posterior distributions.
OpenBUGS codes used for all Bayesian analy-
ses are available at http://www.ahnlab.org/
home/research/.

Results and Discussion

Figure 2 shows the results of the simulation
study focusing on comparisons between HBA-
Ind and MLE (MLE-Ind and MLE-Group)
methods. Wetzels, Vandekerckhove, Tuer-
linckx, and Wagenmakers (2010) showed that

2 See Section 4 of Ahn et al. (2008) for more details.
3 Typically a beta distribution is denoted by its own # (it is

not a shape parameter of the utility function) and . parameters.
The mean (+) of a beta distribution is #/!# % .", and the
variance (,2) is #./!!# % ."2!# % . % 1""; thus, it can
be easily shown that # ! +(+!1 $ +"/,2 $ 1) and
. ! !1 $ +"(+!1 $ +"/,2 $ 1).
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parameter estimates of an individual’s data are
not reliable in the expectancy valence learning
(EVL) model (Busemeyer & Stout, 2002),
which closely resembles the PVL model. How-
ever, their claim was based on parameter values
estimated with each individual’s data only, not
all individuals’ data in a group. In our data set,
parameter estimates of the PVL also show some
discrepancy from actual values when using each
individual’s data only (MLE-Ind in Figure 2). In
particular, note that some MLE-Ind estimates are
on the parameters’ boundary limits, indicating in-
sufficient information in each individual partici-
pant’s data. However, when estimated with HBA,
parameter estimates (HBA-Ind in Figure 2) show
much less discrepancy with actual values com-
pared with MLE-Ind estimates.

The HBA results lead to two interesting obser-
vations. First, by capturing the dependency be-
tween all participants, the HBA estimates regress
toward the group mean when there is not much

information in individual participants’ data
(“shrinkage”; Gelman et al., 2004). Second, HBA
can also be sensitive to individual differences
when there is enough information, which is dem-
onstrated in the estimates for the learning param-
eter (A). Although the performance of the HBA
was not perfect, estimated values from HBA were
overall more accurate than those from MLE. Note
that we reached the same conclusion when run-
ning additional simulations with different true pa-
rameter values and different numbers of partici-
pants and trials. Regarding MLE-Group estimates,
A and c parameter estimates are around the mean
values of individual values, but # and % estimates
are quite different from them.

Figure 3 plots the distribution of posterior
means for individual participants’ parameter es-
timates computed from each method (except for
HBA-Group, for which distribution densities of
group parameters are plotted). When compared

Figure 1. Graphical depiction of the hierarchical Bayesian analysis for the prospect valence
learning model. Clear shapes indicate latent variables; shaded shapes indicate observed
variables. Single outlines indicate probabilistic functions of input; double outlines indicate
deterministic functions of input. Circles indicate continuous variables; squares indicate
discrete variables; rounded rectangular plates indicate replication over the indexing variable.
See the main text for a description of the individual parameters.
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with the true values, the results suggest that
HBA performs better than Bayes-Ind and MLE-
Ind in recovering true values. The fact that the
HBA-Ind estimates are closer to the true values
than Bayes-Ind estimates provides empirical
support that using a hierarchical approach in-
deed helps get more accurate estimates.

The posterior distributions of parameters for
HBA-Group closely resemble the true parame-
ter distributions. However, these distributions
are narrower because they represent the vari-
ance in the group estimates, not the variance
among individuals.

The results in Figure 3 also give some insight
into why the MLE-Group estimates of # and %
are so far from the actual values. The MLE-
Group estimates are around the mode of the
MLE-Ind distributions. For parameter A, most
participants’ true values are around the mode,
so the MLE-Group estimate looks acceptable.
However, for parameters # and %, the modes of
MLE-Ind parameters are near the lower bounds;
thus, MLE-Group estimates are dissimilar from
the overall patterns of actual values. Note that
these results are not because of the estimation
method (MLE) but because of the assumption

Figure 2. For the simulation study, parameter estimates of the four free parameters in the
prospect valence learning model for each simulated participant from both HBA and MLE.
Black circles indicate true parameter values; red triangles indicate MLE-Ind; large blue
squares indicate mean HBA-Ind estimates; green horizontal dashed lines indicate MLE-Group
estimates; and small sky-blue squares indicate 50 random samples from the posterior distri-
bution of the HBA estimate for each participant. A * recency; # * utility shape; c * choice
sensitivity; % * loss aversion. HBA * hierarchical Bayesian analysis; MLE * maximum
likelihood estimation; Ind * individual-level estimates; Group * group-level estimates.
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made in the estimation—namely, that all partic-
ipants use the same parameter values. Indeed, if
the same assumption is used with Bayesian es-
timation, the posterior means of the parameters
are very close to the MLE-Group estimates (for
brevity, results are not shown here). In sum-
mary, the results of the simulation study suggest
that HBA is the best among these methods for
estimating free parameters of the PVL model
accurately.

Model-Based fMRI Study

Having confirmed the utility of HBA in esti-
mating behavioral parameters, we then wanted
to examine how fMRI results would depend on
the choice of estimation method. We conducted
model-based fMRI analyses of actual data using
parameter estimates from three of the estimation
methods (HBA, MLE-Ind, and MLE-Group).
We included both the individual and group es-
timates from HBA (HBA-Ind and HBA-Group).

By using group and individual estimates with
both MLE and HBA, we could consider the
effects of method and analysis level separately.
We hypothesized that HBA would yield more
power than MLE because its parameter esti-
mates would be more accurate (as revealed by
the simulation study) and, thus, its model pre-
dictions would better reflect participants’ actual
cognitive processes. We also predicted that,
when MLE-Group and HBA-Group are com-
pared with each other, MLE-Group would yield
more power at the second level (group) than the
first level (individual), whereas HBA-Group
would conversely yield more power at the first
level (individual) than the second level (group).
This follows from the fact that MLE-Group
simply finds a group average parameter, but
HBA-Group provides more individualized fits
constrained toward the group mean. Regarding
comparisons between individual estimates and
group estimates, we predicted that MLE-Group
would yield more power than MLE-Ind be-
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Figure 3. For the simulation study, histograms of the true parameter values and the
parameter estimates from each estimation method for all of the simulated participants (except
for the third row, which shows the posterior distributions of the group parameters for
HBA-Group). HBA * hierarchical Bayesian analysis; MLE * maximum likelihood estima-
tion; Bayes * nonhierarchical Bayesian analysis; Ind * individual-level estimates; Group *
group-level estimates.
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cause, according to the simulation study, MLE-
Ind estimates would be noisy and unreliable.

Method

Participants. We recruited participants
from the student body of Indiana University
Bloomington. They were required to be at
least 18 years of age, to be right handed, and to
meet standard health and safety requirements
for entry into the MRI scanner. They were paid
$25/hr for participation plus performance bo-
nuses based on points earned during the task. A
total of 30 participants (mean age * 21.7 years;
age range * 18–29; 16 women, 14 men) were
used in all reported analyses.

Design and procedure. Participants per-
formed the IGT for a block of 100 trials.4 Dur-
ing the task, there were 4 decks of cards labeled
A, B, C, and D from left to right. Two of the
decks (A and B) are considered bad decks:
(Deck A) a net-loss/frequent-loss deck, with
50% loss trials, a mean loss of 25 points per
trial, and a gain of 100 on nonloss trials; and
(Deck B) a net-loss/rare-loss deck, with 10%
loss trials, a mean loss of 25 points per trial, and
a gain of 100 on nonloss trials. The other two
decks (C and D) are considered good decks:
(Deck C) a net-gain/frequent-loss deck, with
50% loss trials, a mean gain of 25 points per
trial, and a gain of 50 on nonloss trials; and
(Deck D) a net-gain/rare-loss deck, with 10%
loss trials, a mean gain of 25 points per trial, and
a gain of 50 on nonloss trials. The two bad
decks were always adjacent with the frequent-
loss deck to the left of the rare-loss deck. The
two good decks were also kept adjacent with the
frequent-loss deck to the left of the rare-loss
deck. The order of the bad and good decks was
counterbalanced across participants.

The specific sequences of gains and losses for
each deck were the same as in the original task
design (Bechara et al., 1994). However, unlike
in the original design, each trial outcome was
presented as a net gain, draw, or loss; the par-
ticipant started with an initial sum of 1,000
points; and the entire task was performed on a
computer using E-Prime 1.2 (Psychology Soft-
ware Tools Inc., 2006).

Participants were instructed to select cards
from the decks. They were informed that the
goal was to maximize earnings and that they
would receive a monetary bonus based on the

number of points they accumulated. They were
informed of the 3 second period in which to
make each selection and the running point total
at the bottom of the screen. They were told
nothing about the order of the decks or how the
order might change from block to block.

The timing and presentation of a trial is pre-
sented schematically in Figure 4. The partici-
pant’s running point total was displayed
throughout the block at the bottom of the
screen. At the start of a trial, a message (“Some
decks are better than others”) and the 4 decks of
cards (labeled A, B, C, and D from left to right)
were presented. The participant had 3 s to select
a deck by pressing one of their middle or index
fingers on buttons corresponding in a spatially
compatible way to the decks. If the participant
failed to respond within 3 s, then the trial was
considered a no-response trial. After the re-
sponse deadline, there was an exponentially dis-
tributed delay of 0, 2, 4, or 6 s. After the
variable delay, a card from the chosen deck was
flipped over to reveal the outcome as a negative,
zero, or positive point value; and the running
total was updated. On no-response trials, the
outcome was always a loss of 100 points to
encourage participants to make a choice on ev-
ery trial. The feedback remained visible
for 0.8 s, after which the message, cards, and
outcome were removed for an exponentially
distributed intertrial interval of 0.2, 2.2, 4.2,
or 6.2 s before the next trial began. The vari-
able-length delays between choice and outcome
and between trials were designed to allow the
brain activity associated with the decision pe-
riod to be estimated separately from that asso-
ciated with response to the outcome (Ollinger,
Corbetta, & Shulman, 2001; Ollinger, Shulman,
& Corbetta, 2001).

fMRI collection and preprocessing. Im-
aging data were collected on a 3.0 Tesla Sie-

4 During fMRI data collection, participants performed the
IGT for three blocks of 100 trials each for a larger study that
examined the effect of persuasive messages on risky deci-
sion making. For each block, a different hint message was
presented to the participant. Only data from the blocks with
the control message, “Some decks are better than others,”
were analyzed here. Also, participants whose data sets con-
tained unacceptable spike artifacts were excluded from fur-
ther analysis. Spike artifacts were due to a technical prob-
lem with the scanner and were unrelated to individual
participants’ anatomy or performance. For the details of the
full study, see Krawitz, Fukunaga, and Brown (2010).

102 AHN, KRAWITZ, KIM, BUSEMEYER, AND BROWN



mens Magnetom Trio. For each participant, we
collected functional BOLD data using echo pla-
nar imaging with free induction decay for a
block of 360 whole brain volumes with an echo
time of 25 ms, a repetition time of 2,000 ms,
and a flip angle of 70°. Images were collected
in 33 axial slices in interleaved order with 3-mm
thickness and 1-mm spacing between slices.
Each slice consisted of a 64 / 64 grid
of 3.4375 / 3.4375 / 3-mm voxels. For each
participant, we collected a structural scan using
three-dimensional TurboFLASH imaging.

We checked each participant’s functional
volumes for transient spike artifacts in individ-
ual slices using a custom algorithm imple-
mented in MATLAB R2007a 7.4.0. Preprocess-
ing of the data was conducted with SPM5
(Wellcome Trust Centre for Neuroimaging,
2005). The raw DICOM images were first con-
verted to NIfTI format. Then we performed
slice timing correction on the functional images
using SPM5’s Fourier phase shift interpolation
with the first slice as reference. We then per-
formed motion correction using SPM5’s least
squares six parameter rigid body transforma-
tion. The structural scan was then skull-stripped
using BET2 (Péchaud, Jenkinson, & Smith,
2006) with default parameters. The structural
scan was then coregistered with the motion-
corrected functional scans using SPM5’s affine
transformation with the mean functional image
as reference. We then registered the images for
each participant to MNI space using SPM5’s

normalization procedure by first performing a
12-parameter affine transformation within a
Bayesian framework using regularization to the
ICBM space template, followed by a nonlinear
deformation using discrete cosine transform ba-
sis functions. The source image was the struc-
tural scan with an 8-mm Gaussian smoothing
kernel, and the template was SPM5’s MNI
Avg152, T1 at 2 mm3 along with its associated
weighting mask. The resulting normalized im-
ages were written with 2-mm3 voxels. Finally,
the normalized images were smoothed with an
8-mm3 FWHM (full width at half maximum) of
the Gaussian kernel.

Model-based fMRI analysis. For model-
based fMRI analysis (Daw et al., 2006;
McClure et al., 2003; O’Doherty et al., 2004;
O’Doherty, et al., 2007; Tanaka et al., 2004),
model-generated regressors were convolved
with a canonical hemodynamic response func-
tion and then correlated against BOLD fMRI
signals to determine brain areas related to the
specific decision-making processes (using para-
metric modulation in SPM5). We used choice
probability of the chosen option at the time of
decision (onset of deck presentation) as the re-
gressor of interest. The choice probability is a
relative measure of the expected value signal
(Daw et al., 2006). Ventromedial prefrontal cor-
tex (vmPFC) is known to encode reward (Daw
et al., 2006; Knutson, Taylor, Kaufman, Peter-
son, & Glover, 2005), and IGT performance is
impaired in vmPFC lesion patients (Bechara et

Figure 4. Time course of the Iowa Gambling Task in a rapid event-related functional
magnetic resonance imaging design.
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al., 1994), so we hypothesized that the choice
probability computed by the model for the cho-
sen option on each trial would be correlated
with activation of vmPFC at the time of deci-
sion making.

To increase statistical power, we used
summed probabilities for choosing either good
or bad decks. In other words, if a good deck was
chosen on a given trial, we used the summed
probability of choosing either good deck, and if
a bad deck was chosen on a trial, we used the
summed probability of choosing either bad
deck. Analyzing the IGT results in terms of
good and bad decks is a common practice (e.g.,
Bechara et al., 1994; Bechara et al., 1997).

For model-based fMRI with HBA, the regres-
sors were generated directly from the posterior
distributions of each participant’s parameters
(HBA-Ind) or group parameters (HBA-Group),
and the means of the posterior predictive distri-
butions were used as input to SPM5.5 For re-
gressors from MLE, regressors were generated
from each participant’s point estimates (MLE-
Ind) or group point estimates (MLE-Group). In
every case, all regressors were standardized into z
scores within each participant (M * 0, standard
deviation * 1) before being entered into SPM5.

We performed first-level analysis of the pre-
processed fMRI data using SPM5. A general
linear model was conducted for each participant
with SPM5’s canonical hemodynamic response
function with no derivatives, a microtime reso-
lution of 16 time-bins per scan, a high-pass filter
cutoff at 128 s using a residual forming matrix,
autoregressive AR(1) to account for serial corre-
lations, and restricted maximum likelihood for
model estimation. The model included a constant
term, six motion regressors using the parameters
of the motion correction performed during prepro-
cessing, the model-generated regressor, and nui-
sance regressors. Nuisance regressors included
objective outcomes and the absolute value of loss
outcomes at the feedback period, reaction times,
and onsets of no-response trials (mean number of
no-response trials * 1.8).

Group-level analyses were conducted with
two approaches. The first approach was a
whole-brain analysis, which assumes that acti-
vations for a given contrast will be in the same
location for all participants. This approach used
voxel-by-voxel one-sample t tests to test
whether the beta coefficients across participants
were significantly different from zero. For acti-

vation maps in vmPFC, we used a threshold of
p 0 .001, uncorrected, with a cluster threshold
of 8 contiguous voxels. This approach was se-
lected because it is the most commonly used
group-level analysis for model-based fMRI
analysis. The second approach was a form of
region-of-interest (ROI) analysis where the
voxel with peak activation within an a priori
ROI is selected for each participant. Our ROI
was vmPFC, defined as Brodmann area 25 di-
lated by 1 mm using the WFU Pick Atlas (Lan-
caster et al., 2000; Maldjian, Laurienti, Kraft, &
Burdette, 2003). We tested the peak values for
each participant from this ROI at the second
level using an uncorrected one-sample t test.
This approach was selected because past work
has suggested that the peak voxel best reflects
the underlying neural activity (Arthurs & Bon-
iface, 2003), and because this approach allows
for individual differences in the particular loca-
tion of activity.

Results and Discussion

Parameter estimation. Model parameters
were estimated from the actual behavioral data
with three different methods (HBA, MLE-Ind,
and MLE-Group). Table 1 shows the parameter
estimates from each method, and Figure 5 illus-
trates the histograms of parameter estimates
from each method. Again, MLE-Ind estimates
are often on the boundaries of parameter ranges
and MLE-Group estimates of # and % are near
the lower bound of zero. Unlike the simulation
study, we do not know true values of these pa-
rameters, so we cannot tell which method is the
best for estimating them. However, the previous
simulation study and other studies (Fridberg et al.,
2010; Shiffrin, Lee, Kim, & Wagenmakers, 2008;
Wetzels et al., 2010) that examined this issue
suggest that the HBA estimates probably better
reflect individuals’ true internal characteristics.

Model-based fMRI. To focus on the com-
parison of estimation methods, we limited our
fMRI analysis to correlations between choice
probability for the chosen option and decision-
time activation in the vmPFC. We found such
correlations with all four estimation methods

5 Alternatively, regressors can be generated from the
means of posterior distributions. For most participants,
model-generated choice probabilities were very similar both
ways.
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using both approaches to the group-level fMRI
analysis. The results from each estimation
method and each analysis approach are summa-
rized in Table 2, and the activation maps from
the whole-brain analysis are shown in Figure 6.
To compare the models in more detail, we plot-
ted z values for all four methods from the
whole-brain analysis within a rectangle of MNI

space ranging from 0 to 4 in x-coordinates, 10
to 42 in y-coordinates, and $14 to $10 in
z-coordinates (see Figure 7). This region in-
cludes the vmPFC peak activations found with
each of the four methods.

With the whole brain analysis, for HBA and
especially MLE, group methods showed higher
peak z values and larger regions of activation
than individual methods. The MLE-Group
method produced the largest vmPFC region cor-
relating with the choice probabilities. The acti-
vation maps for HBA-Ind, HBA-Group, and
MLE-Ind are quite similar in shape, and their
peak coordinates match, but the map for MLE-
Group is qualitatively different. The peak of
activation is shifted forward along the y-axis for
MLE-Group compared with the other methods.

With the ROI analysis, which searches the
ROI to find the voxel with the best model fit
separately for each individual, the group meth-
ods again showed higher peak z values than the
individual methods. However, unlike the
whole-brain approach, both of the HBA meth-

Table 1
Comparison of Prospect Valence Learning Model
Parameters by Method of Parameter Estimation

Method A # c %

+ (HBA-Group) 0.86 0.34 0.29 1.25
Mean of MLE-Ind

estimates 0.80 0.48 0.26 2.71
MLE-Group 0.91 0.01 0.25 0.38

Note. Parameter estimates from the 30 participants in the
fMRI study. A * recency; # * utility shape; c * choice
sensitivity; % * loss aversion; HBA * hierarchical Bayes-
ian analysis; MLE * maximum likelihood estimation;
Ind * individual-level estimates; Group * group-level
estimates.

Figure 5. For the model-based fMRI study, histograms of each participant’s parameter
estimates with each estimation method. Note that the HBA-Ind parameters in the first row
were used as the true parameters in the simulation study. HBA * hierarchical Bayesian
analysis; MLE * maximum likelihood estimation; Ind * individual-level estimates; Group *
group-level estimates.
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ods yielded higher z values than either of the
MLE methods. Furthermore, the mean locations
of the peaks were almost the same for all four
methods.

The differences found here between estima-
tion methods in terms of their ability to account
for the fMRI data are relatively small. However,
it is still interesting to note that to the extent that
there are differences, HBA was more successful
when the method of analysis allowed for indi-
vidual differences in the locations of activation.
This suggests that, for HBA’s advantage in ac-
counting for individual differences in behavior
to carry over to the fMRI analysis, that analysis
must also allow for individual differences. In
addition, HBA-Ind yielded more power than
MLE-Ind in both whole brain and ROI analyses,
which suggests that allowing some extra param-
eters in the hierarchical model is helpful in
terms of fMRI power when estimating each
subject’s parameters separately.

What is less clear is why the HBA-Group
method outperformed HBA-Ind in the ROI
analysis, given that the simulation study sug-
gested that HBA-Ind does the best job of account-
ing for individual differences in parameter esti-
mates. Further investigation should be conducted
to characterize these patterns across a wider range
of brain regions, tasks, and model predictions.

General Discussion

The simulation study compared two Bayesian
methods (HBA and Bayes-Ind) and two MLE
methods (MLE-Ind and MLE-Group) in their
performance recovering true parameters and the
results suggest that HBA is the best method for

obtaining accurate individual and group param-
eter estimates. Whereas the HBA estimates
were close to the true parameter values, the
MLE-Ind estimates were often stuck on bounds
and some MLE-Group estimates diverged
markedly from the true parameter means. Indi-
vidual estimates from the nonhierarchical
Bayesian method (Bayes-Ind) were uninformed
by other participants’ data and were often too
vague and less accurate than HBA estimates.

Subsequent model-based fMRI results were
generally consistent with the behavioral results.
We predicted that a method that performed well
in the stimulation study would yield more sig-
nificant activations when used for model-based
fMRI. We evaluated this prediction in the
vmPFC for the correlation of decision-time ac-
tivity and choice probabilities for the chosen
options. As predicted, the HBA-Ind method
yielded more vmPFC activation than MLE-Ind,
MLE-Group yielded more activation than MLE-
Ind, and HBA-Group outperformed MLE-Group
in the ROI analysis. However, in the whole-brain
analysis MLE-Group yielded the largest vmPFC
activation, which was not expected. The best over-
all performance with respect to power was found
with HBA-Group, with the more flexible prior
assumption that there may be individual differ-
ences in peak voxel location. Nonetheless,
when the simplifying assumption was made that
there are no individual differences in peak voxel
location, then MLE-Group yielded more power
than HBA-Group. To our knowledge, this is the
first model-based fMRI study with HBA esti-
mation, so further research is needed to confirm
and extend the results of this study.

Table 2
Comparison of PVL Model-Based fMRI Findings by Method of Parameter Estimation and
Analysis Approach

Estimation method

Whole-brain analysis ROI analysis

Maximum z
value

Cluster size
(kE)

Peak MNI
coordinates

Mean peak z
value

Mean MNI
coordinates

HBA-Ind 3.84 54 [2, 16, $10] 5.20 [0, 12, $14]
HBA-Group 4.17 74 [2, 16, $10] 5.31 [0, 12, $12]
MLE-Ind 3.49 14 [4, 18, $10] 4.99 [0, 12, $14]
MLE-Group 4.41 444 [0, 24, $14] 5.06 [0, 12, $12]

Note. Analysis focused on regions in the ventromedial prefrontal cortex (vmPFC) that correlated significantly with the
choice probability for the chosen option assigned by the prospect valence learning (PVL) model. Cluster size is in voxels.
ROI * region of interest; HBA * hierarchical Bayesian analysis; MLE * maximum likelihood estimation; Ind *
individual-level estimates; Group * group-level estimates.
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We demonstrated the use of hierarchical
Bayesian parameter estimation with model-
based fMRI, and compared this method to other
nonhierarchical and non-Bayesian methods. As
our results suggest, there may be several advan-
tages to using HBA in studies correlating mod-
eling predictions with both behavior and neural
signals. In particular, obtaining more reliable
parameter estimates from behavior may in turn
better capture individual differences in neural
activations underlying the behavior. If partici-
pants’ data contain enough information, then

using nonhierarchical individual-level analysis
(MLE-Ind or Bayes-Ind) for model-based fMRI
might be sufficient. However, for many real-
world scenarios, where only a limited number
of trials are collected for each participant, our
findings support the use of a hierarchical anal-
ysis (e.g., HBA). Although we applied the HBA
to model-based fMRI, it can also be used for
model-based EEG analysis (Mars et al., 2008)
and model-based single-cell monkey electro-
physiology analysis. HBA has been recently
utilized in many areas including biostatistics,

Figure 6. Brain regions whose decision-time activation correlates significantly with the
choice probability assigned by the prospect valence learning model using parameter estimates
from each estimation method. Thresholded at p 0 .001, uncorrected, cluster size " 8 voxels.
HBA * hierarchical Bayesian analysis; MLE * maximum likelihood estimation; Ind *
individual-level estimates; Group * group-level estimates.
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economics, and cognitive modeling and has
proven to be a useful method. We believe that it
will also be a valuable tool in model-based
fMRI and hope that this study will help re-
searchers in decision neuroscience better under-
stand and adopt HBA for their work.
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