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Decision field theory is a stochastic dynamic model of decision-making based on psychological prin- 

ciples of approach-avoidance behavior. This paper provides a summary of the main mathematical 

derivations for the distribution of choice response times obtained from binary choice tasks, and the 

distribution of matched values obtained from a matching task. The relations of decision field theory to 

a number of other theories of decision-making are also pointed out. 
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1. Introduction 

Decision field theory is a dynamic stochastic model of decision-making based on 

psychological principles of approach-avoidance behavior; similar principles were 

originally described by Lewin (1935), Hull (1938), Miller (1944), Indow (1958), 

Bower (1959), Estes (1960), Atkinson and Birch (1970) and, most recently, Coombs 

and Avrunin (1977). In three previous articles, we described applications of the 

theory to approach-avoidance behavior (Townsend and Busemeyer, 1989), choice 

between risky and uncertain courses of action (Busemeyer and Townsend, 1989), 

and matching judgments (Busemeyer and Goldstein, in press). One unique feature 

of this model is that it provides a unified theoretical treatment of a wide range of 

measures of preference including approach-avoidance movements, choice prob- 

ability, choice response time, selling prices, buying prices, indifference judgments, 

and strength of preference ratings. 
Our theory differs from most mathematical approaches to decision-making by be- 

ing dynamic rather than static. The theory’s dynamics emerge naturally from 

psychological aspects of the underlying process theory (Townsend and Busemeyer, 
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1989). The same may be said for the stochastic characteristics which follow from 

associating reasonable probabilistic notions with the foundational deterministic dif- 

ference and differential equations (Busemeyer and Townsend, 1989; Busemeyer and 

Goldstein, in press). We also see a merging of theoretical concepts normally iden- 

tified with other areas of psychology, such as memory search, psychological 

discrimination, and reaction time, with those from the choice and decision 

literature. The reader is referred to Link and Heath (1975), Ratcliff (1978), 

Townsend and Ashby (1983), and Lute (1986) for more background on those other 

spheres of discourse. 

The purpose of this paper is not to present a broad overview of decision field 

theory and the approach-avoidance principles upon which it is based; instead, our 

purpose is to provide a fairly complete and detailed mathematical development of 

an important but much more limited part of this general theory. More specifically, 

we derive equations for choice probability and the distribution of choice response 

times obtained from the stochastic choice model that forms the nucleus of decision 

field theory. In addition, we derive equations for the distribution of matched values 

obtained from a stochastic matching model that is essential for linking choice to 

many other measures of preference strength (e.g. cash difference judgments). We 

conclude this paper by showing how a number of other models of choice are related 

to decision field theory, including von Neumann and Morgenstern’s (1947) expected 

utility model, Tversky’s (1969) additive difference model, Thurstone’s (1959) ran- 

dom utility model, and Ratcliff’s (1978) resonance model. The first half of the paper 

describes a discrete time, discrete state Markov chain approach to modeling choice, 

and the second half describes a continuous time, continuous state diffusion ap- 

proach. 

2. Discrete time and space Markov chain model 

2.1. Basic assumptions 

Suppose that the decision-maker is given a choice between two courses of action, 

where each course of action is defined by a set of possible consequences conditioned 

on events. For concreteness, suppose the choice is made on a computer by moving 

an index finger from a center button to either a left or a right button. Figure 1 pro- 

vides an illustration of the proposed decision process. 

The presentation of the choice stimulus evokes two processes-an excitatory and 

an inhibitory process. The excitatory process is represented by a variable, P, called 

the preference state, which represents the decision-maker’s tendency to move 

toward each alternative.’ Negative values of P represent a tendency to move 

’ The notation used in this paper was chosen to be consistent with the notation used in previous 

papers on decision field theory. We thank A. Diederich, R. Heath, and P. Smith for comments. 
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toward the left button, and positive values of P represent a tendency to move toward 

the right button. Immediately after the onset of the choice display, an initial state 

of preference is evoked, denoted by P(0) =z. This preference state changes and 

evolves as the decision-maker deliberates over the various possible consequences 

produced by each course of action, producing a new preference state at each mo- 

ment in time, denoted P(f). 

The inhibitory process produces a tendency that opposes action. In general, the 

strength of the inhibitory process may gradually weaken or decay during delibera- 

tion as a function of factors such as the cost of waiting (see, for example, Busemeyer 

and Rapoport, 1988). However, for the purpose of this paper, we will assume the 

deliberation period is relatively short so that such cost factors are relatively con- 

stant, and so the strength of the inhibitory process remains constant during the 

deliberation period. The strength of this constant inhibitory tendency, represented 

by the magnitude, 19, is called the inhibitory bound (i.e. a response threshold). The 

left alternative is chosen as soon as P(t)5 -0 and the right alternative is chosen as 

soon as P(t) I +8. No physical movement takes place until the magnitude of the 

preference state overcomes the inhibitory bound, i.e. until 1PI ~6. 

Preference is assumed to change by very small amounts during small time inter- 

vals, producing a gradual drift in preference over time. The symbol h > 0 will denote 

a very small time interval. The change in preference during the time interval h is 

denoted dP(t) = P(f)- P(t-h). More specifically, dP(t) may be a very small 

positive step equal to +d = +@I. fi, or a very small negative step equal to -d = 

-C#J . fi. The parameter d is called the step size, and the parameter I$~ is called the 

diffusion rate for the finite state and time model. A continuous state and time model 

with infinitesimal time intervals and step sizes (described later), is obtained by let- 

ting the finite time interval, h, approach zero in the limit. Two basic assumptions 

are made about the transition probabilities: 
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Assumption 1: Time homogeneous, Markov transition probabilities. First, we 

assume that the following Markov property holds: 

Pr[dP(t)=-d IP(t-h)=x, P(t-2/z)=_),,...] 

=Pr[dP(t)= -d 1 P(t-h)=x] =p(x), 

Pr[dP(t)=+d j P(t-h)=x, P(t-2h)=y,...] 

=Pr[dP(t)=+d 1 P(t-h)=x] =q(x), 

where p and q are functions that map the previous state of preference, P(t - h) =x, 

into the closed interval [O, l] and p(x) + q(x) = 1. 

We could allow T(X) =p(x) + q(x) < 1, or in other words we could allow steps of 

size zero without causing complications in the derivations that follow. However, this 

adds an additional parameter, i.e. the probability of the zero step, which we wish 

to avoid. 

The transition probability functions p(x) and q(x) are spatially non-homogeneous 

since they depend on the state x. This deviates from previous choice models which 

assume transition densities that are independent of the state (Laming, 1968; Link 

and Heath, 1975; Ratcliff, 1978). Fortunately, this added flexibility comes at little 

cost in terms of number of parameters or complexity of the analyses. 

The transition probability functionsp(x) and q(x) are time homogenous since they 

do not depend on the time index. While it is possible to develop time non- 

homogeneous models (see Heath, 1992; Smith, 1990), this additional flexibility does 

increase the complexity of the analyses. In some (but not all) applications, this addi- 

tional complexity may be required. However, even in the latter case, it is possible 

to use transition probabilities that are time homogeneous within large time intervals 

(Diederich, 1991). 

The finite drift rate, denoted p(x), and the finite diffusion rate, denoted g2, can 

be derived from the first and second raw moments of dP(t), conditioned on the 

previous state of preference, as follows: 

p(x)=E[dP(t) 1 P(t-h)=x]/h=[q(x)-p(x)].d/h, 

~$~=E[dp(t)~ 1 P(t-h)=x]/h= [q(x)+p(x)] .d2/h. 

Although not exhibited in p(x) and Q2 themselves, the finite drift and diffusion 

rates are also clearly functions of the finite time unit h, which is assumed to be a 

fixed constant. Its value is chosen a priori to be as close to zero as needed to make 

the discrete time Markov chain model approximate the continuous time, continuous 

state diffusion process as accurately as desired. 

The transition probabilities p(x) and q(x) can be written as functions of the finite 

drift and diffusion rates by solving for p(x) and q(x) in terms of the parameters 

(p(x), @‘, h) in the above two equations:2 

2 Occasionally we will substitute pX for p(x). The former is more compact, which is useful in complex 

expressions. The latter is useful for emphasizing that the mean drift rate is a function of the position. 

However, they have equivalent meanings SO that ,U(,=,U(X). 
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P(X) = [I- (Lf,/@) * fil4 

4(x) = [I+ (P,/@). fiw. 

(14 

(lb) 

The above equations require that the following inequalities are satisfied in order to 

contain 0 <p(x) and q(x) I 1: 

-1/fi+f,/f$)5+l/fi. 

Assumption 2: Linear Growth Model. The second basic assumption is that the drift 

rate is linearly related to the current state of preference:3 

,Lf(x)=d-s.x. (2a) 

The parameter d is called the mean difference in valence. It represents the mean in- 

put in valence that drives the preference system over time. The parameter s is called 

the growth rate parameter. It determines the rate of growth toward an equilibrium 

point when the mean input is non-zero, and it represents the rate of decay toward 

zero (the neutral or rest point) when the mean input is zero (absent). 

One special case of (2a) is called the proportional change growth model. It is ob- 

tained by assuming that d=s. d* for some value d*. In this case, p(x) =s. (d*-x). 

Another special case of (2a) is called the positive linear growth model. It is ob- 

tained by assuming that s< (d/B) so that p(x) > 0 whenever d> 0 for -8~x~ +8. 

Assumptions 1 and 2 together imply the following stochastic linear difference 

equation model for changes in preference: 

dP(t+h)= [d-s. E’(t)]. h+&(t), (2b) 

where e(t) is a noise process with the following mean and variance: 

E[e(t) 1 P(t)=x]/h=E[dP(t+h) 1 Z’(t)=x]/h-E[d-s.P(t) 1 P(t)=x] 

=(d--s~x)-(d--s~x)=0, 

v[~(t)IP(t)=x]/h=V[dP(t+h)-(d-s.P(t)).hIP(t)=x]/h 

= V[dP(t+h)-(6s.x). h 1 P(t)=x]/h. 

3 More general models of growth are possible. For example, a quadratic growth model can be used: 

p(x)=d+b.x-c.x*. 

The well-known logistic growth function, p(x) =x. [b-c. x], is a special case of the quadratic growth 

model (set d = 0), and so is the linear growth model (set b = --s and c = 0). Fortunately, it is relatively 

simple to develop the desired equations for choice probability and choice response time for any mean 

drift rate P(X) which is a function of the position x. Thus, it is not necessary to commit to a particular 

growth function at this stage. Quadratic and linear growth models can be directly compared by chi- 

square difference tests. However, the linear growth model will receive special attention for two reasons: 

one is parsimony and the second is the close relation produced by this model and previous stochastic 

models of choice such as Thurstone’s (1959) choice model and Ratcliff’s (1978) diffusion model. 
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Note that the term (d-s. x). h is a constant (since x is a fixed number and not a 

random variable), and therefore this term has no effect on the variance in the above 

expression. This allows us to write 

I/[&(t) 1 P(t)=x]/h= V[dP(t+h) 1 P(t)=x]/h 

=E[dP(t)2 1 P(t)=x]/h-E[dP(t) 1 P(t)=x12/h 

=@‘-pu,‘. h. 

At this point the stochastic linear difference equation model has six parameters: 

s= growth rate, d= mean difference in valence, Q2 = diffusion rate, 19= the in- 

hibitory bound, z= starting state, and h = the time unit. However, the time unit, h, 
is not estimated from the data. Rather, it is chosen a priori to be as close to zero 

as required to achieve an accurate approximation to the ‘ideal’ continuous time pro- 

cess. This leaves only the five free parameters to be estimated from the data, which 

is the same number of parameters as used in, for example, Ratcliff’s (1978) diffu- 

sion model (including the drift rate variance parameter used in Ratcliff’S model). 

2.2. Choice probability 

We begin by defining the set of preference states, denoted Q, for the Markov 

chain. To determine the total number of states, the inhibitory bound, 0, is 

expressed4 in terms of the step size, d, as 0 = k. d. In other words, the threshold 

for making a movement is k steps of size d away from the neutral state P=O. The 

preference state, P, is an element of a state space, 0, containing a total of 

m=2. k+l states: 

1 2 k+l m-l m 

Q={-kd,-kd+d ,..., -d,O,+d ,..., +kd-d,+kA}. 

For convenience, the m states in Q can be indexed si, i = 1, . . . , m. The upper and 

lower bounds can be identified as states st and s,, where m is determined from B 

as follows: 

m=2.(8/A)+l. 

The initial starting position, P(0) = 2, can be identified as state sj, where j is deter- 

mined from z as follows: 

j=(Z+e)/o +i. 

The probability of choosing the alternative on the right, given that the starting state 

is sj, equals the probability that the preference state reaches the upper bound, state 

s,, before reaching the lower bound, state sl. This probability is known to be 

4 This does, however, restrict the possible values of B to integer multiples of A. The initial starting 

position is also restricted to integer multiples of A. 
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equal to the following expression (see Bhattacharya and Waymire, 1990, p. 234): 

Pr [choose right] = S(j - l)/S(m - 1); (3) 

S(k)= C@;, i-l,2 )...) k; 

e,=r,.r2.r3+..r, (r,=l); 

r;=p(-kd + (i- l)d)/q(-kd + (i- l)Ll), i> 1; 

and p(x) and q(x) are defined in (la) and (lb). 

Note that Pr[choose right] is an increasing function of the starting position, z 

(holding all other parameters constant). This is clear from the fact that increasing 

z only increases the numerator of (3). 

In appendix A, we show that if the initial preference state is unbiased (Z = 0), and 

p(x)>0 for every x in Q, then increasing the inhibitory bound by a step of 

magnitude d increases Pr [choose right] (holding all other parameters constant). For 

example, if we assume that p(x) satisfies the conditions for the positive linear 

growth model, and that d> 0 and z = 0, then Pr [choose right] is an increasing func- 

tion of the magnitude of the inhibitory bound, 8. 

Also in appendix A we show that a decrease in the ratio p(x)/q(x) for any given 

x in 52 causes an increase in Pr [choose right] (holding all other parameters constant). 

For example, if we assume that p(x) satisfies the conditions for the positive linear 

growth model, then Pr[choose right] is an increasing function of the mean dif- 

ference, d; and when d> 0, Pr [choose right] is a decreasing function of diffusion 

rate, Q2. 

2.3. Distribution of choice response times 

The transition probabilities, p(x) and q(x), can be collected together to form an 

m x m tridiagonal transition matrix, denoted T, with elements ~j, i = 1, . . . , rn, and 

j=l , . . . , m, as follows. For the first and last row we set T,, = T,,,, = 1, otherwise 

zero. For all remaining rows, Ti=O, and 

f-p(-/CA + (i- 1)Ll) if j-i=-1, 

7;,= 1 l-p(-kl+(i-l)d)-q(-kl+(i-1)d) ifj-i=O, 

Iq(-kd+(i-l)LI) ifj-i=+l. 

The probability functions p(x) and q(x) were defined earlier in (la) and (1 b) in terms 

of the mean drift rate, p(x), and the diffusion rate, c#*. 
The transition matrix T can be partitioned into five submatrices (see Appendix 

B): the top row, denoted A’, contains the absorbing state for the left response; the 

bottom row, denoted B’, contains the absorbing state for the right response; the 

rows 2 through m - 1 in the first column, denoted R,, contain the transition prob- 

abilities from each transient state to the left absorbing state; rows 2 through (m - 1) 
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in the last column, denoted R,, contain the transition probabilities from each 

transient state to the right absorbing state; and finally the (m - 2) x (m - 2) transient 

state matrix, denoted Q, formed by rows 2 through (m - 1) and columns 2 through 

(m - l), contains the transition probabilities from one transient state to another 

transient state. 

The initial starting distribution, represented by Z’, is a 1 x (m - 2) row vector con- 

taining the initial probability distribution over the transient states. This distribution 

may be defined by a single parameter probability mass function such as the binomial 

distribution. However, if we assume a specific fixed starting position, P(0) = z, then 

all of the distribution in Z is concentrated on state sj, where j = (z + 0)/d + 1, cor- 

responding to the initial preference state P(0) = z. 

At this point we can make use of standard Markov chain theory (see Cox and 

Miller, 1965, ch. 3; Karlin and Taylor, 1981, ch. 10; Bhattacharya and Waymire, 

1990, ch. 3) to derive the desired equations for choice probability and choice 

response time. 

The probability of choosing alternative X (X= 1 for left, X=2 for right) after 

deliberating for a time interval t = (n + 1) + h equals 

Pr [choose X at time t] =Z’Q”R,. (44 

This matrix computation can be greatly simplified by spectral analytic methods. It 

is well known (e.g. see Problem 5, p. 174, in Horn and Johnson, 1990) that the 

tridiagonal transition matrix Q is similar to a symmetric tridiagonal matrix (i.e. 

there exists a real valued matrix D such that DQD-’ =S, where S is a symmetrical 

tridiagonal matrix). This fact guarantees that Q has m - 2 linearly independent 

eigenvectors and m - 2 real eigenvalues (Searle, 1982, ch. 11; Horn and Johnson, 

1990). Furthermore, by the Frobenius-Perron theorem (Cox and Miller, 1965, ch. 3; 

Karlin and Taylor, 1975, appendix; Bhattacharya and Waymire, 1990, ch. 3), all of 

the eigenvalues in Q are less than one in magnitude. Finally, efficient programs exist 

for finding the eigenvalues of tridiagonal symmetric matrices. Therefore, we factor 

Q as follows: 

Q= PAP-‘, 

where P is the matrix of linear independent eigenvectors, and n is the diagonal 

matrix of real valued eigenvalues less than one in magnitude for the matrix Q. This 

allows us to write (4a) for t = (n + 1) f h as 

Pr [choose X at time t] = (Z’P)A”(P-‘Rx), 

= C U;’ Wj.(~i)“, i=l,..., m-2, (4b) 

where wi is the ith coordinate of the row vector Z’P, ui is the ith coordinate of the 

column vector Pp’Rx, and lj is the i th diagonal element of the diagonal matrix A. 

Equation (4b) is computationally efficient for large matrices. 

The probability of choosing alternative X (X= 1 for left, 2 for right) is obtained 



J. R. Busemeyer, J. T. Townsend / Decision field theory 263 

by summing over discrete time in (4a) to yield: 

Pr[choose X]=Z’ c Q” Rx, n=0,1,2 ,..., 03, 
I 1 n 

=Z’[I- Q]-‘Rx, (54 

where Z is an identity matrix. If we define T as the random deliberation time, then 

the pth moment for the distribution of times to choose alternative X is obtained 

from (4a) by 

E[TP ) choose Xl = 
hp. z’[ c, np. Q”-‘IR, 

Pr[choose Xl ’ 
n=l,...,oo. (5b) 

In particular, the mean time equals 

E[TI choose X] = 
h . Z’[Z- Q]-2RX 

Pr[choose X] 

The second moment equals 

E[T2 ) choose X] = 
h2+Z’[2. (Z-Q)m3-(Z-Q)-2]R, 

Pr [choose X] 

(See Pike, 1966, for further discussion of the moment generating function for 

Markov chain models.) 

In summary, choice probability and the entire distribution of choice response 

times can be computed quite easily on a personal computer using a matrix language 

such as, for example, GAUSS, MATLAB, MATHEMATICA, or SAS IML. For 

the linear growth model, only five parameters need to be estimated from the data 

(s, d, @, z, k). These five parameters are used to define the state space, initial distribu- 

tion, and transition probabilities of the Markov chain, which are then used to com- 

pute the distribution of choice response times. The time constant, h, is chosen to 

be as close to zero as needed to approximate a continuous time process. This value 

determines the dimension, m, of the transition matrix, which will be limited by the 

memory of the computer used to perform the calculations. 

2.4. Indifference responses 

In some experiments, subjects are allowed to express indifference rather than 

make a definite preference for one of the two alternative courses of action. Thus 

the decision-maker is asked to choose one from three options: prefer left, prefer 

right, or indifferent. 

A simple model’ for choice with indifference is to assume that an indifference 

5 A more complex model would assume that an indifference response could occur from any state x 

in Q with probability w(x). The probabilities would be maximum for states in the neighborhood of the 

neutral state, and they would decrease as a function of distance from the neutral state. Fortunately, this 
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response may occur with a small probability, denoted W, each time the preference 

state passes through the neutral state P=O. Thus, it may be very unlikely that an 

indifference response will be made the first time that the preference state passes 

through the neutral point, but as the frequency of passing through the neutral state 

increases during deliberation, the likelihood of making an indifference response ac- 

cumulates. If the preference state lingers around the neutral point for a long period 

of time, then the probability of an indifference response will be quite high. 

More specifically, we attach an additional state, denoted I, to the original state 

space LJ for binary choice to produce a modified state space: 

!S2*={-kLl-kLl+Ll,..., -d,O,+d ,..., +k&Ll,+~Ll}U{Z}. 

A new (m + 1) x (m + 1) transition matrix, T*, is formed from the original m x m 

transition matrix T as follows. The first m rows and the first m columns of the new 

matrix T* are identical to the original matrix T, except for row (k+ 1) of T, cor- 

responding to the neutral preference state P= 0, which is multiplied by (1 - w). The 

last row of T* contains all zeros except for the last element corresponding to the 

new absorbing state, I, which is set to T$ + ,j,c,n + ,) = 1. The last column of T* con- 

tains all zeros except for the last row which is set to 1 .O, and row (k + 1) correspond- 

ing to the neutral state which is set to T$+ ,j,o,l+ ,) = W. 

The new transition matrix, T*, can be partitioned into seven submatrices. The top 

row, labeled A’, contains the absorbing state for choosing the left response; the 

second to last row, labeled B’, contains the absorbing state for choosing the right 

response; the last row, labeled C’, contains the absorbing state for the indifference 

response; rows 2 through m - 1 in the first column, denoted R,, contain the transi- 

tion probabilities from the transient states to the absorbing state for the left 

response; rows 2 through m - 1 in the second to the last column, denoted R2, con- 

tain the transition probabilities from the transient states to the absorbing state for 

the right response; rows 2 through m - 1 in the last column, denoted R3, contain 

the transition probabilities from the transient states to the absorbing state for the 

indifference response; and, finally, the matrix formed by rows 2 through m - 1 and 

columns 2 through m - 1, denoted Q *, contains the modified transition probabilities 

.from one transient state to another. 
The probability of choosing alternative X (X= 1 for left, 2 for right, 3 for indif- 

ferent) at time t for this indifference choice model is now given by (4a) except that 

the original transient state matrix, Q, used in (4a), is replaced by the modified transi- 

tion matrix, Q*. After making this same substitution in (5a) and (5b), one can also 

use these same equations to compute the choice probability and the moments for 

choosing each alternative in the choice with indifference problem. For example, the 

choice probabilities for the three responses are given by 

mire complex model remains mathematically tractable. The transient state matrix Q* in (6) is obtained 

by multiplying each row of Q by [I - w(x)]; and we change the row vector, RJ, in (6~) so that the ele- 

ment corresponding to state x has an exit probability equal to w(x). Everything else in (6) remains the 

same. However, this generalization introduces additional new parameters, which we wish to avoid. 
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Pr[choose left] =Z’[Z- Q*]-‘Z?r , (64 

Pr [choose right] = Z’[Z- Q*]-‘R2, (6b) 

Pr[choose indiff]=Z’[Z-Q*]-‘Z?,. (6~) 

In summary, the choice response probabilities and choice response times for the 

choice with indifference problem can be computed from the linear growth model 

after estimating six parameters from the data {s, d, @, k, z, w}. The first five are iden- 

tical to the parameters used in the binary choice model, and only one new parameter 

is needed for the indifference choice model. 

2.5. Distribution of matched values 

Suppose the decision-maker is presented with two alternatives, and he or she is 

asked to adjust the value of one dimension for one alternative until he or she is indif- 

ferent between the two alternatives. More specifically, suppose subjects are asked 

to state the cash difference between two alternatives by adjusting the money to be 

added or subtracted from the right alternative to make the subject indifferent be- 

tween the left and right alternatives. The variable that is adjusted is denoted D, 
standing for the dial that is used to communicate the adjustments. The upper and 

lower bounds of the dial are CZDZ 6. These boundaries can be fixed by the ex- 

perimenter. 

We hypothesize that subjects perform a series of tests of dial values, and the dial 

value for the nth test is denoted D(n). The dial remains fixed throughout a test 

period, during which a choice process is engaged. One of three events occurs during 

the choice process: a preference response favoring the left alternative may result, 

causing another test to be conducted using a new dial value that has been increased 

by an amount 6; a preference response for the right alternative may result, causing 

another test to be conducted using a new dial value that has been decreased by an 

amount 6; or an indifference response may result, causing the test process to stop, 

and the current dial value is reported as the matched value. 

This matching process, D(n), is a Markov chain process with transition pro- 

babilities 

Pr[D(n+ l)=y-6 1 D(n)=y] =Pr[choose right / D(n)=y] =u(y), 

Pr[D(n + 1) =y + 6 1 D(n) =y] = Pr [choose left 1 D(n) =y] = u(y). 

The probability of stopping the test process and reporting D(n)=y as the final 

matched value equals i(y) = 1 - u(y) - u(y). 

For b<y<c, the probabilities u(y) and u(y) can be obtained from the indif- 

ference choice model as follows. Suppose the dial value is fixed at D(n) =y during 

the nth test. This will affect the mean difference in valence, d, in the linear growth 

model (2a) because the dial value determines the amount of money added to or sub- 

tracted from the right alternative. Therefore the mean difference in valence is a 
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function of the dial value, y. Then the probability of an increase, given that 

D(n) =y, u(y), equals the right-hand side of (6a), with Q* and R, functions of the 

dial valuey. Similarly, the probability of a decrease given that D(n) =y, u(y), equals 

the right-hand side of (6b) with Q* and R, functions of the dial value y. At the 

boundaries, we assume that u(c) = 1 and u(b) = 1 (reflecting boundaries). 

The state space for the dial values is defined in terms of the following two sets, 

with each set containing J=(c- b)/6+ 1 states: 

F= lb*,@+&*, . . . . (b+j.d)*, . . . . (c-d)*,c*}, 

G={b,(b+d) ,..., (b+j.6) ,..., (c-a),~}. 

The first set, F, is a set of absorbing states representing all of the possible final 

matched values. In particular, state (b +j. 6)* refers to the case where the subject 

stops and reports a final matched value equal to (b +j. 6). The second set, G, is a 

set of transient states representing all of the possible dial values that can occur 

during testing but prior to reporting the final matched value. In particular, (b +j. 6) 

refers to the case where the subject tests the dial value (b +j. 6) but does not report 

this value. The complete state space, containing 2. J elements, is the union of these 

two sets, {FUG}. 

The state transition probabilities u(y), u(y), and i(y) can be collected together to 

form a canonical transition matrix M defined below: 

v w 
M= I 1 0 I. 

The JxJ transient state matrix V is defined as follows (see Appendix C): 

ru(b+(j-I).&) if (k-j)=-1, 

l$k= 4 o(b+(j--1).6) if (k-j)=+l, 

(0 otherwise. 

The Jx J submatrix W is a diagonal matrix: 

W=diag[O, . . . . i(b+(j-1).6),...,0]. 

Finally, 0 is a JxJ matrix of zeros, and I is a JxJ identity matrix. 

The probability distribution over the state space {FUG} after n tests can be 

represented by a 1 x 2. J row vector denoted Y(n). This probability vector can be 

partitioned into two parts, Ye(n), representing the distribution over the J transient 

states, and YF(n), representing the distribution over the final absorbing states. Y(0) 

represents the initial probability distribution, before testing begins (n = 0), and it is 

assumed that the decision-maker does not start in an absorbing state so that 

YF(0) = 0. The probability distribution after n tests is given by the product 
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Y(n) = Y(O)M". 

= YdO)V” I YG(o)(;g; vj) w], L = [Y,(O)V" 1 Y,(O)(Z- v)-‘(Z- V”)W]. 

As n goes to infinity, we have V” = 0, and (7a) converges to the following asymp- 

totic distribution over the reported matched values: 

YF= Y,(O)[Z- VI-’ IV. (7b) 

In summary, for the matching task, three parameters can be fixed by the ex- 

perimenter: b= the lower bound of the dial, c= the upper bound of the dial, and 

D(0) = the initial dial setting. The distribution of final matched values for the mat- 

ching task can be predicted from the linear growth model using only seven 

parameters that must be estimated from the data, {s, d, @, k, Z, W, S}. The first five 

are identical to those used in the binary choice model, the sixth is the same as that 

used in the indifference choice model, and the last, 6, is the only new parameter, 

which represents the step size for the matching continuum in the matching task. 

2.6. Model parameters ., 

Consider an experiment which uses both a binary choice task (with an indifference 

response option included) and a selling price task for N choice stimuli. In a selling 

price task, subjects are asked to state the smallest amount of money for which they 

would be willing to sell a gamble to the experimenter. Suppose we estimate the 

N. (N- 1) choice probabilities plus the 3. N. (N- 1)/2 conditional mean choice 

response times from the choice task, and the N mean prices plus the N variances 

of the prices from the selling price task. This yields a total of N(5N-1)/2 data 

points. 

For the linear growth model, four parameters may be estimated for each pair of 

stimuli: growth rate, s; mean difference in valence, d, diffusion rate, Q2; and the 

initial preference state, P(0) = z. This produces a total of 2N(N- 1) parameters for 

N stimuli. The number of steps from the neutral point to the threshold, k, is as- 

sumed to be constant across stimuli within a given task, but it may vary across tasks, 

producing two additional parameters. Finally, the indifference response probability, 

W, and the matching step size, 6, produce two more parameters. Altogether there 

are a total of 2N(N- 1) + 4 parameters. 

The difference between the number of data points and the number of parameters 

equals N(N+ 3)/2 - 4 degrees of freedom. Thus, the model is testable with only 

N= 2 stimuli since 2(2 + 3)/2 - 4 = 1. Additional tests of the model are possible by 

including higher moments such as the variance of the response times or by fitting 

the entire response time and matching distributions. 
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3. Continuous time and space diffusion model 

Now we will assume that the preference state evolves continuously over time pro- 

ducing a continuous trajectory, P(t). The state space is defined on the real interval 

[-Q, -to], and the time index set equals the non-negative reals. 

The continuous-diffusion model is obtained from the discrete Markov chain 

model by letting the time unit, h, of the discrete time model approach zero in the 

limit (see Cox and Miller, 1965, pp. 213-215; Karlin and Taylor, 1981, pp. 168-169; 

Bhattacharya and Waymire, 1990, pp. 386-388). Although it is not explicitly shown, 

the mean drift rate, p(x), and the diffusion rate, Q2, are both functions of the 

finite time interval, h, for the discrete time model. Now we shall assume that the 

following limits exist: 

lim p(x) = lim E[dP(t) 1 P(t) =x]/h, 
h-0 h-0 

(84 

lim @‘=ii;E[dP(f)” 1 P(t)=x]/h. 
h-0 + 

W) 

The first limit gives the infinitesimal drift rate, and second gives the infinitesimal 

diffusion rate. Hereafter, p(x) and Q2 will denote the inifinitesimal drift and diffu- 

sion rates, respectively. 

When we let h 4 0, then equation (2b) becomes a stochastic differential equation 

called the Ornstein-Uhlenbeck (OU) process. It has infinitesimal drift rate 

p(x) =d-s. x, and s(t) is a Wiener process with a mean of zero and variance G2. 

The close connection between the discrete Markov chain model and the continuous 

diffusion model is further developed in Appendix D. 

The OU process was originally developed by physicists (Uhlenbeck and Ornstein, 

1930), but more recently it has been applied to neurobiology (Ricciardi, 1977; 

Tuckwell, 1989) as well as reaction time research (Diederich, 1991; Smith, 1990, 

although Smith allowed for time dependent decision bounds) and risky decision- 

making (Busemeyer and Townsend, 1989). Here we will develop diffusion models 

of binary choice for two different types of decision tasks: an unspecified delibera- 

tion time task, and a specified deliberation time task. 

3.1. Unspecified deliberation time model 

In this subsection we return to the typical binary choice problem in which the 

deliberation time to reach a decision is a random variable determined by the time 

required for the magnitude of the preference state to exceed the inhibitory bound, 

8, at which point a response is made. The right alternative is chosen as soon as 

P(f)? +I!?, and the left alternative is chosen as soon as P(t) 5 -8. 

Define u(t,d as the probability density that the upper bound is reached for the 

first time at time t and that neither bound was reached before time t, given that the 

process started at state P(0) =z. As noted in Cox and Miller (1965, p. 230), u(Q) 



J.R. Busemeyer, J. T. Townsend / Decision field theory 269 

satisfies the backward equation (9): 

(&&V)=(1/2). $02. (a*u/az2)+~(z)~ (au/az). (9) 

The solution to the backward equation (9) for the first passage time problem can 

be obtained by the separation of variables method (see Karlin and Taylor, 1981, 

p. 330). Suppose u(t,Z) = u(t)w(z). This solution is possible if we can find functions 

u(t) and w(t) that satisfy the pair of ordinary differential equations 

dv/dt = -A. v, 

pUr. (dw/dZ) + (l/2). @*. (d2w/dZ2) = -,I. w, 

where w satisfies the boundary conditions imposed by U, w(+O> = ~(-0) = 0, for the 

finite boundary 8< 03. 

This problem is a special case of the well known Sturm-Liouville problem (Boyce 

and DePrima, 1986, ch. 11). It is known that there exists a series of real valued 

eigenvalues, Ai<Ai+,, that increase toward positive infinity, and a series of real 

valued eigenfunctions, w,(Z), which solve the above pair of ordinary differential 

equations so that the general solution can be expressed as a series solution: 

U(t,Z)= C Ui’W;(Z).exp(-A;.t), i=l,2 ,..., CQ. (10) 
i 

The coefficients vi are chosen to satisfy the initial conditions for u at time t =O, 

u(O,z)=6(+B-z), where 6 is the Dirac delta function. 

The spectral analytic solution to the backward equation (10) resembles the spec- 

tral analytic solution for the discrete time model (4b). Both solutions are described 

by a weighted sum of eigenvalues. The main difficulty with (10) is the problem of 

finding the infinite series of eigenvalues and eigenfunctions that satisfy the initial 

conditions. This is why the discrete time Markov chain model is very practical 

because highly efficient programs are available which solve for the eigenvalues and 

eigenvectors of finite but large tridiagonal symmetric matrices. Furthermore, the 

solution from the discrete time model converges to the continuous time model, so 

that the continuous model can be approximated as closely as desired by the discrete 

model. 

An alternative approach for obtaining the binary choice probabilities, and the 

moments of the deliberation time, is to use Laplace transform methods. The follow- 

ing is based on methods outlined by Cox and Miller (1965, ch. 5) and Karlin and 

Taylor (1981, ch. 15, pp. 191-204). First we need to provide some definitions. The 

joint probability that the stopping time is less than t and that the left alternative is 

chosen, given that the starting position is at P(O)=z, is defined here as 

F(t, z) = Pr [(T< t) & choose left 1 P(0) = z]. 

The joint density for this distribution is defined as 

(a/aVo, Z) =f(t, 2). 
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G(t,z)=Pr[(T<t) & choose right 1 P(O)=z], 

(aA)t)G(t, z) = g(t, z). 
Finally, 

H(t, z) = Pr [T< t 1 P(0) = z] = F(t, z) + G(t, z), 

h(f, z) =f(C z) + g(t, z). 

Hereafter we will focus on the derivation of the raw moments of the joint density, 

g. The derivation of the raw moments for the joint density f follows the same line 
of 

In 

reasoning. The nth raw moment for g is defined as 

‘co 
m(n, z) = 

\ 
tn. g(t, z)dt. 

LO 

particular, the raw moments that we desire are 

m(0, z) = Pr [choose right 1 P(0) = z], 

m(n,z)/m(O,z)=E[T” 1 choose right, P(O)=z], n>O. 

The moment generating function for g is defined as 

c 

cc 

g*(y,z)= exp(-y . t) . g(t, z)dt. 
%O 

Recall the power series representation for exp(x): 

exp(x)= Cx”/n! for n=O,...,cx,. 

Substituting this into g* yields the series representation for g*: 

g”(y,z)= c (-yn)/n!.m(n,z), n=O )..., 03. 

Thus, the raw moments of the stopping time distribution are obtained from g* by 

m(0, z) = g*(O, z), and m(n, z) = -(J”/@“)g*(y, z), evaluated at y = 0, for n > 0. 

Now we will derive these raw moments from the backward equation of the OU 

process. Following Cox and Miller (1965, pp. 230-231), the Laplace transform of 

the backward equation implies that g* satisfies the ordinary linear second-order dif- 

ferential equation shown below (for -0~ z,< +fI): 

((1/2).~2)(a2/az2)g*(y,Z)+(d-s.Z).(a/aZ)g*(y,Z)=y.g*(y.Z). (11) 

Note that g* also satisfies the following two boundary conditions: 

g*(y, -19)=0, since g(t, -13)=0, 

g*(y,+B)= 1, since m(0, +8)= 1 and m(n,+8)=0, n>O. 

Substituting the series representation for g* into (11) yields 
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((l/2)= f#?)(aVaz2) 
[ 

c (-y”)/n ! . m(n,z) 
I 

+ (d-s* 2) * (a/&) 
i 
c (-y”)/n ! * m(n,z) 1 

=y. [ C(-y”)/n! .m(n,z) 1 (12) 

Equating coefficients of powers of y, yields a recursive series of equations: 

(( l/2) . @2)(a2/az2)m(0, z) + (d - s . z) * (d/c3z)m(O, z) = 0. (134 

((l/2)* ~2)(a*/az2)m(n,z)+ (d-s. z). (a/az)m(n,z) 

=-n.m(n-l,z), n>O, (13b) 

with boundary conditions 

m(O,-8)=0, m(O,+Q=l, m(n,-8)=0, m(n,+@=O. 

Standard methods can be used to solve the differential equations (13a) and (13b). 

However, it is not necessary to do so here because the solutions to (13a) and (13b) 

can be obtained from Karlin and Taylor (1981, pp. 193-197) by setting their cost 

functional equal to our moment function, i.e. set g(z) = n. m(n - 1, z) in their equa- 

tion C. The solutions for m(O,z) and m(l,z) are: 

NO, z) = Pr [choose right 1 P(0) = Z] = S(Z)/S(~), 

m(l, zVMO, Z) = E [T 1 choose right, P(0) = z] 

=2* {“‘@,z). T,(z)+ [l -m(O,z)] . T,(z)}/w@,~), 

‘X 

S(x) = L exp[(s. y2-2ed. y)/Q2]dy, 

f(x)=1/{@2Vexp[(s.x2-2.d.x)/@2]}, 

T,(z)= 81s(e)-s(x)l ..f-(x). m(O,x). cl-x, 
5 Z 

732(z)= [s(x) - s(-e)] g(x). ~(o,x). du. 

3.2. Specified deliberation time model 

Now we turn to a new type of decision task. Suppose the decision-maker is 

presented with a choice between two alternatives, but (s)he is told to make a commit- 

ment at a specified or agreed-upon point in time, denoted t. Responses made prior 

to the commitment point are ignored, and only the response made at the agreed- 

upon time point has any consequence. In this case, we assume that the magnitude 
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of the inhibitory process is set to an arbitrarily large6 value (~9 = m) during the 

deliberation interval [0, I], and then it is reduced to 8=0 at the end of the interval 

immediately after time t. In this case the preference state continues to evolve in an 

unrestricted manner until the specified time point, t. Immediately after that point 

in time, the right alternative is chosen if P(t)> 0 and the left is chosen if P(t)<O. 

The choice probabilities for each specified time point t can be derived from the 

transition density of the unrestricted diffusion process. Define u(t, z, y) as the pro- 

bability density at the preference state y given that the process evolved for a duration 

t from an initial state P(0) =z. It is well known (see Cox and Miller, 1965, p. 215; 

Karlin and Taylor, 1981, p. 169; and Bhattacharya and Waymire, 1990, p. 388) that 

u(t, z, y) satisfies the Kolmogorov backward equation (9). The transition density for 

the OU process is obtained by solving the backward equation (9) with the initial con- 

dition ~(0, Z, u) = 6( y - Z) (where 6 is the Dirac delta function), and with boundary 

conditions, u(t, t-0, y) = u(t, -0, y) = 0, for t > 0. The solution of the unrestricted OU 

process model is obtained by setting the magnitude of the inhibitory bound to 8 = 00. 

Under this condition the solution for the transition density is the normal density 

function with a mean q(t) and variance u2(t) (Karlin and Taylor, 1981, p.218): 

u(t, z, y) = [27r. d(t)] -(In). ew-(1/2). [(~-rlWMt)l~}, (14) 

v(t)=exp(-3. t).z+[l-exp(-s. t)] .(d/.s), 

o2(t)=(Q2/2.s). [l-exp(-2.s. t)]. 

Finally, the probability of choosing the right alternative when given a fixed delibera- 

tion time t equals 

Pr[choose right 1 t] =F[q(t)/u(t)], (15) 

where F is the standard cumulative normal distribution function. The ratio 

r(t) = do/u(t) 

is called the discriminability index. As the deliberation time approaches infinity, r(t) 

approaches r = (d/Q). (fi/fi). For z = P(0) = 0, 

r(t)=(d/@). {(2/s). [l -exp(-s. t)]/[l +exp(-s. t)]}(1’2). (16) 

4. Discussion 

We conclude this paper by showing the relation of the decision field theory to 

several other models of decision-making. Busemeyer and Townsend (1989) give a 

longer and more detailed discussion of these relations. Here we wish to summarize 

’ The matrix methods developed for the discrete state, discrete time model are not useful for this 

specified deliberation time task because the matrices must be finite dimensional and we wish to use ar- 

bitrarily large boundaries for this task. 
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these relations more formally and concisely. For simplicity, we will focus on the 

equation giving the choice probability as a function of a specified deliberation time 

(15). 

4.1. Expected utility model 

Define X, as a random variable representing the amount of money to be won or 

lost if gamble i is chosen. Define U(X) as an increasing function of x, and U;= 

E[u(X,)] is the expected value of the random variable u(X;), i.e. the expected utili- 

ty of the gamble X,. Suppose a decision-maker is presented with two gambles, one 

displayed on the left and the other displayed on the right. According to the classic 

expected utility hypothesis, the decision-maker always chooses the gamble with the 

larger expected utility. If d*= Ua - Ut_ is the difference between the expected 

utilities of the gambles on the right and left, then the gamble on the right is chosen 

if d*> 0 and the gamble on the left is chosen if d *< 0. 
The expected utility model is an example of a deterministic and static model. 

Nevertheless, it can be obtained as a special case of decision field theory as follows. 

First, we set p(x) =.s. (d*-x), i.e. we use the proportional change growth model. 

Second, we set d * = r/k - UL, the difference in expected utility. Third, we allow the 

diffusion rate, Q2, to approach zero. As @’ approaches zero, the function Fin (15) 

approaches a step function-the probability of choosing the gamble on the right ap- 

proaches zero or one depending on whether the sign of q(t) is positive or negative, 

respectively. Letting the diffusion rate approach zero reduces all variability in the 

evolution of preference, which results in a deterministic dynamic model. Fourth, we 

allow the growth rate, s, to approach infinity. As s goes to infinity, q(t) approaches 

a constant (independent of time) equal to d*= U, - U,. Letting the growth rate 

approach infinity eliminates all of the dynamics to produce instantaneous choice. 

This highly constrained version of decision field theory satisfies all of the ‘rational’ 

axioms of expected utility theory (von Neumann and Morgenstern, 1947). 

Of course, this ‘ideal’ model fails to describe the two most basic features of 

human decision making, namely that choice is probabilistic and that decisions take 

time. If we consider expected utility theory as a rational theory of decision-making, 

then decision field theory provides a way to parameterize and measure devisions 

from an ‘ideal’ decision-maker. 

4.2. Additive difference model 

According to Tversky’s (1969) additive difference model, when given a choice be- 

tween two n-dimensional choice alternatives, the probability of choosing the right 

alternative over the left is defined as 

Pr[choose right]=F C 6i , i=l,..., n, 
I 1 
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where 6i is the advantage or disadvantage for the right over the left alternative con- 

tributed by the ith dimension, and F is an increasing function that maps C 6; into 

the closed interval [0, 11. 

A special case of the additive difference model can be obtained from decision field 

theory as follows. First, we set p(x)=s. (d*-x), with d*= C 6i. Second, we allow 

s to approach infinity so that q(t) approaches d *. Finally, we set the diffusion rate, 

Q2, equal to a fixed constant across all pairs of alternatives. Like the additive dif- 

ference model, this version of decision field theory can produce violations of weak 

stochastic transitivity. 

The additive difference model is more general than this special case of the 

specified deliberation time model because the function F for the additive difference 

model is only required to be monotonic. No process theory was postulated for the 

additive difference model, and consequently there is no reason for choosing one in- 

creasing function over another. For decision field theory, F must be set equal to the 

standard cumulative normal distribution function (see equation (15)). This is a 

logical consequence of assuming a stochastic linear differential equation model of 

choice (2). We would have to change our basic assumptions regarding the dynamics 

in order to derive an alternative choice probability function. 

Considering the dynamic aspects, decision field theory is more general than the 

additive difference model, since the latter is static. Decision field theory is able to 

describe how the probability of choosing one alternative over another changes as a 

function of deliberation time. For example, suppose a customer is given a choice 

between a very familiar standard product (the status quo alternative) and a brand 

new product. At short deliberation times, the probability of choosing the status quo 

may exceed that for the brand new product, if the initial state of preference is biased 

toward the status quo. At longer deliberation times this probability may reverse if 

the new product is superior, so that the mean difference in valence favors the new 

product. Goldstein and Busemeyer (in press) provide a detailed discussion of an em- 

pirical example where choice probabilities changed from below to above (l/2) as a 

function of deliberation time. 

4.3. Thurstone choice models 

The general Thurstone choice model is obtained as a special case of (15) by setting 

(a) the mean difference in valence, d, equal to the difference between the means of 

the two alternatives, d = U, - r/,, and (b) fixing the deliberation time, t, to be a 

constant. Like the Thurstone model, this version of the decision field model satisfies 

moderate stochastic transitivity (Halff, 1976). 

The Thurstone model is static-the mean and variance are fixed across time; deci- 

sion field theory is dynamic-the mean and variance both evolve as a function of 

deliberation time. This is a significant extension because it is possible to estimate 

the model parameters from an entire choice probability-deliberation time curve for 

a single choice pair (see, for example, Reed, 1973). This permits us to test the model 
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without making any assumptions or without placing any constraints on the four 

parameters: the mean difference, d; the variance of the differences, Q2; the growth 

rate, s; and the initial starting position, z. In particular, it is not necessary to assume 

that the diffusion rate (or what is usually referred to as the variance of the dif- 

ferences, or the discriminal dispersion) is constant across pairs as in Case V of the 

Thurstone model, nor is it necessary to assume that the correlations are zero or con- 

stant across pairs. 

4.4. Resonance theory 

Ratcliff’s (1978) diffusion model can be obtained as a special case of the present 

theory by setting the growth rate equal to zero, s=O. In this case the OU process 

reduces to the Wiener process. One important reason for choosing the OU process 

over the Wiener process is the following. According to the Wiener process, the ratio 

r(t) = E [P(t)]/im grows without bound as a square root function of delibera- 

tion time, and consequently the choice probability-deliberation time curve asymp- 

totes at 1.0. According to the OU process, the ratio r(t) grows toward a finite 

equilibrium point, and consistent with empirical studies (Reed, 1973), the asymp- 

totic choice probability can be below 1.0. 

In order to account for the fact that choice probabilities (plotted as a function 

of deliberation time) normally asymptote below 1 .O, Ratcliff (1978) was required to 

add an additional assumption: the drift rate, pX=p (constant across state), varies 

from trial to trial, and this variance is large enough to ensure that the sign of the 

drift actually changes from trial to trial. This additional assumption is not needed 

by decision field theory to account for the asymptotic nature of the choice probabili- 

ty-deliberation time curve. A simple way to test the two theories is to construct a 

hybrid model that contains both variance in the drift rate and a non-zero growth 

rate, and then test two special cases using a chi-squared difference test: one special 

case with the drift variance set to zero, and another with the growth rate set to zero. 

Such tests would indicate whether either or both parameters are needed to achieve 

a statistically satisfactory fit to the data. 

Detailed fits of decision field theory to choice probabilities, mean response times, 

and mean selling prices have been presented elsewhere (Busemeyer and Townsend, 

1989; Busemeyer and Goldstein, in press). We will not go into those details here, 

but we should point out that the model is capable of providing very accurate fits 

using a relatively small number of parameters. More important, the model provides 

simple explanations for various patterns of results that seem paradoxical from a 

deterministic-static point of view, e.g. reversals of preference (Busemeyer and 

Goldstein, in press). 
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Appendix A 

Proposition 1. Assume that the initial preference state is unbiased (z=O), and 
p(x)>0 for every x in Q. Then according to (3), Pr[choose right] increases when 
the inhibitory bound 8 is increased by a step of magnitude A (holding aI1 other 
parameters constant). 

Proof. The odds of choosing the right alternative relative to the left alternative, 

given that the criterion is set equal to 8, is defined as 

R(B) = 
Pr[choose right 1 191 

1 - Pr[choose right 1 61 ’ 

We need to show that R(8)< R(0+ A). According to (3): 

R(6) = 
l+@n+Qs+“‘+@j-1 

Qj+@,+l+"'+L?m-I ’ 
where 

m=2.(8/A)+l, 

j = (m + 1)/2 (since z = 0 by assumption foi this proposition), 

Qi=1.r2*r3**.ri, i>l, 

ri=p(-kA+(i-l)A)/q(-kA+(i-l)A), i>l, 

and p(x) and q(x) are defined in (la) and (lb). 

Increasing the inhibitory bound by A adds two new states to the state space, 

thereby producing a new state space with a total of m +2 states indicated as 

{ST, . . ..s.+~}, where si * is the new lower bound, si+* is the new upper bound 

state, and s,T+i is the new initial starting position with (j + 1) = (m + 3)/2. In terms 

of this expanded state space, it follows from (3) that 

R(B+A)= 
1 +&J;+e;+ ... +$ 

e,*,, +e,?+,+ *..+e;+, ’ 

Q~=l.rz*.r~...r~, i>l, 

rT=p(-(k+l)A+(i-l)A)/q(-(k+l)A+(i-l)A), i>l, 

and again p(x) and q(x) are defined by (la) and (1 b). 
Note that 

rj* =rj_l for i=3,4 ,..., m, 

e” = (r,*)@i-I for i=3,4 ,..., m, 

R(B+A)= 
1+(1+@2+@3+...+@j~l)r2* 

(@j+@j+l+ ...+e,-l)r2*+r2*em-1r,Tj+, 
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Denoting S(k) = 1 + e2 + e3 + ... + ek, then 

R(e) S(j- 1) r2*[S(m-l)-S(j-l)]+rz*em-,r~+, 

R(o+d)=rTS(j-l)+l ’ S(m-l)-S(j-1) ’ 

$S(j-l)[S(m-l)-S(j-l)]+r,*Q,_,rz+,S(j-1) 

=rz*S(j-l)[S(m-l)-S(j-l)]+[S(m-l)-S(j-l)]’ 

Note that R(O)/R(B+d)< 1 if and only if 

Note that each term on the left-hand side of the inequality is matched by a cor- 

responding term on the right-hand side. By assumption, fi(x)>O, and this implies 

that ri< 1 and rT< 1 for i> 1, which implies that each term on the left-hand side of 

the inequality is smaller than the corresponding term on the right-hand side. There- 

fore the left-hand side of the inequality is less than the right-hand side. From this 

we can conclude that R(B)/R(ti+d)< 1, which implies that R(B) < R(O+ A). 

Proposition 2. Decreasing the ratio r(x) =p(x)/q(x) for any given x in Q increases 
Pr [choose right] (holding all other parameters constant). 

Proof. According to (3), the odds ratio of choosing the right alternative over the 

left alternative is equal to 

R= 
Pr [choose right] l+@2+@3+‘*.+@i_* 

1-Pr[choose right] = ej+ej+l+ ... +@,-I 
where 

m=2.(e/A)+l, 

j=(z+e)/o +l, 

~~=l.r~.r~...r;, i>l, (*) 

r;=p(-kl +(i-l)d)/q(-kd +(i-l)A), i> 1, 

and p(x) and q(x) are defined in (la) and (lb). 

Define R* as the new odds obtained by replacing one ratio, say r,,, with a. rj, in 

(*), with O< a< 1. All of the remaining ratios remain unchanged. We need to show 

that R<R*. 
First consider the case where i*< j. Replacing ri* with a. ri*, we have 

R*=(l+e2+ . ..+e.*-,)+a.(@,*+...+@j~1) 

a.(ej+ej+I+..~+e,pl) 

For the first case, the ratio of ratios equals 
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R CX~(~+Q~+ ‘.‘+@i*_1)+a’(@i*+‘.‘+@j~,) 
-_= <l. 
R* l.(l+~~+ ‘..+@i*_1)+a’(@i*+“.+@j_,) 

Next consider the case where i*rj. Replacing ri* with a= r,,, we have 

R*= 
l+@2+&+...+@j-1 

(@j+ ‘.‘+@i*_1)+a’(@i*+@i*+,+.‘.+@,~1)’ 

For the second case, the ratio of ratios equals 

R l * (@j+ “‘+@i*_l)+a’(@j*+‘..+@,_,) 
-_= <l. 
R* l*(@j+ “‘+ei*~I)+l’(ej*+.“+@,-I) 

In both cases, we have R/R*< 1, which implies R < R*. 

Appendix B: Transition matrix for the choice process 

1 

1 2 3 4 ... k 

1 0 0 0 0 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

P2 ;r2 q2 0 0 2 

3 0 i p3 r3 q3 ... 0 

T= 4 
0 : 0 p4 r4 -f* 0 

k;l 0; ()...()... 
Pkil 

m-l o;o 0 0 

m L 

0 0 . . . 0 ; 0 

0 0 . . . 0 ; 0 

rk+l qk+l ..’ 0 ; o 

0 0 ~~-1 rm-l i qm-l 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . :. . . . . . . . 

0 0 0 0 0 0 0 0 

. . . . 

Appendix C: Transient state matrix for the matching process 

1 

2 

3 

y= ; 

k 

J-l 0 000 0 0 0 UJ-I 0 vJ&I 

J ‘0 0 0 0 0 0 0 0 uJ 0 

1 2 3 4 . ..k-1 k k-t1 . . . J-l J 
0 u1 0 0 . . . 0 0 

u2 0 v2 0 . . . 0 0 
0 u3 0 v3 . . . 0 0 

0 0 0 0 uk 0 vk 0 

1 

0 
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Appendix D 

A close connection between the Markov chain and the diffusion models is 

developed by deriving a partial difference equation analogue to the Kolmogorov 

backward equation. Convergence theorems exist (see Bhattacharya and Waymire, 

1990, ch. 5, theorem 4.1; Karlin and Taylor, 1981, p. 169, expressions 1.24 and 1.25) 

which state that the Markov chain process converges in distribution to a diffusion 

process after letting the time unit, h, of the discrete time model approach zero 

(however, this proof will not be reproduced here). 

Recall that for the discrete time model, P(t) represents the preference state at time 

t, h is the time unit, A = 0. fi is the step size, and 

q(x) = Pr [dP(t) = +A ( P(t - h) =x1, 

p(x) = Pr [dP(t) = -A 1 P(t - h) =x] = 1 - q(x), 

are the single step transition probabilities. 

The derivation of the partial difference equation can be simplified by defining the 

following difference operators for a function U(t,x): 

D,U(t,x)= U(t+h,x)- U(t,x), 

D,U(t,x) = U(t,x+ A) - U(t,x), 

D,2U(t,x)=D,U(t,x)-DJJ(t,x-A), 

&U(t,x)=[D,U(t,x)+D,U(t,x-A)]/2. 

If we assume that U is a continuous function and that the first- and second-order 

partial derivatives exist, then 

lim D,U(t,x)/h=dU(t,x)/at, 
h-0 

lim D,U(t, x)/A = aU(t,x)Bx, 
A-0 

lim 0: U(t,x)/A2 = a2 U(t,x)/ax2, 
A-O 

lim D,U(t,x)/A =dU(t,x)/ax. 
A-O 

The close connection between the Markov chain model and the diffusion model 

is first explored by considering the first passage time distribution to one of the boun- 

daries. Consider the Markov chain model for the binary choice problem with a fixed 

finite inhibitory bound, B< 03. Define U(t, z) as the probability that the right alter- 

native is chosen at time t = (n + 1). h, given P(0) = z: 

U(t, z) = Pr [choose right at time t 1 P(0) = z] 

= Z’QnR2, 
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where Z, Q, and R2 are defined as in (4a). This definition of U(t,z) satisfies 

U(t + h, z) = (Z’Q)Q”R, = q(z) . U(t, z + A) +p(z) . u(t, z - A). 

Subtracting U(t, z) from both sides and noting that p(z) + q(z) = 1 yields 

U(t+h*z)- U(Gz) =q(z)U(~,z+A) +p(z)U(t,z-A) - [q(z)+p(z)] . U(&z). 

Using difference operator notation, the above expression can be written as 

D,U(~,z)=q(z)*D,U(t,z)-P(z)~D,U(t,z-A). 

According to (la) and (lb) we can write q(z) and p(z) in terms of the finite drift rate, 

P(Z), and finite diffusion rate, @2, to obtain: 

D, U(& z) = (l/2) . [ 1+ (&/@> . I/ttlD, r/Cl, z) 

-(l/Q. [1-(~,/~).1/-lo~u(t,z-d). 

After some algebraic rearrangement of the above expression, we obtain: 

D, U(& z) = (112). Dz’ .!I(& z) + (l/2) * (/If,/@). pi. [II, u(t, z) 

+QU(t,z-d)l. 

Dividing both sides by h = A2/G2 yields 

D,U(t,~)/h=(l/2).@~. D;U(t,z)/A2+p(z). [D,U(t,z)/2A 

+D,U(t,z-A)/2A]. 

Substituting the definition for o,U(t,z) in the last term, we finally obtain the 

following discrete partial difference equation analogue to the Kolmogorov 

backward equation (9): 

(D,U/h)=(1/2)~@2(D;U/A2)+~(z)(D,U/A). (*) 

The solution of the partial difference equation (*) for the first passage time pro- 

bability must satisfy the initial conditions U(0, +d) = 1 and U(O,z) = 0 for z< +8, 

and boundary conditions U(t, +t3) = U(t, -0) = 0, t> 0. 

The close connection between the discrete model and the continuous model can 

also be explored by considering the n step transition probabilities for the discrete 

model (where n=t/h). The probability that the preference state equals y at time 

t = (n . h), given that the process started from an initial position P(0) = z, is defined 

as 

U(t,z,y)=Pr[P(t)=y(P(O)=z]. 

According to the Chapman-Kolmogorov equation for the time homogeneous pro- 

cess, we have for -B<z<+B, 

U(t+h,z,y)=Z’Q”+‘Ry, 

where Z and Q are defined as in (4a), and RY is an (m - 2) column vector with zeros 
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in all elements except the element corresponding to state y, which equals 1.0. This 

definition of U satisfies 

For a fixed y, U is a function of t and z, and if we repeat exactly the same arguments 

that we used before, we find that this definition of U also satisfies the partial dif- 

ference equation (*). The solution of the partial difference equation (*) for the 

transition probabilities must satisfy the initial condition U(0, y, y) = 1 and 

U(O,z,,y) = 0, and boundary conditions U(t, +0,y) = U(f, -0,~) =0 for -B<y< +8, 

t>o. 
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