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ABSTRACT

A rational principle of decision making called dynamic consistency was tested by pre-
senting decision makers with a sequence of two gambles. The first gamble was obliga-
tory. Before playing the first gamble, participants were asked to make a planned choice as
to whether they would take the second gamble. After experiencing the actual results of
the first gamble, decision makers were asked to make a final choice regarding the second
gamble. Dynamic consistency requires agreement between the planned and final choices.
Violations of dynamic consistency were observed, e.g. anticipating a gain in the first
gamble, decision makers planned to take the second gamble; after experiencing the gain,
they changed their minds and rejected the second gamble. Two models of dynamic
inconsistency were compared. One assumes that experience shifts the reference point
and changes the utility associated with the gamble; another assumes that experience
changes the subjective probability associated with the gamble. The reference point model
provided the best account for the findings. Copyright © 2003 John Wiley & Sons, Ltd.

KEY WORDS dynamic consistency; preference reversal; reference point; isolation-
integration

Most real-life decisions require decision makers to plan for an uncertain future before they decide how to act
in the present. For example, a student must plan for a future job when deciding what courses to take now
while she is in college. As another example, a senior manager must plan ahead for future markets when
deciding what products the company should begin developing now. The generally prescribed procedure
for planning a path for future action entails backward induction (cf. von Winterfeldt & Edwards, 1986;
Keeney & Raiffa, 1976; Raiffa, 1968). This procedure requires the decision maker (DM) to attach utilities
and probabilities to future outcomes, compute the expected utility of the different paths, and choose the path
that maximizes expected utility. One of the central assumptions of backward induction is a principle called
dynamic consistency (Sarin & Wakker, 1998; Machina, 1989).
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Dynamic consistency is the bridge that connects decision analysis with actual choices. According to this
principle, the preferences upon which a plan is built are stable, and should persist, while carrying out the
steps of the plan. Thus, the DM is expected to execute the plan to the letter and to follow the planned path of
action. Violation of dynamic consistency would mean that actual experience of anticipated outcomes elicits a
change in the utilities of these outcomes and in the related preferences of the DM. If this were the case, then
the prescriptive value of backward induction as a planning tool and decision aid would be markedly
decreased.

AN EMPIRICAL TEST OF DYNAMIC CONSISTENCY

Barkan and Busemeyer (1999) demonstrated a violation of dynamic consistency utilizing a sequential gam-
bling paradigm (originally developed by Tversky & Shafir, 1992). Barkan and Busemeyer (1999) presented
DMs with two-stage decision problems consisting of two sequential gambles (see Figure 1). The first gamble
was obligatory, and the DMs could either win or lose points with equal probability. Before playing the first
gamble, the DMs had to make a plan as to whether or not they would accept a second identical gamble.
Planned choices for the second gamble were made contingent on each possible outcome (gain and loss)
of the first gamble. After playing the first gamble and actually experiencing the outcome, DMs made a sec-
ond final choice regarding the second gamble.

Barkan and Busemeyer (1999) found that in 20% of the trials, the DMs’ final choices were inconsistent
with their planned choices. Moreover, these changes of plan were systematic in their direction, and depended
on the experienced outcome. One direction of inconsistency showed a tendency towards risk aversion after
experiencing a gain. That is, when considering winning the first gamble, a DM made a planned choice to take
the second gamble. However, after actually experiencing the anticipated gain, the same DM reversed his or
her initial decision and chose not to take the second gamble. Inconsistency also showed a second direction of
a tendency towards risk seeking after experiencing loss. That is, when considering losing the first gamble, a
DM made a planned choice not to take the second gamble. However, after experiencing the anticipated loss,
that same DM reversed his/her decision and made a final choice to take the second gamble.

Gain

Accept a second gamble

O —
D ] Loss

Reject a second gamble

Gain

Reject a second gamble

—D_ Gain
Loss
O_

Accept a second gamble
Loss

Figure 1. A decision tree representing the sequential gambling paradigm. Each gamble is represented as a chance event
(with a circle). Two decision nodes (squares) represent the choice between accepting and rejecting the second gamble
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R. Barkan and J. R. Busemeyer Modeling Dynamic Inconsistency 237
THREE ALTERNATIVE EXPLANATIONS FOR DYNAMIC INCONSISTENCY

Barkan and Busemeyer (1999) considered three alternative explanations for the findings of dynamic incon-
sistency. One explanation is that dynamic inconsistency simply reflects choice inconsistency—which is ran-
dom fluctuations in preferences for the same gamble presented twice. However, they proved that according to
choice inconsistency, both experienced outcomes (gain or loss) should lead to equal frequencies of risk aver-
sion and risk-seeking inconsistencies. Thus, choice inconsistency (alone) cannot explain the pattern of sys-
tematic directions of inconsistency and their dependence on the specific experienced outcome.

A second explanation follows Tversky and Shafir’s (1992) analysis of the disjunction effect. This violation
of the sure-thing principle was demonstrated in a sequential gambling paradigm. When DMs imagined either
a gain of $200 or a loss of $100 in a first gamble, they were willing to accept a second identical gamble.
However, when they imagined the outcome of the first gamble was unknown, they rejected the second gam-
ble. Tversky and Shafir (1992) suggested that the violation of the sure-thing principle resulted from different
evaluations of the second gamble. Imagining either a gain or a loss, evaluations were made by incorporating
the imagined outcome from the first gamble. In the face of an unknown outcome, the evaluation was made
without incorporating any information from the first gamble. The different evaluations result in different
utilities and thus lead to different preferences.

Extending Tversky and Shafir’s argument to the dynamic situation at hand suggests that DMs incorporate
the outcome of the first gamble in the final evaluation of the second gamble but not in the planned evaluation.
We assume that instead of considering the second gamble against the possible outcomes of the first gamble,
the DM considers the second gamble against his or her current position. The planned evaluation is made
against a current position of zero (since nothing has yet been won or lost). The final evaluation is made against
a different position corresponding to an actual gain in the first gamble or to an actual loss in the first gamble.

This explanation suggests that that the reference point used to evaluate the second gamble during the
planned stage is different from the reference point used for the evaluation of the second gamble in the final
stage. To be specific consider Figure 2. Define X as the monetary value of one of the possible payoffs (win
$200 or lose $100) of the second gamble; define 1,1,,(X) as the utility function used to evaluate the payoffs of
the second gamble in the planned stage; define u,,in(X) as the utility function used to evaluate the payoffs of
the second gamble in the final stage after an actual experience of a gain of $200; and define u;,.(X) as the
utility function used to evaluate the payoffs of the second gamble in the final stage after an actual experience
of loss of $100. The reference point refers to the value of X that is assigned zero utility by a utility function,
and this is also the point of inflection on the Prospect Theory utility function.

For the planned choice, we naturally assume the current position is zero and thus, upan(X) = u(X). The
reference point for this evaluation is also zero because up,,(0) = u(0) = 0. If the first stage yields a gain of
$200, then the ‘current’ position shifts up. The payoff X from the second gamble is added to the experienced
gain and is defined now as uy,i,(X) = u(200 4- X). Note that the utility function, ug.;n, is shifted to the left. The
reference point for this gain-based evaluation is — 200 since ugyin( — 200) = u(200 4- ( —200)) = u(0) =0.
The upward shift in the ‘current’ position results in a shift of the reference point down. If the first stage yields
a loss of $100, then the ‘current’ position shifts down. The payoff X from the second gamble is added to the
experienced loss and is defined now as u)455(X) = u(— 100 4 X). The utility function, ujcs;, is shifted to the right.
The reference point for this loss-based evaluation is 100 since u#;,s5(100) = u(—100 + 100) = u(0) = 0. Here
the downward shift in the ‘current’ position results in a shift of the reference point up.

In short, when planning, the DM evaluates the second gamble against a neutral reference point. Experi-
encing a gain in the first gamble moves the reference point down, so that the payoffs for the second stage
gamble lie in the concave or risk averse part of the utility function. When making the final choice, the DM re-
evaluates the second gamble against the new reference point. The re-evaluation would cause the same gam-
ble to appear less attractive than it did previously and may lead the DM to reject it. Experiencing a loss in the
first gamble moves the reference point up, so that the payoffs of the second stage gamble lie more in the
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Figure 2. A schematic representation of the change in the reference point. Uplan is the utility function used during the

planning stage. The reference point for the planned evaluation is located at the inflection of the function. A gain shifts the

current position upwards. The utility function, Ugain, is shifted to the left, and the reference point is shifted downward. A

loss shifts the current position down. The utility function Uloss is shifted to the right, and the reference point is shifted
upward

convex or risk seeking part of the utility function. Re-evaluating the second gamble against the new reference
point would make it seem more attractive than before and could lead the DM to accept it.

The change in the reference point resembles the isolation—integration effect (Kahneman & Tversky, 1979).
That is, though decision makers are requested explicitly to consider the possible outcomes of the first gamble
and make a plan for possible gain and for possible loss, they are unable to do so. Instead, during planning
they evaluate the utility of the second gamble in isolation. After experiencing the first gamble, its outcome is
incorporated into the reference point. Thus, only when re-evaluating the utility of the second gamble after
experience do the decision makers integrate the prior outcome with the future gain or loss. There are two
main differences between the reference-point explanation and the isolation—integration effect. First, the iso-
lation—integration effect refers to static decisions whereas the reference-point explanation refers to a
dynamic situation of repeated choices. Second and more importantly, the isolation—integration effect refers
to the phrasing of the decision problem (i.e. phrasing the same problem in different ways may lead to dif-
ferent preferences). The reference-point explanation refers to a situation in which the phrasing is constant
and the preference reversal is caused by actual experience.

A third explanation is based on changes in subjective probability rather than in the utility associated with
the second gamble. According to this explanation, experience triggers a change in the subjective probability
in a way resembling the gambler’s fallacy. When planning, the DM considers the stated probabilities for
winning and losing the second gamble. However, experiencing a gain in the first gamble, would lead to a
decrease in the subjective probability associated with another gain (in the second gamble). Re-evaluating the
second gamble with decreased subjective probability for winning would make the same gamble appear less

Copyright © 2003 John Wiley & Sons, Ltd. Journal of Behavioral Decision Making, 16: 235-255 (2003)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



R. Barkan and J. R. Busemeyer Modeling Dynamic Inconsistency 239

attractive than before and could lead the DM to reject it. The opposite would happen after experiencing a
loss, since the subjective probability for another loss (in the second gamble) would decrease, and the sub-
jective probability for a gain would increase. Re-evaluation of the second gamble would make it seem more
attractive than before and could lead the DM to accept it.!

Both the reference-point explanation and the subjective probability explanation can qualitatively produce
the systematic directions of dynamic inconsistency observed across subjects. However, a more meaningful
comparison would involve modeling the two explanations at the individual level. Such a comparison requires
estimates of each DM’s utility function and subjective probabilities. Barkan and Busemeyer (1999) argued in
favor of the changing reference point model over the changing subjective probability model. However, the
design of their initial study did not provide sufficient leverage to rigorously compare these two explanations
at the individual level. Their initial demonstration included four basic decision problems and did not permit a
reliable assessment of the individual utility functions. Thus, the cause of the systematic directions of incon-
sistency remains to be determined more convincingly.

EXPERIMENT

The experiment reported below tested the reference-point explanation. This explanation was compared to the
two other alternative explanations suggested by Barkan and Busemeyer (1999). As discussed above, the
choice-inconsistency explanation cannot qualitatively produce the systematic directions of dynamic incon-
sistency. However, this explanation serves as a baseline that should be exceeded by the reference-point
explanation. To support the reference-point explanation, it should also exceed a viable candidate. The
subjective-probability explanation can qualitatively produce the systematic directions of dynamic inconsis-
tency, and allows a more strict comparison. To test the reference-point hypothesis rigorously, we extended
the design of the Barkan and Busemeyer (1999) study to include a wider range of decision problems. Further-
more, the present design permits examination of the three alternative explanations at the individual level of
analysis. The experiment reported below utilized the sequential gambling paradigm (see Figure 1) with a
broad set of 16 decision problems. Each decision problem consisted of two identical gambles. Each gamble
gave 50% chances to win or lose points. The first gamble in each decision problem was obligatory. DMs
were asked to decide whether or not they would take the second gamble. They made a planned decision
before the first gamble took place and a final decision after experiencing the outcome of the first gamble.

The expected values of the gambles ranged from —10 points to 50 points in steps of 10, that later were
translated into real money (each point equaled 1 cent). Each expected value (EV) was represented with at
least two decision problems.> For example, for EV =20 one decision problem consisted of two identical
gambles, each offering a 50% chance to win 140 points or lose 100 points. A second decision problem
for the same EV gave a 50% chance to win 200 points or lose 160 points. The outcome of the first gamble
in each decision problem was controlled. The first gamble was won in half the decision problems and lost in
the other half. The order of 16 gambles was counterbalanced and replicated twice. Table 1 presents the entire
set of the decision problems (including a practice decision problem) and the order of appearance.

'Beyond the demonstration of the gambler’s fallacy, we do not know of any research that has studied how subjective probabilities change
with experience. This explanation is suggested as it can qualitatively explain the systematic directions of dynamic inconsistency.
The design tried to avoid a situation where DMs might lose money in the experiment. Thus, we avoided highly negative EV decision
problems. Instead the design balanced low EV decision problems (including negative EV) and high EV decision problems. Nine of the
16 decision problems involved low EV that ranged between —10 points and 10 points. The other 7 decision problems involved high EV
that ranged between 20 points and 50 points. In order to assess individual utility functions, we used a range of seven gain values
(80 points to 200 points in steps of 20) and a range of seven loss values (—100 points to —220 points in steps of 20). Presenting equal EV
decision problems with different values also allowed testing the effect of gambles’ variance on DMs’ choices.
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Participants

One hundred students taking an introductory course in psychology at Indiana University participated in the
experiment. They were recruited by advertisements offering monetary reward of $2-20 depending on the
number of points earned in a gambling experiment. They were paid $2 for participating and received an
added bonus based on the points accumulated in four decision problems that were sampled at random from
the entire set. Each point earned in the experiment equaled $0.01, and the average payoff was $12.25.

Procedure

DMs were told that they were participating in a decision-making experiment in which each decision problem
consists of two gambles in a row. They were told that the first gamble in each decision problem would be
obligatory and that they would be asked to make two choices regarding the second gamble. One choice would
be made before the first gamble took place and another choice after completing the first gamble. Participants
were told that one of their two choices would be sampled at random to determine whether the second gamble
would take place or not. Instructions were presented onscreen. For each decision problem, participants were
presented with a sequence of onscreen dialogues. Note that they did not actually see any decision trees such as
the one shown in Figure 1. Instead, all the information was presented textually. Responses were made using
the mouse to choose between possible options (e.g. accepting or rejecting the second gamble). The sequence
of the onscreen dialogues for each decision problem allowed participants to: (a) review the values and prob-
abilities of the two gambles; and (b) make planned choices for the second gamble. One planned choice was
made contingent on winning the first gamble, and another planned choice was made contingent on losing the
first gamble. The plan was worded: ‘If I win the first gamble, I will take/reject the second gamble’ and ‘If I lose
the first gamble, I will take/reject the second gamble’ . The sequence continued to (¢) playing the first gamble
and experiencing its outcome; and was then followed with (d) making a second (final) choice regarding the
second gamble. The final choice was simply worded: ‘I will take/reject the second gamble’. At this point one
of the two choices (planned or final) was sampled at random to determine whether the second gamble would
take place or not. Each decision problem ended with a summary of the points won or lost in that problem. The
first decision problem served as practice to make sure that the participants understood the task. This practice
problem was followed with 32 decision problems.? Four of the 32 decision problems were sampled at random
to determine the final take-home pay for each participant.

RESULTS

Choice proportions

Table 1 presents the overall proportions of planned and final choices to take the second gamble. The first col-
umn indicates the order of appearance of each decision problem. The second column provides the gain and
loss values of the two identical gambles of the decision problem. The next two columns present the EV and the
standard deviation of each gamble. The column titled ‘Planned Acceptance’ indicates the proportions (in per-
centage terms) of planned choices to accept the second gamble under anticipated gain and under anticipated
loss in the first gamble. The average of planned acceptance was 60% for anticipated gain, and 63% for antici-
pated loss. A paired #-test was conducted on the logit transformations of the individual proportions, indicating
the difference was not significant (/{99] = 0.014, p < 0.989). The proportions of planned acceptance are some-
what high. For example, planned acceptance for gambles that have EV of 0 is higher than 50% (between 56%
and 64%). The lack of loss aversion in planned choices may be attributed to the demand characteristic of the
sequential gambling paradigm. Since the first gamble was obligatory, DMs were put in a risky context that

*The findings indicate that there was no significant difference between choices in the practice decision problem and all the other decision
problems. Thus, all 33 decision problems were included in the analysis.
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Table 1. Proportions of Planned and Final choices to accept the second gamble for each decision problem

Planned acceptance Final acceptance
(shown as %) (shown as %)

Order of Gamble Anticipated Anticipated Actual Predicted by
appearance values EV STD gain loss gain ref change
10 200, —220 -10 210 46% 46% 34% 38%

5 180, —200 -10 190 42 47 35 37

2 200, —200 0 200 56 61 51 43

4 120, —100 10 120 68 73 62 52

14 140, —100 20 120 59 64 54 59

15 200, —140 30 170 60 65 53 61

6 200, —120 40 160 74 73 68 68

13 200, —100 50 150 78 79 70 78

Anticipated  Anticipated Actual Predicted
gain loss loss by ref change

16 80, —100 -10 90 32 40 44 50

8 100, —120 -10 110 41 53 63 51

17 100, —100 0 100 64 62 64 60

12 200, —180 10 190 57 56 69 63

3 160, —140 10 200 69 63 69 65

9 200, —160 20 180 64 69 72 68

11 160, —100 30 130 66 64 73 73

7 180, —100 40 140 66 70 80 76

1 200, —100 50 150 85 85 82 69

*The proportions are based on 200 observations for each gamble (except for gamble 1—the practice problem—for which there were
100 observations).

may have encouraged further risk taking. However, the correlations between the EV of the gamble and
planned acceptance show that DMs’ choices took this rational characteristic into account (» = 0.85 for antici-
pated gain, r=0.86 for anticipated loss). The correlations between the gambles’ standard deviations and
planned acceptance were close to zero (r=0.08 for anticipated gain and —0.1 for anticipated loss).*

The column titled ‘Actual Acceptance’ indicates the proportions (in percentage terms) of final choices to
accept the second gamble after experiencing the outcome of the first gamble. The last column of Table 1 indi-
cates the final proportions predicted by the reference-change model and will be discussed later. The upper half
of Table 1 shows the decision problems in which the first gamble was won. Note that when DMs experienced
gain, the probability of final acceptance was always lower than the probability of planned acceptance (average
acceptance was 67%, indicating a decrease of 7%). A paired t-test was conducted on the logit transformations
of individual planned and final acceptance proportions. The analysis indicated that the decrease was significant
(1[99] =4.64, p < 0.001). The lower half of Table 1 shows the decision problems in which the first gamble was
lost. When DMs experienced loss, the probability of final acceptance was higher than the probability of
planned acceptance, except for one case in the practice problem (average acceptance was 57.6%, indicating
an increase of 5.4%). A paired ¢-test was conducted on the logit transformations of individual planned and final
acceptance proportions. The analysis indicated that the increase was significant (1[99] = —4.06, p < 0.000).

“The gambles’ variance did not have an effect at the aggregate level. However, it was also tested at the individual level. Later in this paper
we present a general model for dynamic inconsistency. This model was tested in a few versions with and without the variance of the
gambles (using the same number of parameters). Including the variance improved the model’s fit. In fact, Decision Field Theory (which
is used as one component of the suggested model) uses the variance term to explain robust violations of independence from irrelevant
alternatives (the Myers effect) reported in Busemeyer and Townsend (1993). But this is not the main focus of the paper, and it should not
sidetrack the main point.
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Table 2. Dynamic consistency and dynamic inconsistency—joint proportions of planned and final choices across trials
(given in percentages), average number of cases and standard deviations

Dynamically consistent Dynamically inconsistent
Consistent Consistent Risk-aversion Risk-seeking
acceptance (Ptt)  rejection (Pnn)  reversal (Ptn) reversal (Pnt) Total
Actual gain Percentage 48% 35% 12% 5% 100%
Average no. cases 7.64 5.56 1.98 0.82 16
Std 4.79 4.76 2.05 1.10
Actual loss  Percentage 54% 25% 7% 14% 100%
Average no. cases 9.13 4.40 1.17 2.30 17
Std 4.62 4.26 1.48 2.13

The DMs’ ability to predict these systematic changes in preferences was limited. On average, planned
acceptance under anticipated loss was somewhat higher than planned acceptance under anticipated gain.
As noted earlier, this difference was not significant. Moreover, this difference was not systematic across
all decision problems. On 10 of the 17 decision problems, DMs’ choices predicted they would be more will-
ing to accept the second gamble after losing the first one than after winning it. For the other 7 decision pro-
blems DMs’ choices predicted either the opposite pattern or equal proportions.

Dynamic inconsistency

The choice proportions do not necessarily reflect the individual choice pattern and its consistency. We now
turn to examine the data at the individual level and present the findings regarding dynamic inconsistency. For
each decision problem (i.e. trial) the choices of each DM were recorded as either dynamically consistent or
inconsistent. Choices were recorded as dynamically consistent when planned and final choices were iden-
tical. One consistent case was when both planned and final choices were to take the second gamble (denoted
Ptake-take or Ptt). Another consistent case was when both planned and final choices were to reject the second
gamble (denoted Pnot-not or Pnn). Choices were recorded as dynamically inconsistent when the DM’s
planned choice differed from his/her final choice. Table 2 presents the joint proportions of consistent and
inconsistent cases, as well as the average number of cases in each condition, and the standard deviations.
As can be seen, the overall proportion of dynamically inconsistent choices was 0.19. When the first gamble
was won, the proportion of risk-aversion inconsistencies (planned acceptance and final rejection denoted
Ptake-not or Ptn) was 0.12 (an average of 1.98 reversals). The proportion of the risk-seeking inconsistencies
(planned rejection and final acceptance denoted Pnot-take or Pnt) was only 0.05 (an average of 0.82 rever-
sals). A paired ¢-test was conducted to compare the number of risk-aversion reversals and risk-seeking rever-
sals for each DM, indicating the difference of 1.16 was significant (1{99] =4.84, p < 0.001).

When the first gamble was lost, dynamically inconsistent choices indicated an opposite pattern. The pro-
portion of risk-aversion inconsistencies, Ptn, was 0.07 (an average of 1.17 reversals), and the proportion of
risk-seeking inconsistencies, Pnt, was 0.14 (an average of 2.3 reversals). A paired #-test was conducted to
compare the number of risk-aversion reversals and risk-seeking reversals for each DM, indicating that the
difference of —1.13 was significant (/{99]=—4.20, p<0.001). These findings replicate Barkan and
Busemeyer’s (1999) earlier findings regarding both the overall proportion of dynamically inconsistent trials
and the systematic directions of preference reversals based on the experienced outcome.

MODELING DYNAMIC INCONSISTENCY

The three explanations for dynamic inconsistency are rigorously tested for the first time by formal model
comparisons, performed at the individual level of analysis. First, we present a general model for the
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Table 3. A schematic representation of the general model: Planned and
Final choices and joint choices

Planned choice

Final

choice PG PnotG

FG Pr(PG & FG) Pr(PnotG & FG) Pr(FG)
consistent inconsistent

FnotG Pr(PG & FnotG) Pr(PnotG & FnotG) Pr(FnotG)
inconsistent consistent
Pr(PG) Pr(PnotG)

Note: PG stands for planned choice to accept the second gamble. PnotG stands for
planned choice to reject the second gamble. FG stand for final choice to accept the
second gamble. FnotG stands for final choice to reject the second gamble.

two-stage choices; second, we present a probabilistic model that describes the choice process within each
stage, and third, we incorporate different assumptions into the subjective probabilities and utilities to repre-
sent the three alternative explanations. Then the parameters of all three models are estimated by maximum
likelihood methods separately for each participant’s data; and finally, the models are compared using chi-
square lack of fit statistics.

General model

The general model describes the joint probabilities of the four possible pairs that can be obtained from the
planned and final decisions (see Table 3). The symbol PG denotes the choice ‘Plan to accept the Gamble’,
ProtG denotes ‘Plan to reject the Gamble’ (i.e. plan to reject the gamble and win or lose nothing in the sec-
ond stage). FG denotes ‘Final choice to accept the Gamble’, and FrnotG denotes ‘Final choice to reject the
Gamble’ (i.e. reject the gamble and win or lose nothing in the second stage). The symbols inside the cells
represent the joint probabilities. For example, Pr(PG&FnotG) represents the joint probability of a planned
choice to take the gamble and a final choice to take the certain outcome. The marginal probability of plan-
ning to choose the gamble is symbolized as Pr(PG), and likewise, Pr(FnotG) denotes the marginal probabil-
ity for finally taking the sure thing of no-gain no-loss.

The general model assumes that the final decision can be made by one of two strategies: One is to simply
recall and repeat the planned choice, and the other is to leave the plan aside and make a new independent
choice at the final stage.” The probability of repeating the previous choice is represented by a parameter
denoted m. On the basis of this general model, the joint probabilities are given by

Pr(PG&FG) = Pr(PG) - [m + (1 — m)Pr(FG)) (1a)
Pr(PG&FnotG) = Pr(PG) - (1 — m)Pr(FnotG) (1b)
Pr(PnotG&FG) = Pr(PnotG) - (1 — m)Pr(FG) (1c)

Pr(PnotG&FnotG) = Pr(PnotG) - [m + (1 — m)Pr(FnotG)] (1d)

SLeaving the plan aside can occur when the DM forgets what it was or when the DM makes a deliberate decision to make a new choice.
We do not distinguish between the two cases and model both with the parameter m, which represents the probability of repeating the
planned choice.

Copyright © 2003 John Wiley & Sons, Ltd. Journal of Behavioral Decision Making, 16: 235-255 (2003)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



244 Journal of Behavioral Decision Making

If m=1 (i.e. the DM recalls the previous choice and chooses to repeat it) the final choice would be identical
to the planned choice and there would be no inconsistent cases. If m =0 (i.e. the DM does not recall or aban-
dons the previous choice), the final choice is independent of the plan and possibly inconsistent. When
0 <m< 1 itinduces some dependence, yet allows some degree of inconsistency. In order to predict the joint
probabilities we need to estimate m as well as the marginal probabilities Pr(PG), Pr(FG).°

A simplified version of Decision Field Theory (DFT; Busemeyer & Townsend, 1993) was used to predict
the marginal choice probabilities, Pr(PG), Pr(FG). This version of Decision Field Theory describes the
choice as a process in which a preference evolves to exceed some threshold 6. The preference is determined
by the ratio between the difference between the utility of the gamble and the utility of the alternative certain
outcome (termed the valence difference or d) and the risk involved in the gamble (i.e. the gamble’s variance
o). According to this model the probability of choosing the gamble over a sure thing is given by

Pr(G) = 1/{1 +exp[-2-0-(d/d*)]} (2)

where d = 1 — u(C) is the difference between the subjective expected utility (1) of the gamble and the uti-
lity of the alternative certain outcome (u#(C)). The subjective expected utility of the gamble is defined as,
w=p-u(g)+ (1—p)- u(l), that is, the utilities of the gain and loss, u(g) and u(l), weighted by their sub-
jective probabilities, p and (1 — p). The variance of the gamble, 0> = p - u(g)2 +(1- p)u(l)2 — 2, repre-
sents the risk involved in the gamble—the larger the variance, the riskier the gamble. The parameter, 6,
represents the threshold bound for making a decision, which is an important determinant of decision time
(not measured in the present study).

Baseline model

The Baseline model represents Barkan and Busemeyer’s (1999) first explanation. Recall that according to
this explanation the inconsistencies between planned and final choices reflect mere choice inconsistency that
is due to random fluctuations in preference. The random fluctuations are represented with the parameter m. In
order to make this model a critical contender, we incorporate in it a Prospect Theory-like utility function.
This model uses equation (2) to predict the marginal probabilities Pr(PG) and Pr(FG). It then uses
equation (1) to predict the joint probabilities.

The Baseline model adds the following assumptions to equation (2). First, the gambles’ values (i.e. points)
are transformed to utility units. The utility function of the DM is represented by a two-part power function
(cf. Tversky & Shafir, 1992): the utility of a gain value is u(g) = g%, where « is the exponent for gains; the
utility of a loss value is u(l) = —|I ? ), where [3 is the exponent for losses. In line with Prospect Theory the
two parameters o and 3 allow an asymmetric utility function (Tversky & Kahneman, 1992; Tversky &
Shafir, 1992).7 Second, according to the Baseline model, the planned choice and the final choice differ

®The estimations of Pr(PG), Pr(FG) serve as a basis to predict the joint probabilities which are at the focus of the present study. Thus,
we do not explicitly present the estimates of the marginal probabilities.

"The representation of the utility function follows Tversky and Shafir (1992) and uses different exponents for the gain domain and the
loss domain. Another common representation of the utility function uses only one exponent for both domains and an added loss aversion
parameter A for the utility of the loss domain. According to this representation the utility of a gain is u(g) = g* and the utility of a loss is
u(l) = —A\(—1)" (Benartzi & Thaler, 1995; Tversky & Kahneman, 1991). In addition to the computations reported in this paper, we
computed predictions of the Reference-change model using this representation of the utility. The Reference-change model with one
exponent and loss aversion parameter produced the same qualitative predictions as the Reference-change model with different exponents
for gains and losses. The mean parameters of the utility function under this model were a =0.94, and A = 1.31. The correlation between
this model’s prediction and final acceptance of the second gamble was r = 0.89. The quantitative fits for the individual DMs were slightly
better than those provided by the Reference-change model with two different exponents (the average Chi-square difference was 2.68
1[99] =4.18, p < 0.0001). Interestingly, the advantage of this model was due to extremely good fits for 8 subjects that showed completely
consistent behavior. Since the minor advantage of this model was not derived from better modeling of dynamic inconsistency, it was
declined. Further research is needed to compare the difference between the two definitions of the utility functions.
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due to m (i.e. random fluctuation), but not due to a change in the reference point or in the subjective prob-
abilities. In order to represent the fixed reference point, we assume that choosing the sure thing implies a
certain outcome of zero (i.e. u(C) = 0).2 To represent the lack of change in the subjective probabilities, we
assume that the subjective probabilities coincide with the stated probability (p=0.50 in this case).’

In sum, the Baseline model has four free parameters 6, m, o, /3. Note that according to this model,
Pr(PG&FnotG) = Pr(PnotG&FG) is true for any set of parameter values. That is, the probabilities of dif-
ferent directions of inconsistencies are equal. Thus, this model fails to explain the observed pattern of
dynamic inconsistency. It does, however, provide a baseline that the next two explanations must exceed
to be considered viable alternatives.

Reference-change model

The Reference-change model follows the second explanation. Recall that according to this explanation,
experiencing the outcome of the first gamble changes the utility associated with the second gamble. The
neutral reference point used for the planned choice reflects an isolated evaluation of the utility of the second
gamble. The changed reference point used for the final choice reflects an integrated evaluation of the utility
of the second gamble. For the planned choice, this model uses the same probabilities and utilities as the Base-
line model. The probability of choosing the gamble during the planning stage is exactly the same for the
Reference-change and Baseline models. Using the terms of Kahneman and Tversky (1979), the evaluation
of the utility of the second gamble during planning is made in isolation. For the final choice, the probabilities
also remain the same as the Baseline model (i.e. p=0.50), but now we allow the experienced outcome to
change the reference point of the utility function as follows. Define the experienced outcome of the first
gamble as r. If the first gamble was won, the new reference point would be shifted down (i.e. if >0,
and the utility of the sure thing is u(C) = r®). If the first gamble was lost, the new reference point would
be shifted up (i.e. if <0, and the utility of the sure thing is u(C) = —|r[?). Integrating r to the possible
outcomes of the second gamble also changes its subjective expected utility (). The two redefined outcomes
are g + r and [ + r. If either of these redefined outcomes is positive, its utilities would be determined using «
Ge.ifg+r>0,ulg+r)=(g+r) " ifl+7r>0,u(l+r) = (I+r)").If either of the redefined outcomes
is negative, its utilities would be determined using 3 (i.e. if g + 7 < 0, u(g +r) = —|g + r|’, if I+ r < 0,
u(l+r) = —|1+ r|? (see also footmote 7). Using the terms of Kahneman and Tversky (1979), the re-
evaluation of the utility of the second gamble uses the integrated form of the gamble (contingent on the
experienced outcome).

In sum, this model has the same number of free parameters (4, m, «, 3) as the Baseline model. However,
unlike the Baseline model, this model is forced to predict that P(PG& FnotG) # P(PnotG&FG). This feature
may be an advantage or a disadvantage, depending on whether the predicted differences are in the correct
direction. Thus the Reference-change model may perform better or worse than the Baseline model.

Probability-change model

The Probability-change model follows the third explanation. According to this explanation, experiencing the
outcome of the first gamble changes the subjective probability associated with the second gamble. For
the planned choice, this model uses the same probabilities and utilities as the Baseline and Reference-change

®The neutral reference point used for both the planned and final choice (u(C)=0 in the Baseline model) is consistent with the
assumption that the reference point is always neutral and that its experienced utility is zero.

The non-linear weighting of probabilities suggested by Prospect Theory is not utilized for the present modeling, This element is less
critical in the current setting as all the gambles involve equal probabilities of 0.50. That is the weight 7(0.50) would be constant for all
the gambles. However, nonlinear weighting may be significant in more complex cases, where the probabilities are unequal or extreme.
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models. Note that the probability of choosing the gamble during the planning stage is exactly the same for all
three models. For the final decision, we now allow the subjective probabilities to be affected by the outcome
experienced during the first stage. Following a gain, the subjective probability of winning again is repre-
sented by a free parameter, denoted p. The complementary subjective probability 1 — p is associated with
winning the second gamble after experiencing a loss in the first gamble. According to this model, the utility
of the gain and loss (u(g), u(1)) and the utility of the certain outcome (u(C)=0) are not affected by the
experienced outcome."® Furthermore, to equate the number of free parameters, we use the same exponent for
both parts of the utility function (u(g) = g, and u(l) = —|I|*)."!

In sum, this model has the same number of free parameters (6, m, ¢, and p) as the Baseline and Reference
change models. However, unlike the previous two models, this model may or may not predict that
P(PG&FnotG) = P(PnotG&FG). Note that the specific prediction depends on specific parameter values
for the subjective probabilities. Thus the Probability-change model may perform better or worse than either
the Baseline model or the Reference-change model.

Parameter estimation

An important contribution of the present work is an examination of the three explanations at an individual
level of analysis. This is a new and important technology for decision research that avoids the pitfalls of
evaluating models based on average data. Theories of decision making are stated for individuals, and allow
individual differences in parameters. Averaging across these individual differences can lead to invalid con-
clusions (Coombs et al., 1970).

The four free parameters of each model were estimated separately for each of the 100 participants using
the following procedure. The DM’s joint choices for each decision problem (i.e. trial) were recorded with
four binary valued variables: Xtt,, =1, whenever a DM consistently chose the gamble at both stages of a
trial; Xnny =1, when a DM consistently rejected the gamble at both stages of a trial; Xtn,, =1, when a
DM planned to choose the gamble, but finally rejected the gamble in trial; and Xn#;) = 1, when a DM planned
to reject and finally chose the gamble in a trial. In each trial only one of these variables was recorded as 1
(i.e. the observed pattern), and the other three were recorded as zeros. We ended up with a matrix for each
DM. This matrix X, = [Xtt(, Xnn, Xtng, Xnt,] had 33 rows, each representing the DM’s joint choices in
each decision problem.

Each model’s predictions followed equations (1) and (2) (with the specific parameters described above),
and provided four probabilities for each decision problem. The vector of predicted probabilities P, = [Ptt,,
Pnn,, Ptng, Pntq)] corresponded to the vector of the four observed variables X, = [Xtt), Xnn, Xtn,
Xnt ;). The parameters were selected to come up with a predicted pattern that would be as close as possible

!Note, however, that the expected utility of the gamble is affected by the change in the subjective probability. If the first gamble was
won, the expected utility of the second gamble at the final stage would be 1 = p - u(g) + (1 — p) - u(l). If the first gamble was lost, the
expected utility of the second gamble at the final stage would be p = (1 — p) - u(g) + p - u(l).

"'We also examined a version of the probability change model that allowed an asymmetric utility function (i.e. different exponents for
gains and losses). Another option was to allow two subjective probability parameters, one for experienced gain and another for
experienced loss. Both alternatives employ 5 parameters, whereas all of the other models considered here have only 4 parameters. To
compare non-nested models that differ in terms of the number of parameters, we employ the Bayesian Information Criterion, or BIC (see
Wasserman, 2000, for more discussion of this model comparison criterion). This criterion is designed to select the model that has the
highest probability of being correct given the observed data. According to this criterion, BIC = x? + k In(N), where k is the number of
parameters, and N is the number of observations. In other words, the BIC equals the chi-square lack of fit plus a penalty for the number of
parameters. The model producing the smallest BIC corresponds to the model that is more likely to be correct given the data. In this case,
k=35 for the probability change model and k = 4 for the reference-point model, and N=133. Using this criterion, the BIC(5 parameter
Probability-change model)—BIC(4 parameter Reference-change model) = 1.94 > 0, indicating that four-parameter Reference-change
model has a higher probability of being correct than the five-parameter Probability-change model. A similar conclusion is reached using
an alternative model comparison criterion, the Akaike Information Criterion (AIC).
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to the observed pattern. That is, the parameters were selected to maximize log likelihood for each DM
(i.e. minimizing the chi-square lack of fit index).'?

Xz =-2. 2,:1)33{Xtt(,) . ln[Ptt(,)] + Xnngyy - ln[Pnn(,)] + Xitngyy - ln[Ptn(,)] + Xntyy - ln[Pm(,)]}

The parameter estimation procedure is illustrated with the following hypothetical simple case. Suppose a
DM was presented with just one decision problem. Suppose the DM planned to take the second gamble if the
first gamble was won, but after experiencing a gain in the first gamble the DM reversed the decision and chose
not to take the second gamble. The binary pattern for this decision problem would be 0 0 1 0 (corresponding to
Xtt, Xnn, X, Xnt). Any values for 6, m, «, 3 (for the Baseline and Reference-change model) and 6, m, o, p
(for the Probability-change model) would result in corresponding predicted probabilities. The predicted prob-
abilities cannot give a binary pattern of zeros and one. However, we require that they would be as close as
possible to this pattern. The estimation procedure would search for the best parameter values. For this
hypothetical case suppose that one set of parameters (for one of the three models) resulted in the correspond-
ing predicted probabilities: 0.026 0.071 0.821 0.082. Note that the highest probability is given to Ptn; thus the
predicted pattern corresponds to the observed one. The chi-square lack of fit index measures the discrepancy
between the observed and predicted pattern. In this hypothetical example it would be:

X2 = —2-{0-1n[0.026] + 0 - In[0.071] + 1 - In[0.821] + 0 - In[0.082]} = —2{—0.197} = 0.394

The parameter estimation procedure searches for parameter values that minimize the measure of x* lack of fit.
In the present work, each DM was presented with 33 decision problems (1 practice problem and two replica-
tions of the set of 16 decision problems). The parameter estimation procedure was required to find one set of
parameters’ values that provides the best fit for all the 33 binary patterns of choice consistency for each DM.

Model comparisons

The predictions provided by the three alternative models are shown in Figure 3. All three models capture the
general rate of inconsistency (i.e. Ptn + Pnt). However, for dynamic inconsistency, it is crucial to explain the
direction of inconsistency (i.e, Ptn-Pnt) and its dependence on the experienced outcome. As noted earlier, the
Baseline model cannot capture this pattern because it predicts equal rates for the two types of inconsistencies
(i.e. Ptn= Pni), regardless of the experienced outcome. Both the Reference-change and the Probability-
change models captured the directions (and magnitudes) of dynamic inconsistency (i.e. Ptn> Pnt after
experienced gain, and Ptn < Pnt after experienced loss).

Quantitative comparisons between the Baseline, Reference-change, and Probability-change models were
based on the models’ chi-square scores for each DM. Chi-square differences were computed for each pair of
competing models. As can be seen in Table 4, the Reference-change model fit the individual DMs better than
the Baseline model for a majority of individuals (67%), and the mean difference was significant
(#[99] = 3.49, p = 0.0004). The Reference-change model was also superior to the Probability-change model
for a majority of individuals (68%), and the mean difference was again significant (1[99] =4.62, p < 0.0001).
The Probability-change model was no better than the Baseline model (the former was favored for 49% of the
DMs), and the mean difference was not significant (z[99] = —1.44, ns).

Note that the Probability-change model provided a fairly good fit for the overall pattern at the aggregate
level, but failed to fit the individual level. The failure of the Probability-change model is interesting and

2Model analyses were computed using Matlab. The Fmins procedure was used to find parameters that maximize log likelihood for each
DM (i.e. minimize Chi-square). To facilitate interpretation of the parameters, all gamble values were divided by 200 in the computations.
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Figure 3. Comparing the experimental findings and the predictions of the three alternative models. The tallest bars at the

left (labeled Xtt) represent consistent acceptance of the second gamble. The bars next to them (labeled Xnn) represent

the cases of consistent rejection. The bars labeled Xtn represent dynamic inconsistency in the direction of risk aversion.
The bars labeled Xnt represent dynamic inconsistency in the direction of risk seeking

points to the importance of individual difference analyses. The reason for this failure is attributed to the sym-
metry with which this model deals with gains and losses. First, this model uses a symmetric utility function
which is unreasonable given the different perceptions of gains and losses.

Another limitation of this model is the simple mechanism that updates the subjective probability para-
meter, p. This mechanism is also symmetric in the following sense. Suppose, for example, that the first gam-
ble was won. The DM would now perceive the subjective probability for another gain in the second gamble
as p = 0.50 — A. The subjective probability for a loss in the second gamble would be 1 — p = 0.50 + A.
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Table 4. Model comparisons based on chi-square lack of fit statistics

Number of

DMs won by Mean difference Std of

each model in chi-squares difference T(99) p
Baseline versus probability 50-49 —1.09 7.53 —1.44 0.0760
Baseline versus ref. point 33-67 1.69 4.84 349 0.0004
Probability versus ref. point 32-68 2.78 6.00 4.62 0.0000

Note: T(99) stands for the statistic for a #-test with 99 degrees of freedom, and p stands for the p-value produced by the corresponding
t-statistic.

The decrease in the subjective probability for another gain equals the increase in the subjective probability
for the loss. Note that the same A would be used if the first gamble was lost. In this case the subjective prob-
ability for a second gain would be p=0.50 + A, and the subjective probability for a second loss would be
p=0.50— A. Even more important, A is independent of the magnitude of the gain and loss. Thus, the
decrease in the subjective probability for a second gain would be the same whether that gain was of 1 point
or 1,000,000 points. The models’ comparison indicated that these assumptions are invalid. While the logic of
the Probability-change model can capture the overall pattern, further assumptions and more parameters are
needed in order to allow sensitivity to different values of gains and losses (see also footnote 11).

In brief, the Reference-change model provided the best explanation of the patterns of choices produced by
the individuals (see also footnote 7). Additional support for this model comes from its predictions for the
final choice probabilities for each gamble (i.e. Pr(FG)). The choice probability predictions for the
Reference-change model, averaged across subjects, are shown in the last column of Table 1. The correlation
between the EVs of the gambles and DMs’ final acceptance of the second gamble was r=0.72. The DMs’
plans were a better predictor of their final acceptance (the correlation was r = 0.84). The correlation between
the Probability-change model’s predictions and final acceptance of the second gamble was r=0.87. The
highest correlation was found between the predictions of the Reference-change model and final acceptance
(r=0.90).

INDIVIDUAL DIFFERENCES

Table 5 indicates the means and standard deviations (and ranges) for the parameters of the Reference-change
model. As can be seen, the means of the utility parameters o and [ are in line with the utility function
suggested by Prospect Theory (Tversky & Kahneman, 1992). The utility function is concave for gains, con-
vex for losses, and the function is steeper for losses than for gains. The mean of the parameter m indicates
that DMs repeated their planned choices in approximately half of the trials. Finally, the standard deviations
imply considerable individual differences in these parameters.

Individual differences in model parameters were correlated with the general inconsistency rates (i.e.
X Xtn, + Xnt,, for each DM). Note that general inconsistency rates ignore the direction of the change in
choice and its dependency on the experienced outcome. Two of the model parameters, m and 6, were found

Table 5. The parameters of the reference-change model

@ Féj % m
Mean 0.85 0.95 2.80 0.57
std 0.69 0.65 1.78 0.27
Range 0-2 0-2 0-5 0-1

Note: o is the exponent for gains; 3 is the exponent for losses; @ is the cutoff and m reflects the
strategic parameter to repeat the planned choice.
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Table 6. Frequencies of different choice patterns by three levels of m

Choice pattern

m Consistent Random Dynamic inconsistency
1-0.65 13 9 17
0.64-0.35 0 10 31
0.34-0.00 0 1 19

to be significantly correlated with the general inconsistency rates of the DMs. The negative correlation
between m and general inconsistency (r=—0.88, p < 0.001) indicated that as the tendency to repeat the
planned choice decreases, the amount of general inconsistency increases. Thus, not surprisingly,
leaving the planned choice aside and coming up with a new choice serves as a prerequisite for general incon-
sistency. The negative correlation between 6 and general inconsistency (r = —0.39, p < 0.001) indicated that
as the threshold decreases, choice becomes less deterministic and more random, and general inconsistency
increases.

An individual difference analysis of dynamic inconsistency was also performed. This analysis referred to
the direction of inconsistency that is contingent on the experienced outcome (i.e. Xtn — Xnt). The 100 DMs
were categorized according to their patterned choice behavior (consistent, non-directional inconsistency and
directional inconsistency). Table 6 shows the frequencies of the three patterns according to three levels of the
m parameter. As can be seen, consistent behavior was observed for only 13 DMs at the highest level of m. As
m decreased below 0.65, the number of consistent DMs dropped to zero. Twenty DMs showed a non-direc-
tional type or random inconsistency. This pattern dropped markedly as m decreased below 0.35. Sixty-three
DMs showed directional inconsistency. While it is expected that consistent decision makers must have high
value of m, it is not obvious that lower levels of m should result with dynamically inconsistent decision
makers. Lower levels of m can easily result with random inconsistency. The interesting finding in Table 6
is that in each and every level of m, the majority of the decision makers exhibit dynamic inconsistency rather
than random inconsistency. The relative frequency of this pattern increased as memory decreased
(x°[4]1=129.34, p < 0.001).

Whereas m is not sufficient to differentiate between random and dynamically inconsistent decision-
makers, these two groups can be differentiated according to their utility functions (parameters « and /3).
Figure 4 gives as an example the median utility functions of non-directional and directional inconsistency
groups. Non-directional or randomly inconsistent decision makers exhibit utility functions that are close to
linear and dynamically inconsistent decision makers exhibit Prospect Theory-like utility functions. This
finding is inline with the Reference-change model’s argument that different patterns of choice behavior
depend on the individual utility functions (i.e. parameters o and [3).

DISCUSSION

The principle of dynamic consistency asserts that preferences should be stable whether they are based on
anticipated events or (later on) on the experience of the same events. The current findings indicate that in
many cases DMs violate this principle and show preference reversal due to actual experience of the antici-
pated events on which they based their plans. Preference reversals were found to be systematic and depen-
dent on the nature of the experienced event. Experiencing an anticipated gain caused a risk-aversion reversal,
and experiencing loss caused a risk-seeking reversal. These findings replicate and extend the phenomenon of
dynamic inconsistency reported earlier by Busemeyer et al. (2000), Barkan and Busemeyer (1999), and
Cubitt et al. (1998).
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Figure 4. Examples of median utility functions for choice patterns of random inconsistency and dynamic inconsistency.
Random inconsistency is characterized with almost linear utility functions. Dynamic inconsistency is characterized with
Prospect-Theory-like utility functions

The model comparisons support the Reference-change model over the Probability-change and Baseline
models as an explanation for the observed dynamic inconsistency. According to this explanation, the
reference point changes as the DM progresses through the planned path in a decision tree. The change of
reference point results in a change of the utility associated with the planned choice and leads to preference
reversal. Using Kahneman’s (1999) terms, the change in the reference-point reflects the difference between
the decision utility and the experienced utility. Using Prospect Theory’s utility function as a representation of
the decision utility, the reference-point is at the inflection of the function and its decision utility is zero. A
neutral reference-point serves as the basis for the planned choice (that is, zero payoffs are assigned zero

Copyright © 2003 John Wiley & Sons, Ltd. Journal of Behavioral Decision Making, 16: 235-255 (2003)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



252 Journal of Behavioral Decision Making

utility). The Reference-change model utilizes the Prospect Theory utility function as a representation for the
experienced utility as well. However, in this case, the experienced utility of the reference-point is represented
with an upward or downward move (according to the experienced outcome), so that the experienced utility of
the reference-point is non-neutral.

The superiority of the Reference-change model over the two alternative models is attributed to two ele-
ments. One is the asymmetric utility function it assumes, and the other is the structural assumption that
changes the utility of the reference point and the second gamble at the final choice. Together, these elements
represent the experienced utility in a way that is sensitive both to the sign of the experienced outcome and to
the specific value of the experienced outcome. These elements are also sensitive to the specific values of the
next gamble that is considered as well as to the change in its utility.

The modeling procedure employed in this work offers two noteworthy advantages. First, an important
contribution of the modeling is in its focus on the individual level. Behavioral phenomena are frequently
described and explained at the aggregate level, leaving a question regarding the behavior at the individual
level. As a relevant example consider the disjunction effect. Tversky and Shafir’s (1992) explanation was
given at the aggregate level. They supported their explanation with a hypothetical example of a utility func-
tion that could reproduce their findings. The reference point explanation extended their argument to explain
dynamic inconsistency. However, applying this explanation at the aggregate level posed a problem. In fact,
the Reference-change model and the Probability-change model could not be separated at this level and
seemed equally effective at explaining the phenomenon of dynamic inconsistency. Turning to the individual
level provided a critical test. The present design allowed sufficient leverage to model the alternative expla-
nations for each DM. At this level of analysis, the Reference-change model was superior to the Probability-
change model. Note that the individual utility functions used by the Reference-change model followed the
same definition used by Tversky and Shafir (1992). The parameters « and 3 (i.e. exponents for the gain and
loss domains) were fitted for a wide range of values. The resulting individual utility functions were robust
enough to explain many different choices of the majority of the individual DMs. Thus, the present work also
provides additional support for Tversky and Shafir’s suggestion.

The second advantage of the present modeling procedure relates to the model’s robustness and sensitivity
to employed assumptions. Note that the three models compared in this study were all derived from one gen-
eral model. The three variations of the general model only differed in terms of the assumptions they
employed. The model comparisons allowed us to test the validity of the different assumptions. For example,
the Baseline and Reference-change models employ exactly the same choice mechanism and the same para-
meters. The difference between them is a structural assumption regarding the reference point. In the Baseline
model the assumption is that the reference point does not change. In the Reference-change model the
assumption is that the reference-point does change. Comparing the two models showed that the assumption
regarding the change in the reference point is crucial for reproducing the observed choice behavior. As a
second example, consider the comparison between the Reference-change and the Probability-change
models. These two models differ in their assumption regarding the shape of the utility function. According
to the Reference-change model, the utility function is assumed to be asymmetric for gains and losses,
whereas the Probability-change model assumes symmetry. Comparing the two models showed that the
assumption regarding asymmetric utility function was not needed on the aggregate level, but was crucial
for reproducing the individual choice behavior.

CHANGE OF REFERENCE AND OTHER PREDICTION ERRORS

The literature provides many examples of systematic prediction errors regarding future tastes and prefer-
ences (for comprehensive reviews see Kahneman, 1999; Loewenstein & Schkade, 1999). Some of these
mis-predictions may be explained with a change in the reference point. The endowment effect (Loewenstein
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& Adler, 1995; Kahneman et al., 1991) serves as one example. In a typical experiment DMs were presented
with an option of choosing between a mug and a preferred sum of money. DMs asked for a median of $3.50.
However, once they had the mug, they were only willing to return it for a median of $7.12 (Kahneman et al.,
1991). Kahneman (1999) explained the endowment effect with two reference points. According to this
explanation, the choice between the endowed object and money is evaluated against different reference
points of ‘not having’ and ‘having’ the object. When the reference point is that of ‘not having’, the mug
is evaluated as an object soon to be gained. When the reference point is that of ‘having’, the mug is evaluated
as an object soon to be lost. DMs compensate for the experience of loss by asking for more money.

Mis-predictions of future preferences were also found for unpleasant or painful experiences. For example,
Christensen-Szalanski (1984) found that a majority of expectant women stated a preference not to have
anesthesia during childbirth, but reversed their prior decisions when they went into labor. Before going into
labor, the preference not to have anesthesia may be based on a neutral reference point (i.e. no pain). However,
the experience of pain during childbirth shifts the reference point to the loss domain. The option of having
anesthesia may now seem more attractive than before, and lead to the preference reversal.

Predicting the pain during childbirth may be difficult since it is not an everyday experience and the choice
involves other factors such as beliefs and social norms. Other studies show that DMs have difficulty in pre-
dicting how experience would change their reference points even when choices are simple and routine.
Kahneman and Snell (1992) provide one example. In their study DMs predicted that eating ice cream or
yogurt for eight successive days would decrease their liking of the former and increase their dislike of
the latter. This prediction corresponds to DMs’ expectation that experience would shift the reference point
up. However, the correlations between subjects’ predictions and their actual ratings of liking were close to
zero. While subjects’ tastes did change over time, each DM could not predict the exact change in his or her
own taste. In a similar fashion, Read and Loewenstein (1995) let students choose snacks for three successive
class sessions. One group had to plan ahead of time and choose all the snacks at once, while another group
made one choice in each class session. The group that planned ahead of time showed a larger variety in their
choices. Such planning corresponds to DMs’ predicting that the reference for the same snack would shift up
and that their liking for that snack would decrease. However, students in this group were less satisfied with
their choices, and later regretted changing snacks.

Loewenstein and Schkade (1999) suggest that planned choices are made in a ‘cold’ or ‘rational’ state,
whereas choices made during the actual experience reflect a ‘hot’ or ‘emotional’ state. Kahneman et al.
(1997) suggest a similar differentiation between decision utility and experienced utility. The Reference-
change model offers a possible quantification of these concepts. The decision utility or the ‘cold’ state in
which plans are made is represented with a neutral reference point. In contrast, the experienced utility or
the ‘hot’ states in which evaluations are based on immediate hedonic and affective experience are repre-
sented with a shifted reference point.

UNDERSTANDING THE DYNAMICS OF THE REFERENCE POINT

The importance of the reference point has long been recognized in the literature on dynamic decision mak-
ing. It is unclear, however, whether and how the reference point changes in the process of repeated choices.
One option is that in order to minimize the cognitive effort of the evaluation process, each event in the
dynamic process is coded separately (Tversky & Kahneman, 1981). In this case, the reference point should
be neutral for each of the evaluations. Another option suggests shifts in the reference point during the
dynamic process: ‘... A discrepancy between the reference point and the current asset position may . . . arise
arisebecauseofrecentchangesinwealthtowhichonehasnotyetadapted (KahnemanTversky, 1979, p.286).
Thaler and Johnson (1990) tested a number of editing rules representing different assumptions regarding
the reference point and the way it shifts due to prior gains and losses. The main difference between the
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editing rules has to do with the question of whether prior gains and losses are integrated or segregated from
subsequent outcomes. For example, assuming the asymmetric utility function of Prospect Theory, integration
of prior gains would be more likely to lead to risk aversion, and segregation of prior gains would be more
likely to lead to risk seeking. On the other hand, integration of prior losses would be more likely to lead to
subsequent risk seeking, while segregation of prior losses would be more likely to lead to subsequent risk
aversion. The logic of integration and segregation explains the ‘house money effect’ and ‘break-even effect’
in which both prior gains and prior losses lead to risk seeking (respectively).

The findings reported here showed a variety of responses to prior or experienced outcomes. Consistent
trials (or DMs) seem to make the case as if prior or experienced outcomes do not affect preferences. Dyna-
mically inconsistent trials (or DMs) suggest the opposite. The frequent effects of experienced outcome were
risk aversion after experienced gain and risk seeking after experienced loss, suggesting integration of prior
outcomes. However, we also found small measures of risk seeking after experienced gain (as in the ‘house
money effect’) and risk aversion after experienced loss, suggesting segregation of prior outcomes. It is some-
what unclear whether these findings point to a reliable (yet small) effect, or at random behavior that should
be considered as noise. Future research is needed to address this question. Such research may utilize manip-
ulations that encourage ‘house money’ reversals in preferences.

Interestingly, the Reference-change model was able to reproduce all of these contradictory effects (see
Figure 3). To account for the different effects the model always utilized the same mechanism of integrating
the experienced outcome in the final evaluation but not in the planned evaluation. Different effects of the
experienced outcome depended on the individual utility functions of the DMs. Thus, changing the reference
point could lead to consistent or inconsistent preferences based on the change in the utility of the integrated
outcomes. While such a mechanism seems appealing in its parsimony, future research and further individual
level analyses are needed in order to determine the changing mechanism of the reference point.
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