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An Adaptive Approach to Human Decision Making: Learning Theory,
Decision Theory, and Human Performance

Jerome R. Busemeyer and In Jae Myung
Psychological Sciences, Purdue University

This article describes a general model of decision rule learning, the rule competition model,
composed of 2 parts: an adaptive network model that describes how individuals learn to predict
the payoffs produced by applying each decision rule for any given situation and a hill-climbing
model that describes how individuals learn to fine tune each rule by adjusting its parameters.
The model was tested and compared with other models in 3 experiments on probabilistic
categorization, The first experiment was designed to test the adaptive network model using a
probability learning task, the second was designed to test the parameter search process using a
criterion learning task, and the third was designed to test both parts of the model simultaneously
by using a task that required learning both category rules and cutoff criteria.

Probabilistic categorization is an important class of decision
problems in which stimuli are sampled from a number of
categories and the decision maker must decide the category
from which each stimulus was sampled. Payoffs depend on
both the true category membership and the decision maker’s
response for each stimulus. Examples are found in all areas
of psychology: In perception, auditory or visual stimuli are
categorized as signal or noise, and in memory recognition,
verbal items are categorized as old or new. In cognition,
exemplar patterns are assigned to conceptual categories, and
in industrial psychology, job applicants are categorized as
acceptable or unacceptable. Finally, in clinical psychology,
patient symptom patterns are assigned to disease categories.

For the past 35 years, the general theory of signal detection
(Peterson, Birdsall, & Fox, 1954) has served as the most
prominent model of probabilistic categorization. It has been
successfully applied to all of the areas of psychology men-
tioned (see Green & Swets, 1966; for perception; Bernbach,
1967, and Wickelgren & Norman, 1966, for memory recog-
nition; Ashby & Gott, 1988, for conceptual categorization;
Cronbach & Gleser, 1965, for industrial psychology; and
Swets & Pickett, 1982, for medical diagnosis). The core idea
is that (a) each stimulus is represented as a point within a
multidimensional stimulus space, (b) this multidimensional
space is partitioned into response regions, and (c) a stimuius
is categorized according to the region within which it lies.

Simple decision rules are normally used to describe how
the stimulus space is partitioned.! For example, unidimen-
sional stimuli can be divided into two categories by either a
cutoff rule (all points above a cutoff go into one category) or
by an interval rule (all points inside an interval go into one
category). Two-dimensional stimuli can be partitioned into
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two category regions by either a linear rule (all points above
a line go into one category) or an elliptical rule (all points
within an ellipse go into one category). Many other decision
rules are possible, and consequently, a critical question is,
how are decision rules selected?

One answer is that the optimal rule is selected. This is the
rule that maximizes expected payoffs, where the expected
payoff is defined as the long-run average payoff produced by
using the same rule for an infinitely long sequence of trials
under a fixed training condition. The optimal rule will vary
depending on the training condition, which specifies (a) the
distribution of stimuli produced by each category, (b) the
prior probability of each category, and (c) the payoffs pro-
duced by each stimulus-response category combination.

The optimal rule can be rejected as a descriptive model of
human performance on the basis of past research. One robust
finding is the conservative cutoff-placement phenomenon—
subjects tend to select for the cutoff rule a cutoff criterion that
is less extreme than that prescribed by the optimal rule (Green
& Swets, 1966, p. 90; Healy & Kubovy, 1981). Another
finding is that when two-dimensional stimuli are used, sub-
jects tend to use linear categorization rules even when an
elliptical rule is optimal (Ashby & Gott, 1988, p. 51).

An alternative way to understand how decision rules are
selected is to consider learning mechanisms. For example,
with more training, the subjects in Asbby and Gott’s (1988)

! A simple decision rule for binary categorization tasks with con-
tinuous distributions of stimuli is defined rigorously as follows. Let .S
be the set of all stimulus points that are to be categorized, and let C
be the set of category responses. A decision rule, R, is a function that
maps points in S onto elements of C. For example, if 5 is a point in
§ and c is an element of C, then R(s) = ¢. The inverse image of ¢,
R~Y(¢), is defined as the set of points in $ that map to the element c.
The inverse image, R™'(¢), is convex if and only if the following is
true: Suppose x and y are members of R™'(¢). Then z = (1 — a)x +
ay, 0 < a < 1, is also a member of R™'(c). A decision rule is simple
if and only if the inverse image, R™'(¢), is a convex set for at least
one of the category responses ¢ in C. This definition covers the
majority of previous examples of decision rules used by signal-
detection theorists.
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experiment may have been able to learn to switch from the
suboptimal linear rule to the optimal elliptical rule. A deci-
sion-rule-learning model can be used to predict whether the
optimal rule will be learned and, if the rule is learned, the
amount of training needed to learn it.

There are various lines of evidence for rule learning in
probabilistic categorization. Criterion learning models have
been used to explain (a) improvements in sensitivity with
training (e.g., Swets & Sewall, 1963); (b) sequential effects of
earlier trial events on subsequent responses (Atkinson &
Kinchla, 1965); and (c) the conservative cutoff-placement
phenomenon (Thomas, 1973; see Dusoir, 1980, and Kubovy
& Healy, 1980, for reviews). However, nearly all of this past
work was limited to the question of how individuals learn the
cutoff parameter for the unidimensional cutoff rule. The
model we present in this article extends the earlier work by
describing not only how the parameters of a rule are learned
but also how one decision rule comes to be preferred over
others. A simple example helps illustrate the basic ideas
involved.

Suppose subjects are asked to make fictitious clinical deci-
sions in which they must decide whether Disease A or B is
present on the basis of some unidimensional test score X, and
they receive a monetary payoff that depends on the correct-
ness of their decision. The following are four different decision
rules (labeled F, G, H, and I) for performing this task:

F: If X <6, then report A; otherwise report B.

G: If X > 6, then report A; otherwise report B.

H:If X > —8 and X <6, then report A; otherwise report B.
I: If X < —6 or X > 6, then report A; otherwise report B.

Rules F and G are cutoff rules, and Rules H and I are interval
rules. Note that each rule contains a parameter, 6, the value
of which is unspecified. We distinguish between a general
rule, where the parameters of the rule are unspecified, and a
specific rule, in which all of the parameters are specified.” The
primary question 1s, how do individuals learn to prefer one
general rule over others?

This simple example illustrates many of the complexities
of decision rule learning. After being informed about the
training condition, the decision maker has two different learn-
ing tasks. One is to learn the optimal value of the criterion
parameter, 6, that maximizes expected payoffs for each gen-
eral rule. The second is to learn the optimal rule (F, G, H, or
I) for a given training condition. We designed the following
rule competition model to describe how individuals solve these
two learning problems.

Rule Competition Model

The rule competition model is composed of two different
learning processes: (a) an adaptive network model that learns
to predict the payoffs produced by each general rule and (b)
a hill-climbing model that searches for the optimal parameters
of a general rule.

The rule competition model uses both the adaptive network
learning model and the hill-climbing search model on each

trial as follows. First, the adaptive network model selects a
general rule, and then the hill-climbing model selects a param-
eter to form a specific instance of the general rule. To help
illustrate the model, recall the previous example, where the
decision maker considers a set of four general rules |F, G, H,
and I}.

First, each of the four general rules is evaluated by the
adaptive network model as follows. The decision maker recalls
each of the four rules, and each rule is input into the adaptive
network for evaluation, one at a time, yielding performance
estimates (U,, U,, Us;, and U,) for Rules F, G, H, and I,
respectively, which are then stored in a short-term memory.
The probability of choosing one rule, for example Rule J, is
an increasing function of its estimated performance, U, and
a decreasing function of the estimated performance of each
of the other rules, U, (j # k). More specifically, define P(R))
as the probability of choosing Rule j from the set of » rules.
The following ratio model proved to be helpful in using
categorization models to predict choice probability (Estes,
Campbell, Hatsopoulos, & Hurwitz, 1989; Gluck & Bower,
1988; McClelland & Rumelhart, 1985; Nosofsky, 1987):

P(R) = exp(U))/ 3k exp(Uy), fork=1,...,n (1)

Second, the parameter 8 for the general rule selected by the
previously mentioned adaptive network is assigned a specific
value as follows. If a general rule was not used on the previous
trial, then the parameter remains unchanged. If a general rule
was used on the previous trial, then its parameter is updated
following feedback according to the hill-climbing search
model.

This completes the general description of the rule compe-
tition model. Next, we describe the adaptive network and
then the hill-climbing parts of the model.

Adaptive Network Model

The adaptive network model learns to estimate the perfor-
mance of a general rule for each particular situation. The
term situation refers to the training condition defined by the
distribution of stimuli, prior probabilities, and payoff mat-
rices.

The adaptive network model is illustrated in Figure 1. (The
mathematical details are given in the Appendix). The per-
formance of a general rule is estimated in two layers. Initially,
information about the rule along with information about the
current situation are entered into the top layer of the network.
This situation X rule input then elicits estimates of the prob-
abilities of each possible payoff at the middle nodes following
the first layer. Finally, these probability estimates are inte-

2 General and specific rules are defined rigorously as follows. First,
the domain of a rule given in Footnote I needs to be expanded to
include parameters. Define T; as the set of parameter vectors associ-
ated with rule i. Then rule / (R) is a function that maps stimulus
points from S and parameter vectors from 7T, onto C. A specific
instance of rule i is obtained by fixing the vector taken from the
parameter space. In this case, the specific rule is a function that maps
points from S onto C.
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Figure 1. Adaptive network model of decision rule learning. (The
top nodes receive inputs from combinations of situation [S] and rule
[R] features. The middle nodes compute the probability distribution
[P] over payoffs on the basis of the connection weights [W] from the
input nodes. The final node computes the estimated performance of
a rule [U] on the basis of the connections from the middle nodes.
Rule choice is based on the output of the final node. This figure
illustrates the input matrix for a simple example with binary valued
inputs. In general, the inputs may have continuous activation values.
V = payoff feedback.)

grated into a single performance estimate, U, at the terminal
node following the second layer.

The weights connecting the first and second layers in Figure
1 are updated according to a Hebb-delta learning rule, which
is a generalization of the adaptive network learning models
used by Gluck and Bower (1988), Estes et al. (1989), and
Knapp and Anderson (1984). (See Appendix for the mathe-
matical details.) Each weight connecting the middle and final
nodes represents the subjective worth of a payoff value. The
latter weights are not updated during training.

Suppose a general rule X was applied on trial ¢, producing
the performance estimate Ux(t) before feedback on trial .
After receiving feedback on trial ¢, a payoff is delivered, and
¥(t) is the subjective worth of this payoff. On the next trial,
t + 1, another general rule (Y; note that X may equal Y)
is evaluated, which results in a new performance estimate
Uy(t + 1). In the Appendix, we prove that the following
simple equation can be mathematically derived from the
adaptive network learning model:

Ut + 1)=8 - Unt) +
a-sE+1D) - O—v- U] )

Equation 2 states that the new estimate of Rule Y after
feedback on trial ¢ is proportional to its estimate before
feedback on trial ¢, Uy(t), plus an adjustment, [w(¢) —
v « Ux(?)], multiplied by a gain factor, a - s(t + 1). The
adjustment equals the previous prediction error resulting from
the use of Rule X on trial ¢, and the gain is proportional to a
similarity measure, s(z + 1). For a fixed situation, s( + 1) is
an increasing function of the similarity between the new rule
and the previous rule. For a fixed rule, s(z + 1) is an increasing

function of the similarity between the new situation and the
previous situation. The constant 3 > 0 determines the forget-
ting rate, the constant « > 0 determines the learning rate, and
the constant 1 = v = 0 determines the weight of the delta rule
relative to the Hebb rule. Setting ¥ = 0 produces a pure Hebb
learning rule, and setting v = 1 produces a pure delta learning
rule.

Variation in similarity between rules can be illustrated by
considering Rules F, G, H, and I, which we described earlier.
Rules F and G are both single-cutoff rules, whereas Rules H
and I are both interval rules. These similarity relations can be
represented by setting the similarity parameter, s(¢ + 1), equal
to non-zero values for related pairs of rules (e.g., F and G)
and zero for unrelated pairs of rules (e.g., G and H). Maxi-
mum similarity is obtained when the same rule that was
applied on the previous trial is evaluated again on the next
trial.

Hill Climbing

Consider Rule G, the single-cutoff rule, described in the
previous example. For a fixed training condition (i.e., distri-
bution of stimuli, prior probabilities, and payoff matrix), the
performance of this general rule is a function of the value of
the cutoff parameter 6. If 8 is set too high or too low, then
poor performance may result even if Rule G is optimal in the
general sense. The hill-climbing model is used to search for a
parameter value that produces the highest performance for a
general rule.

Figure 2 illustrates the basic idea. Hill climbing is guided
by the change in payoffs produced by a change in the param-
eter from two prior applications of a rule. If the previous
change in the parameter produced an increase in payoffs (an
uphill direction), then the next change is made in the same
direction. However, if the previous change in the parameter
produced a decrease in payoffs (a downhill direction), then
the next change is in the opposite direction.

More precisely, define 6, and 6, as the parameter values
that were used to make category decisions on the last and
second-to-last applications of Rule G, respectively. Also define
v, and v, as the values of the payoffs produced on the last and
second-to-last applications of Rule G, respectively. The prod-
uct of differences

= =) (6 —6)

is called the Aill-climbing adjustment. 1t is used to determine
the next parameter value as follows:

6=6,+x.-mh+ (1 -\ -e 3

In this equation, 8 is the parameter value to be used on the
current trial; 6, is the previously used parameter value; m(#)
is a bounded increasing function of the hill-climbing adjust-

3 We are not stating that Equation 2 represents the psychological
learning process. The psychological learning process is represented by
the Hebb-delta learning rule (see Appendix), and Equation 2 is a
mathematical consequence of this process. However, for the purpose
of deriving predictions for the experiments reported elsewhere in this
article, Equation 2 is sufficient and more convenient.
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Figure 2. The hill-climbing algorithm. (The left panel illustrates an
increase in the parameter producing an increase in payoff, and the
right panel shows a decrease in the criterion producing a decrease in
the payoff. # is the value of the criterion to be used on the next
application of a rule. 6, and 6, are the values of the criterion used on
the last and second-to-last applications of the rule. V, = payoff from
last trial; V, = payoff from second-to-last trial.)

ment, 4; e is a randomly chosen direction; and X is a weight
O<rx<t)?

The function m(h) stabilizes the learning algorithm by
squashing extreme adjustments. The simplest example is the
step function: m(h) = cif h >0, m(h) = 0if h = 0, and m(h)
= —¢if h < 0. The random direction ¢ reduces the likelihood
that the search gets stuck on a local maximum. The amount
of random search is moderated by the weight (1 — \).

So far, we have discussed the hill-climbing model in terms
of the single cutoff rule (Rule G). However, hill climbing is a
very general search model, and the same model can be applied
to any rule containing a single parameter. Hill climbing can
also be used for rules that contain » parameters by defining
9, 8,, 0,, and ¢ as n-dimensional vectors. In this case, the
function m is applied separately to each of the n coordinates
of the hill-climbing adjustment vector.

Outline of Experiments

We designed the following experiments to test the rule
competition model and to compare it with various other
learning models. Because the rule competition model is com-
posed of two distinct parts, we designed three experiments:
Experiment 1 was designed to test only the first part, the
adaptive network model; Experiment 2 was designed to test
only the second part, the hill-climbing model; and Experiment
3 was designed to test both parts, that is, the combined model
that uses both hill-climbing and adaptive network learning
models simultaneously.

Experiment 1

The rule competition model is partly based on an adaptive
network model that learns the probabilities of the payoffs
produced by each decision rule. There was a much earlier
work on probability learning, and it is useful to compare
briefly the present model with these earlier models.

In the late 1950s, linear learning models were developed to
account for probability learning (see Sternberg, 1963, for a
review). According to these earlier models, individuals learn

to associate category responses to stimuli. These stimulus—
response learning models have been largely rejected as overly
simplistic because of their limited computational capabilities
(e.g., Anderson, 1976; Minskey & Papert, 1969).

The present model differs from these earlier models in a
fundamental way. According to the rule competition model,
individuals learn to associate payoffs with decision rules (cat-
egory responses are computed from these decision rules).
Because there are no major limitations on the complexity of
these decision rules, the current model generalizes and extends
the computational ability of the earlier probability learning
models.

The present model uses a Hebb-delta learning rule to de-
scribe how individuals learn the payoff probabilities produced
by each decision rule. However, there are two alternative
learning models that also need to be considered—the fre-
quency array model (Estes, 1987) and the multiple-trace mode!
(Busemeyer, 1985). It is important to consider these two
particular models for several reasons. First, both of these
earlier models have successfully predicted choice behavior in
decision tasks that require learning from experience. Second,
these models are based on learning and memory assumptions
that are quite different from those used by the adaptive
network model. Finally, these earlier models make predictions
that differ at an ordinal level from the predictions of the
Hebb-delta model, and the three models have never been
directly compared. The following clinical trial probability-
learning experiment iilustrates the differences among these
three models.

The subjects of Experiment 1 were told that a population
of patients was suffering from a common set of symptom
patterns. The subjects’ task was to assign patients from this
population to treatment strategies. After each assignment, the
effect of the treatment was reported as feedback. The effec-
tiveness (or payoff) produced by each treatment varied from
patient to patient, and subjects had to learn the distribution
of treatment effects produced by each treatment.

The distribution of payoffs produced by each treatment is
illustrated in Figure 3. The horizontal axis is the payoff value,
and the vertical axis is the probability density. All three
distributions are normal with equal variance, ¢°, but different
means: The mean payoff for Treatment 1 is u — §, the mean
for Treatment 2 is u, and the mean for Treatment 3 (the
optimal treatment) is u + 6. This information was not shown
to the subjects, and it had to be learned on the basis of trial-
by-trial feedback.

Frequency Array Model

According to this model, individuals accurately store the
frequency of each payoff value produced by each treatment
strategy, producing a memory array of frequency estimates.
The sample mean payoff of a treatment is estimated from this
relative frequency distribution.

4 Myung (1990) proved a theorem stating that the mean criterion
selected by the hill-climbing algorithm converges to the optimal
criterion when certain conditions on the learning rate and the distri-
bution of payoffs are met.
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Figure 3. The distribution of treatment effects for patients assigned
to Treatments 1, 2, and 3 used in Experiment 1. (All three distribu-
tions are normal, with homogeneous variance and equal differences
between the means of the center and extreme distributions.)

Define f;(t) as the estimate of the frequency with which the
payoff value v; was obtained from treatment j after a total of
¢t training trials (the frequency in row i, column j of the
memory array). If treatment j is chosen and payoff v; is
obtained on the next trial, then its corresponding frequency
is incremented, f;(t + 1) = f;(¢) + 1; otherwise it remains
unchanged, f;(t + 1) = f(1).

The column total, f(t) = ¥, f(1), gives the frequency with
which treatment j was chosen out of a total of ¢ training trials.
The weighted average

Mi(1) = Z: Ju(t) - vilfi(2)

defines the sample mean payoff produced by treatment j
during the preceding ¢ training trials. The probability of
choosing the optimal treatment is assumed to be given by the
ratio rule,

CXp(A . Mg)
[exp(A - M) + exp(A - M) + exp(A - M3)]’

where A is a constant.

A key idea of this model is that the probability of choosing
the optimal treatment (Treatment 3) is limited by the proba-
bilistic nature of the decision process rather than the learning
process. If subjects accurately track the frequencies, then as
training progresses, the sample mean, M{¢), rapidly converges
to the population mean, u; (cf. Kleyle & De Korvin, 1988).
In this limiting case, the probability of choosing the optimal
treatment is given by

P(Ry) =exp(X - u3)/[exp(X - p1) + exp(X - p2) +exp(X - u3)]
=exp(\ - 8)/[exp(—X\ - 8)+ 1 + exp(+]\ - 9)).

P(Rs) =

4

One important implication of this model is that the effect
of the variance (¢? in Figure 3) on choice probability should
be a strictly decreasing function of training, and in fact, the
asymptotic choice probability should be solely a function of
the mean difference (6 in Figure 3). This hypothesis is incon-
sistent with previous research by Busemeyer (1985), who
found that the effect of variance on choice probability failed
to decrease consistently. Instead, there was a substantial effect
of variance that remained constant throughout the later stages
(after 2,000 trials) of training. Therefore, the frequency array
model can be ruled out for this paradigm.

Multiple-Trace Model

To account for the extended effect of payoff variance on
choice, Busemeyer (1985) proposed the following model. Each
time a payoff is experienced following the application of a
treatment, a separate memory trace of the event is stored in
memory. At the beginning of a choice trial, each treatment
strategy serves as a retrieval cue that retrieves a fixed sample
of memory traces for each treatment. The payoff values of
the traces retrieved from memory are averaged, and the
treatment producing the largest fixed sample mean is always
chosen.

According to this model, the decision process is determin-
istic, and random variability only enters through the memory
retrieval process. The probability of choosing the optimal
treatment is limited by the fixed sample size—if only a limited
number of the memory traces can be retrieved, then the
sample mean will continue to vary randomly even after
extensive training.

Define m; as the fixed sample mean of n traces sampled
from memory for treatment j. The probability of choosing
the optimal treatment (Treatment 3) is given by

P(R;) = P[ms; = max(m,, m,, ms)).

For the payoff distribution shown in Figure 3 (see Bock and
Jones, 1968), it follows that

P(R;) =1 — F(-2z, -2), (5)

where F is the standard bivariate cumulative normal distri-
bution function with a correlation equal to .5, and z = (3/0)/
v(2/n). An important implication of this model is that the
probability of choosing the optimal treatment should be a
monotonic function of the ratio (§/¢), and this relation should
hold at each trial of training.

Adaptive Network Model

The adaptive network model makes predictions that range
between the two extremes of the frequency array and multiple-
trace models, depending on the difference between the learn-
ing and forgetting rates. The estimated performance for each
treatment can be expressed as a weighted average of all the
past payoffs, with weights that are an exponentially decreasing
function of the lag (the number of trials intervening between
the current trial and the trial on which a payoff was delivered).
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(See Equation A6 of Appendix). For extremely low learning
rates, the weight function decreases very slowly with lag. In
this case, extensive training will yield a performance estimate
very close to the mean payoff, similar to the frequency array
model, and the variance of the payoffs will have almost no
effect on asymptotic choice probability. For extremely high
learning rates, the weight function decreases very rapidly with
lag. In this case only a limited number of the most recent
observations receive significant weight, similar to the multi-
ple-trace model. For moderate learning rates, the variance of
the payoffs will have a persistent effect on choice probability,
but the effect is small relative to the effect of the mean
difference (e.g., see Table 1, part B). Although the learning
rate may vary widely across subjects, the average rate is
expected to be in the moderate range.

Summary

The three models make ordinally distinguishable predic-
tions concerning the asymptotic probability of choosing the
optimal treatment. Consider the factorial design illustrated in
Table 1, part A, where the cells of this table contain the ratio
(6/0). The frequency array model predicts that asymptotic
choice probability is independent of s, and consequently, it
can be ruled out for this paradigm on the basis of the results
reported by Busemeyer (1985). The multiple-trace model
predicts that choice probability is a function of the ratio
(8/0), and this ratio decreases down the main diagonal of
Table 1, part A. The adaptive network model predicts that
choice probability is a function of both é and ¢ but is mainly
influenced by §; note that é increases down the main diagonal.
Thus, the key comparison for Experiment | is obtained by
focusing on the conditions along the main diagonal in Table
1 where the multiple-trace model (see Table I, part A) and
adaptive network model (see Table 1, part B) predict opposite
rank orders.

Table 1
Probability of Choosing the Optimal Treatment for
Experiment 1

. Mean difference (8)
Standard deviation

(c) 2.0 2.5 3.0 M
A. Ratio of (8/¢)
30 67 .83 1.00 .83
4.5 .44 .56 .67 .56
6.0 33 42 .50 42
M 48 .60 72 .60
B. Probabilities predicted by adaptive network
3. 7 .74 .80 73
4.5 .65 .70 .79 Tl
6.0 .65 .65 81 .70
M .66 .70 .80 72
C. Probabilities observed on last 10 trials
3.0 .69 .84 .85 .79
4.5 .69 72 .84 75
6.0 .65 .63 86 Tt
M .68 .73 .85 75

Note. The boldface values are crucial for testing the multiple-trace
and adaptive network models.

Method

Procedure. Subjects were asked to imagine that they were physi-
cians and that they had to choose one of three possible treatments on
each trial. At the beginning of training for each condition, they had
no information about the effectiveness of each treatment, and they
were told that they should assume that each treatment was equally
likely to be the best. Following the choice of a treatment, they were
shown a randomly sampled patient number and the effect of the
treatment on that patient only. They were told that the objective was
to maximize the sum of the treatment effects over training and that
their pay would be proportional to the final sum. The subjects were
paid 4¢ per point.

Subjects initially received verbal instructions followed by two brief
practice sessions of 5 trials each. After practice, each subject received
nine blocks of training (50 trials per block), with a new experimental
condition randomly assigned to each block (with the constraint that
each condition appeared in each serial position with equal frequency
across subjects). Subjects received three experimental conditions,
followed by a 3-min break, another three experimental conditions,
another 3-min break, and then the final three experimental condi-
tions. The entire experiment lasted approximately 1.5 hr. Subjects
were run individually in a quiet room. An IBM personal computer
was used to present stimuli and record responses.

Design. The nine problems for the main part of the experiment
were constructed by manipulating two factors, mean difference and
standard deviation, according to the 3 X 3 factorial design shown in
Table 1, part A. Note that standard deviation manipulation produces
ratios in the top row that are 2 times larger than those in the bottom
row. Also note that the mean difference manipulation produces ratios
in the right column that are only 1.5 times larger than those in the
left column. On this basis, one would expect the effect of standard
deviation to be greater than the effect of mean difference on learning.
The mean differences and standard deviations of the treatment effects
for the practice sessions were (3 =3, 6= )and (6 =3, ¢ = 3).

The three treatment means were constant across the 50 trials for a
given condition, but they varied randomly across conditions and
subjects. The means for Treatments 1 and 3 were always & units
below and above, respectively, the mean for Treatment 2. The mean
of Treatment 2 for any given condition was sampled from a uniform
[—=2, +2] distribution.

Subjects were informed when each condition began and ended. At
the beginning of each condition, new labels were assigned to the
treatments according to the following procedure. Nine triples of three
adjacent keys on the computer keyboard formed a set of labels, and
one triple was randomly sampled without replacement for each
condition. One letter within each triple was randomly sampled with-
out replacement for each treatment within a condition. The labels
used in practice differed from those used in the main experiment.
For the reader’s convenience, hereinafter we label Treatment 3 as the
optimal treatment, Treatment | as the worst treatment and Treatment
2 as the intermediate treatment.

Subjects. The subjects were 36 students from Purdue University
(graduates and undergraduates majoring in humanities and social
sciences) who were paid volunteers. The amount of pay was contin-
gent on performance, as described above, but on the average subjects
earned about $5.00 per hour.

Results

Final performance. Recall that the rank order predictions
for the multiple-trace model are determined from Table 1,
part A, and the predictions from the adaptive network model
are shown in Table 1, part B. The cells of Table !, part C
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show the observed proportion of optimal choices separately
for each of the nine conditions averaged across subjects and
the last 10 trials of training. (Each cell proportion is based on
n = 360 observations.) The margins of this table represent the
row and column averages. The key comparison is obtained
from the three conditions shown along the main diagonal of
Table 1, part C.

As can be seen in the main diagonal of Table 1, part C, the
proportions of optimal choices consistently increased from
.69 (top left corner) to .86 (bottom right corner) as the ratio
(3/0) decreased from .67 to .50, and as the mean difference &
increased from 2 to 3. This result was consistent across most
subjects, and the difference between the two extreme diagonal
cells is significant according to a simple sign test. A total of
25 subjects produced unequal choice proportions under these
two conditions (11 subjects produced tied proportions equal
to 1.0). Eighteen of these 25 subjects (72%) produced an
ordering for these two conditions in the same direction as that
observed in Table 1, part C, which is significantly different
from chance (p = .0216).

More generally, the observed proportions correlated more
strongly with the predictions of the adaptive network model
(Table 1, part B), than with the predictions of the multiple-
trace model (Table 1, part A). The rank correlation with the
ordinal predictions of the multiple-trace model in Table 1,
part A, equals .67; the rank correlation between the predic-
tions of the adaptive network model in Table 1, part B, equals
93.

One could argue that perhaps the multiple-trace model
would make different ordinal predictions for the diagonal
cells of Table 1, part C, if the assumptions about the choice
rule were changed. In particular, one could assume that the
probability of choosing the optimal treatment is given by the
ratio rule (Equation 4), with M; now defined as the n most
recent payoffs produced by treatment j. This alternative was
evaluated by estimating the two unknown parameters (A and
n) from the learning data for each subject. However, this
revised model also failed to predict the observed ordering of
the diagonal cells shown in Table 1, part C. Therefore, the
problem lies with the use of the fixed sample mean.

Training effects. So far, the frequency array model was
eliminated on the basis of previous research by Busemeyer
(1985), and the multiple-trace model is eliminated by the
results of Table 1, part C. This leaves the adaptive network
model as the only model under consideration that cannot be
ruled out on the basis of parameter-free ordinal tests. How-
ever, we have not yet evaluated the quantitative accuracy of
the adaptive network predictions for learning. The following
analyses answer this question.

Figure 4 shows the relative frequency with which each
treatment was chosen as a function of trial block separately
for each condition. The curves with circles indicate Treatment
3, the curves with triangles indicate Treatment 2, and the
curves with asterisks indicate Treatment 1. The panels in
Figure 4 are organized according to Table 1, and the ratio
(6/¢) is indicated in the upper left corner of each panel.

A 3 (mean difference) x 3 (standard deviation) x 10 (trial
block with five trials per block) repeated measures analysis of
variance was performed. The main effects of trial block, mean

difference, and standard deviation were statistically signifi-
cant, F(9, 315) = 53.07, MS. = .09, p < .001; F(2, 70) = 14.3,
p < .0001; and F(2, 70) = 3.92, p < .03, respectively. The
Mean Difference X Trial Block interaction effect was also
significant, F(18, 630) = 1.71, p < .05. No other interaction
effects were significant.

To evaluate the quantitative predictions of the adaptive
network model, we obtained maximum likelihood estimates
of the mode] parameters separately for each subject. A two-
parameter model was fit to the trial-by-trial choices for all 50
trials and all nine conditions. The choice probabilities were
computed from Equations 1 and 2, with s(¢t + 1) = | or
s(t + 1) = 0 for each treatment, depending on whether that
treatment was chosen on the previous trial. This left only two
parameters, « and 5 = (8 — v - «), which needed to be
estimated from the data (see the Appendix, Equation A5, for
an explanation of 5). The means and standard deviations
(pooled across 36 subjects) were (.16, .11) for « and (.71, .31)
for n.

The Pearson correlation between the predictions of this
two-parameter model and the 270 proportions reported in
Figure 4 equaled .98. A plot of the predicted proportions is
not shown because the high degree of overlap makes it difficult
to discriminate between the predicted and the observed learn-
ing curves. Table 1, part B, shows the numerical predictions
for the last 10 trials of training. The Pearson correlation
between the predicted and observed proportions in Table 1,
parts B and C equals .96. In conclusion, the adaptive network
model provided very accurate quantitative fits to the observed
learning curves.

Discussion

Ideally, theories should be tested on the basis of parameter-
free ordinal tests of basic properties. This is the strategy that
we followed in comparing the frequency array, multiple-trace,
and adaptive network models.

The trequency array model predicts that the effect of payoff
variance on choice probability should be a strictly decreasing
function of training. Previous research by Busemeyer (1985),
however, showed that even after very extensive training (over
2,000 trials), the effect of variance on choice probability
remained constant rather than strictly decreasing.

The multiple-trace model was proposed to account for the
persistent effect of payoff variance on choice probability. This
model predicts that choice probability should be a strictly
increasing function of the ratio (§/¢) at each point of training.
The results of the present experiment show ordinal violations
of this prediction—the choice proportions increased down
the main diagonal of Table 1, part C, rather than decreasing
as predicted by the multiple-trace model.

This leaves the adaptive network model as the only remain-
ing candidate of the three models under consideration. The
adaptive network model is consistent (at the ordinal level)
with the research by Busemeyer (1985) and Estes (1987) and
with the results of the present experiment. For moderate
values of the learning rate parameter, the adaptive network
model predicts that payoff variance will have a persistent
effect on choice probability, but the effect of variance is



184

JEROME R. BUSEMEYER AND IN JAE MYUNG

1.0
.67 . .
o5 - | .83 , | 1.00
0.6 — ] -
0.4 - o]
0.2 " -
¢S L B s B B B B N B N L N R B Bt e
5508__.44 ' FEC A
= 0.6 - 8 .
S DQQEQ
— 0.2 "= -
~—
D_Q.o T T 1T T T V1771 LI DL L N I I | LN L LI L B
33 42 .50
0.8 — - =
O'S—V/J_ _//0/
0.4 "= —
7 | .-:t§h¢>*$s
b L (L L WL L A AL LS N L L A L WL B LB LBt
0 2 4 6 8 100 8 100 2 6 8 10

2 4 &
TRIAL BLOCK (5

4
trials/bl)

Figure 4. Observed choice proportions (P) plotted as a function of training block (5 trials per block
[bl]) with a separate curve for each treatment. (The curves with circles represent Treatment 3 foptimal
treatment], the curves with triangles represent Treatment 2, and the curves with asterisks represent
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predicted to be smaller than the effect of the mean difference,
so that choice probability was expected to be more strongly
correlated with 6 than with the ratio (6/0).

Although our model-testing strategy was based on param-
eter-free ordinal tests, we also believe it is important to
evaluate the quantitative accuracy of a model using a rela-
tively small number of free parameters. We found that the
adaptive network model provided highly accurate quantitative
fits to the observed learning curves—96% of the variance of
270 data points was accounted for by a two-parameter learn-
ing model.

Experiment 2

The rule competition model is based partly on a general
purpose parameter search model called hill climbing. An

alternative parameter search model called error correction was
developed by Kac (1962), Dorfman and Biderman (1971),
Norman (1972), and Thomas (1973) specifically for the uni-
dimensional, single-cutoff rule. The hill-climbing and error-
correction models make qualitatively different predictions
regarding the effects of payoff manipulations on criterion
learning. Therefore, Experiment 2 investigated how individ-
uals learn the cutoff criterion for a fictitious medical catego-
rization task under different payoff matrix conditions. First
we describe the task, and then we describe the predictions for
the optimal, error-correction, and hill-climbing models.

Suppose that there are two populations of patients, 4 and
B, and each one has a normal distribution of diagnostic test
scores (X) with different means (ua, ps) but a common
variance ¢2. Figure 5 is an example showing the frequency
distributions for two populations with means at —15 and 15
and a standard deviation equal to 20.
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Figure 5. The distribution of health indices for patients from Categories A and B in Experiment 2.
(Both distributions are normal with homogeneous variance but different means. The vertical line [x]
indicates the location of the optimal cutoff for the payoff matrices used in this experiment.)

On each trial, » patients are sampled with equal frequency
from two populations (# is called the sample size). The task
is to categorize these n patients on the basis of their test scores.
Each of the n patients is assigned to a diagnostic category
using a single-cutoff rule. Any patient with a score above the
cutoff (X > 6) is diagnosed as a Population Type A patient.
The cutoff criterion, 6, is illustrated in Figure 5 as the vertical
line that intersects the horizontal axis at the score value of 18.

The payoffs are delivered according to a payoff matrix such
as that shown in Table 2. A generic payoff matrix is shown
on the left, and two special cases are shown in the middle and
on the right. For example, if the cutoff rule puts a patient in
category 4’, but that patient actually belongs to Population
B, then the decision maker incurs a loss of 400 under matrix
1, 550 under Payoff Matrix 2, and b in general. The super-
scripts indicate the rank order of each cell according to the
payoff value.

Optimal Model

The optimal decision rule for this task can be determined
from Figure 6, which plots the expected payoff as a function
of the cutoff parameter 8. Two curves are shown, one for each
payoff matrix, and Matrix 2 produces a lower expected payoff.
As can be seen in Figure 6, the maximum expected payoff is

Table 2
Payoff Matrices Used in Experiment 2 With
Populations A and B

Generic

matrix Matrix 1 Matrix 2

Diagnosis A B A B A B
A’ a -b 50 —-400* 100°  -550*
B’ -c d -100° 200’ -50° 50?

Note. Data indicate the payoffs corresponding to each combination
of diagnostic decision category and disease population. The super-
scripts indicate the rank order of the cell value within a matrix.

achieved when the criterion is set equal to 18.5. However,
note that the mean payoff for any positive criterion produces
almost equally good results. This is called the flar maxima
problem (von Winterfeldt & Edwards, 1982). Hereinafter, we
say that the criterion is in the correct region whenever it is
positive.

For the generic payoff matrix, the optimal value of 6 that
maximizes the expected payoff is proportional to In(b + d) —
In(a + c). The quantity (b + d) is the total loss that is incurred
when the A4’ is incorrectly chosen. It includes both the penalty
—b that must be paid for the error on that trial and the loss
of the opportunity to gain d if the error did not occur.
Similarly, (a + c¢) is the total loss that is incurred when B’ is
incorrectly chosen. Note that the total loss produced by each
type of error is identical for Matrices 1 and 2, and conse-
quently the optimal criterion is the same under both condi-
tions.

Hill Climbing Versus Error Correction

The rule competition model assumes that subjects use a
hill-climbing process to search for the best parameter of a
rule. An alternative search model is the error-correction
model. The two models make qualitatively different predic-
tions regarding the effects of payoffs.

First, consider the error-correction model. The basic idea
is that the new criterion equals the old criterion plus an
adjustment, Af. The adjustment is a product of two factors:
the difference in the frequency of each type of error made on
the previous trial and the total loss produced by each type of
error.

Recall that a sample of » stimuli is categorized on each
trial. Define n,° as the number of stimuli incorrectly assigned
to category A’ on the previous trial and ng' as the number
incorrectly assigned to category B’. For the unidimensional
cutoff rule, the difference, Af = n, — ng, determines the
direction of adjustment. The total loss corresponding to the
more frequent type of error determines the size of the adjust-
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Figure 6. Expected payoff produced by using the cutoff rule plotted as a function of the criterion value
separately for Payoff Matrices 1 and 2 for a sample size of 1.

ment. This leads to the following model for the adjustment:
Ab(t) = 0 if Af = 0,

-m(a + ¢) if Af <0,

m(b + d) if Af > 0,

where m is a monotonically increasing function of the loss.’

For example, consider Matrix 1. If B’ was incorrectly
chosen more frequently on the previous trial, then the amount
of decrease depends on the total loss for that error, 50 + 100
= 150. If A’ was incorrectly chosen more frequently on the
previous trial, then the amount of increase depends on the
total loss for that error, 400 + 200 = 600. Because the latter
change is larger, this search model will tend to move the
criterion in the positive direction above zero.

One a priori prediction from the error-correction model is
that there should be no differences produced by using Matrix
1 or Matrix 2 on criterion learning. This is because the total
loss produced by each type of error is identical for the two
matrices.

Now consider the predictions of the hill-climbing model
with regard to the effects of payoffs. In contrast to the error-
correction model, the hill-climbing model predicts that Matrix
1 will produce more rapid learning than Matrix 2. For Matrix
1, correctly choosing B’ produces the payoff with the highest
rank, which tends to move the criterion in the positive direc-
tion. For Matrix 2, correctly choosing A’ produces the payoff
with the highest rank, which tends to move the criterion in
the negative direction.

Recall from Figure 6 that the criterion is in the correct
region whenever it is positive. Table 3 shows the probability
that the hill-climbing model (Equation 3) selects a criterion
in the correct region for Payoff Matrices 1 and 2 as a function
of training block and sample size.® For the small sample size
condition (n = 1), the predicted rate of learning for Matrix 1
is greater than that for Matrix 2. In fact, there are almost no
signs of learning for Matrix 2 for the small sample size.
However, for the large sample size condition (n = 15), the
difference in rate of learning between the two payoff matrices
is eliminated. In summary, the hill-climbing model predicts a
three-way interaction effect between payoff matrix, sample
size, and training block.

3 A slightly different error-correction model is obtained by assum-
ing that n independent adjustments are made separately for each of
the 7 category decisions made on a single trial. In this case, the sum
of the n individual adjustments equals A8(t) = a[n. m(b + d) — ns-
m(a + c)]. However, this model predicts that 150 trials of training
with sample size n = 1 is equivalent to 50 trials of training with
sample size n = 3. The results of Experiment 2 indicate that this
prediction is incorrect.

¢ The predictions were generated from Equation 3 by averaging
over 1,500 simulations for each condition. The mean criterion for
the first two trials was set to zero so that the probability of selecting
a criterion in the correct region equaled .5 on the first two trials for
all conditions. The effect of the random direction was eliminated by
setting A = 1. The S-shaped function m(#) was set equal to the siep
function, and the step size was set at ¢ = 5.



ADAPTIVE DECISION MAKING 187

Table 3
Proportion of Trials That the Criterion Was in the Correct
Region for Experiment 2

Payoff matrix
i 2
Training block Predicted Observed Predicted Observed
n=1
1-10 .53 44 .50 .52
11-50 .55 .60 .51 40
51-150 .58 .63 51 .39
n=73
1-10 .54 .63 .53 47
11-50 .64 .86 .57 .74
51-150 .73 91 .61 .84
n=15
1-10 .60 .63 .60 .61
11-50 .82 .92 .79 .85
51-150 .90 .87 .90 .94

Note. The correlation between the 18 predicted and [8 observed
proportions equals .84.

The present experiment also permits a direct test of the two
learning models on the basis of a sequential analysis of the
trial events. The error-correction model predicts that the
direction of the adjustment on any trial should be only a
function of the difference in frequency of each type of error,
Af, from the preceding trial. In particular, the adjustment
should be independent of the events from two or more trials
back. In contrast, the hill-climbing model predicts that the
direction of the criterion adjustment depends on the product
of the change in payoffs and the change in criterion values
from the two preceding trials (see Equation 3).

Method

Experimental tests of the error-correction and hill-climbing models
were conducted using a version of the probabilistic categorization
task called the cutoff report technique, developed by Kubovy and
Healy (1977). It may be helpful to point out the differences between
this task and the standard category response task. For the category
response version, the trial begins by randomly sampling a stimulus,
and the subject chooses the category (perhaps by using a cutoff, but
this is not directly observed). For the cutoff report version, the process
is reversed. The subject picks a criterion, which is observed, and the
computer uses this criterion to categorize the stimulus. The main
advantage of the cutoff report technique is that the trial-by-trial
criterion adjustments are observable, which is crucial for the direct
tests of the learning models.

Although the exact relation between the two tasks may be debatable
(see Dorfman, 1977), experiments by Kubovy and Healy (1977)
indicate that the two tasks produce indistinguishable results in terms
of the estimated placement of the criterion. In any case, we are not
claiming that the two tasks are equivalent but rather that the cutoff
report task is worthy of study because it is an important decision-
rule-learning problem that naturally arises in many applications,
such as medical diagnosis and personnel selection.

Procedure. At the beginning of the experiment, subjects were
asked to imagine that they were physicians charged with the task of
assigning patients to diagnostic categories on the basis of clinical
(central nervous system [CNS] activity) test scores. Half the subjects

were told that Category A patients had a disease, and the scores for
these patients were normally distributed, with 4 = 15 and ¢ = 20;
Category B patients did not have the disease, and the scores for these
patients were normally distributed, with 4 = —15 and o = 19.” The
other half of the subjects were given the same instructions except that
the assignment of disease to categories was reversed. This information
was also illustrated graphically by using a line interval with the 50th
percentile located at the center, the 2nd percentile score typed at the
left endpoint, and the 98th percentile score typed at the right end-
point. This graphical information was displayed on a sheet of paper
during the entire experiment.

Subjects were given the following instructions concerning how to
respond on each trial. At the beginning of each trial, they were asked
to pick a criterion cutoff (an integer ranging from —50 to 50). All
patients with scores greater than the cutoff were placed in Category
A’, and all patients with scores less than or equal to the cutoff were
placed in Category B’. The subjects were told that the computer
randomly sampled patients with equal frequency from each category
and classified the patients according to the chosen criterion. After
this they were given a feedback table including (a) the trial number,
(b) the criterion selected on that trial, (c) the payoff matrix, (d) the
number of patients correctly and incorrectly diagnosed for each
category, (e¢) the net payoff (sum of gains and losses) for that trial,
and (f) the total of the net payoffs summed across trials.

At the beginning of the first session, subjects were given 14 practice
trials with two different symmetric payoff matrices. Then they were
told that a new payoff matrix would be used during the first session.
A S5-min break was given after completing the first session, which
lasted 30 min. Subjects were told that a new payoff matrix would be
used during the second session. All subjects were tested individually
in a quiet room. An IBM-XT was used to present stimuli and collect
responses.

Design. Two experimental factors were investigated, payoffs and
sample size. The first factor was manipulated by paying subjects
according to Payoff Matrix 1 or 2, which were described earlier. The
second factor, sample size, refers to the number of patients (n)
randomly sampled and categorized by the computer on each trial.
Three sample sizes were used: n= 1, n= 3, and n = 15.

Each subject experienced only one sample size condition, and 12
subjects were randomly assigned to each of the three sample sizes
(n=1, n= 13, and n = 15). Each subject received two training sessions
(150 trials per session), one session with Matrix 1 and one with Matrix
2. However, the direction of the bias produced by each payoff matrix
was reversed across sessions by reversing the assignment of labels to
rows and columns. For example, if 4 was assigned to the first row
and column of Matrix [ in the first session, then B would be assigned
to the first row and column of Matrix 2 in the second session. This
would cause the optimal criterion to be located at 18 in the first
session and at ~18 in the second session. Six subjects within each
sample size condition received an 18 optimal criterion condition
during the first session and a —18 optimal criterion condition during
the second session, and the other 6 received the opposite order. Three
subjects within each subgroup of 6 received Matrix 1 during the first
session followed by Matrix 2 during the second session, and the other
3 received the opposite order. Altogether, this produced 3 (sample
size) X 2 (order of direction of bias) X 2 (order of payoff matrix) =12
groups with 3 subjects per group. For purposes of analyses, the sign
of the observed criterion was multiplied by —1 for sessions on which

7 The standard deviations used in Experiment 2 were not exactly
homogeneous. This was done to encourage subjects to attend to both
the mean and standard deviation of each distribution. This small
difference in standard deviations is inconsequential, because the
optimal criterion with unequal variances equals 18 rather than 18.5.
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the optimal criterion was originally —18, making the correct region
positive for all conditions.

Subjects. The subjects were 39 students from Purdue University
(primarily humanities and social science majors) who volunteered for
pay. The amount of pay was contingent on performance (each point
was worth 25¢/n, and all subjects started the experiment with 10,000
points). On the average, subjects were paid approximately $6.00. The
data from 3 subjects (1 from each sample size condition) were dropped
because of subjects’ failure to follow instructions.

Results

Proportion of trials in the correct region. Recall that the
error-correction model predicted no effect of payoff matrices
on the probability of selecting a criterion in the correct region,
while the hill-climbing model predicted greater learning for
Matrix 1 under the small (n = 1) sample size condition. Table
3 shows the observed proportion of trials that the criterion
was in the correct region for each payoff matrix as a function
of trial block and sample size.

First consider the results for the small (n = 1) sample size.
For Matrix 1, the proportion increased substantially across
training, but for Matrix 2, the trend is in the opposite direc-
tion. For the larger sample sizes, the proportion increased
substantially at about the same rate for both matrices. These
results are consistent with the predictions of the hill-climbing
model, and they are inconsistent with the predictions of the
error-correction model.

A 3 (sample size) X 2 (payoff matrix} X 3 (training block)
analysis of variance with repeated measures on the last two
factors produced a significant three-way interaction effect,
F(4, 66) = 2.88, MS. = .031, p = .0293. A two-way repeated
measures analysis was conducted separately for each sample
size. The training block by payoff matrix interaction effect
was significant for the small sample size, F(2, 22) = 5.52,
MS. = .0308, p = .0114, but only the training block effect
was significant for the larger sample sizes, F(2, 22) = 21.57,
MS. = .032, p = .0001, for n = 3; F(2, 22) = 12.67, MS. =
.048, p = .0002, for n = 15.

Sequential analyses. A direct test of the hill-climbing and
error-correction models can be performed by the following
sequential analysis of trial events. According to the product
rule used to define 4 in Equation 3, the hill-climbing model
predicts a crossover interaction effect of previous change in
criterion and change in net payoff on the current change in
criterion.

Column 6 of Table 4 presents the proportion of trials that
subjects increased the criterion (given that a change occurred).
These proportions were computed separately for each of 12
different conditions defined by the conjunction of three pre-
ceding events: (a) the sign of the difference between the
frequency of errors for each category (column labeled Af), (b)
the sign of the change in criterion on the preceding trial (the
column labeled Af), and (c) the sign of the change in net
payoffs on the preceding trial (column labeled Av).

Referring to column 6 of Table 4 (Proportion of increase),
the unique effect of the hill-climbing adjustment can be seen
when Af and A#@ are held fixed and Av varies. Compare the
first pair of rows within each set of four rows when the
criterion was decreased on the previous trial; that is, compare

Table 4
Sequential Analysis for Experiment 2
Prior event . .
_ .~ Frequency of Proportion of Proportion of
Af A8 Av event? change® increase®
- - - 387 91 .58
- - 4+ 363 71 47
-+ - 649 92 33
- + + 493 77 46
o - - 190 .92 74
0 - + 640 .63 .54
6 + - 186 91 .39
0o + + 657 .68 49
+ - - 545 93 .67
+ - 4+ 489 .74 53
+ + - 344 .89 41
+ + o+ 331 .66 .55

Note. Af = sign of difference between the number of incorrect A’
and B’ decisions on the previous trial; Af = sign of the adjustment
in criterion made on previous trial; Av = sign of change in average
payoffs from previous two trials.

2 Number of trials. ° Ignores the direction of change. ¢ Conditioned
on the occurrence of a change.

the two rows with minus signs under Ad. The proportion of
increases in criterion on the current trial is larger following a
decrease in net payoff (minus signs under Av) as compared
with an increase in net payoff (plus signs under Av). Next
compare the second pair of rows within each set of four rows
when the criterion was increased on the preceding trial; that
is, compare the two rows with a plus sign under Af. Now the
proportion of increases in criterion on the current trial is
larger following an increase in net payoff as compared with a
decrease in the net payoff. In sum, there is a crossover
interaction effect of previous change in criterion and change
in net payoff consistent with the hill-climbing principle and
contrary to the error-correction model.

Discussion

The rule competition model is partly based on a general
parameter search model called hill climbing. Past research on
criterion learning in probabilistic categorization tasks has only
considered the more specialized error-correction learning
model. The present research indicates that this model is
insufficient and that the adjustment on each trial is also
influenced by a hill-climbing mechanism.

There are two lines of evidence supporting this conclusion.
Indirect evidence was obtained from the effect of the payoff
matrix manipulation—Matrix 2 was more difficult to learn
than Matrix 1 for the small (n = 1) sample size condition.
The error-correction model predicted that this manipulation
would have no effect, because the total loss produced by each
type of error is the same for both matrices. The hill-climbing
model correctly predicted that Matrix 2 would be more diffi-
cult, especially for small sample sizes.

Direct evidence for the hill-climbing model was obtained
from sequential analyses. As predicted by the hill-climbing
model, there was a systematic effect of the change in average
payoffs (Av) from the previous two trials on the criterion
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adjustment, even when the difference in the frequency of
errors (Af) was held fixed. When A’ errors occur more fre-
quently than B’ errors (Af > 0), for example, the error-
correction model always predicts an increase in the criterion
(this is also true of the version described in Footnote 3);
instead, the adjustment systematically decreased when the
previous positive adjustment produced a decrease in net pay
as predicted by the hill-climbing model.

Experiment 3

In the previous two experiments, we tested the hill-climbing
part and the adaptive network part of the rule competition
model separately. We designed Experiment 3 to test the
combined rule competition model with a more complex
decision task that requires using the hill-climbing model in
conjunction with the adaptive network model.

The medical classification problem described in the general
introduction was used to test the combined rule competition
model. On each trial, hypothetical patients were randomly
sampled from two populations, A and B. These patients were
to be assigned to disease categories on the basis of a diagnostic
test score X. Each incorrect category decision resulted in a
loss of 25 monetary units, and subjects were instructed to
minimize their losses across trials.

Patients were categorized by asking subjects to choose one
of the following three categorization rules®:

G: If X> ¢, then report A; otherwise report B.
H: If X> —6 and X < 6, then report A; otherwise report B.
I: If X< —8orX>6,then report A; otherwise report B.

Subjects were also asked to select the criterion parameter, 0,
corresponding to the chosen rule.

Two experimental factors were manipulated, sample size
and stimulus distribution. The number of patients sampled
on each trial (i.e., the sample size) was previously shown in
Experiment 2 to have a major effect on rate of criterion
learning. Therefore, small (n = 3) and large (n = 15) sample
sizes were used in this experiment to manipulate the difficulty
of the criterion learning part of the task.

The distribution of test scores was manipulated to vary the
nature of the optimal categorization rule, The test scores from
each population were normally distributed, but the means
and variances were different for each population. Figure 7
illustrates three different pairs of distributions. For all three
pairs of distributions in Figure 7, the test scores for Category
B were normal with ¢ = 0 and ¢ = 20. The test scores for
Category A were also normal, but the mean and standard
deviation varied across the three pairs in Figure 7.

Optimal Model

Figure 8 illustrates the expected payoff produced by each
rule (as a function of the criterion) for each distribution. For
the first pair of distributions (top panel of Figure 7), the test
scores for Category A have p = 30 and ¢ = 19. The top panel
of Figure 8 shows that Rule G is optimal, and the optimal
criterion for Rule G is located at § = 15.
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Figure7. The distribution of health indices for patient samples from
Categories A and B in Experiment 3. (Three pairs of distributions
[D] are shown, and each pair of distributions is normal {N]. The
means and variances are indicated in the upper left corner.)

For the second pair of distributions (middle panel of Figure
7), the test scores for Category A have . = 1 and o = 10. The
middle panel of Figure 8 shows that Rule H is optimal, and
the optimal criterion for Rule H is located at 6 = 14.

For the third pair of distributions (bottom panel of Figure
7), the test scores for Category A have 4 = —1 and ¢ = 30.
The bottom panel of Figure 8 shows that Rule I is optimal,
and the optimal criterion for Rule I is located at § = 24.

Rule Competition Model Predictions

The rule competition model uses both the hill-climbing
part and the adaptive network part to generate predictions for
the probability of choosing each rule. A stringent test of the
model was conducted using a new model-testing methodol-
ogy. We did not fit the model to the data from Experiment 3.
Instead, the learning rate parameters used in Equations 2 and
3 were fixed equal to the estimates obtained from Experiments
1 and 2. Using this method, we could make precise quanti-
tative predictions prior to looking at the results from Experi-

® The technique of asking subjects to choose a rule from a set of
rules has been used by previous decision researchers to investigate
how decision rules are selected on the basis of accuracy-effort trade-
offs (e.g., Christensen-Szalanski, 1978). However, this previous work
did not investigate decision rule learning, which is the focus of the
present experiment.
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Figure 8. Expected payoff produced by a rule for a sample size of 1
for Experiment 3, plotted as a function of the criterion value with a
separate curve for each rule (G, H, or I) and a separate panel for each
distribution (D) condition.

ment 3. Table 5 shows the predicted probability of choosing
each rule averaged across the last 20 of 100 training trials for
each condition of the 3 (distribution) X 2 (sample size)
factorial design.® On the basis of this table, we made the

Table 5
Comparison of Predicted and Observed Rule Choices for
Experiment 3

Stimulus Data Rule
distribution source G H I
n=3
| Predicted .63 .04 33
1 Observed .69 .08 .23
2 Predicted .24 .58 .18
2 Observed .23 58 .19
3 Predicted .37 .14 .49
3 Observed 41 17 42
n=15
I Predicted .66 .01 .33
1 Observed 72 .04 24
2 Predicted 15 .74 11
2 Observed .07 .82 11
3 Predicted .30 .05 .65
3 Observed .23 12 .65

Note. Cells contain the average choice probabilities for the last 20
of 100 training trials. The predicted rows contain the predictions from
the combined hill-climbing adaptive network model. The predictions
were based on learning rate parameters estimated from Experiments
1 and 2, and no parameters were estimated from Experiment 3. The
observed rows contain the data actually observed. The correlation
between the 18 predicted and 18 observed proportions equals .97.

following predictions:

1. The optimal rule is predicted to be the modal choice
under all conditions, but suboptimal rules will continue to
compete with optimal rules throughout training. For Distri-
bution 1, the optimal Rule G will compete primarily with
Rule I. For Distribution 2, the optimal Rule H will compete
with both Rules G and I. For Distribution 3, the optimal Rule
[ will compete primarily with Rule G.

2. Distribution | is predicted to produce the highest prob-
ability of choosing the optimal rule under the small sample
size condition, but Distribution 2 is predicted to produce the
highest probability for the large sample size. For both sample
sizes, Distribution 3 is predicted to produce the lowest prob-
ability of choosing the optimal rule.

3. Increasing the sample size is predicted to increase the
probability of choosing the optimal rule from an average of
.57 for the small sample size to an average of .68 for the large
sample size (averaged over distributions).

Method

Procedure. At the beginning of each session, subjects were pro-
vided complete information about the distribution of clinical test
scores (CNS activity) for the two disease categories (A equals disease
present, and B equals disease absent). They were told that both
distributions were normal (bell shaped), and they were told the mean
and standard deviation of each distribution. In addition, the subjects
were shown a line interval indicating the 2nd, 50th, and 98th per-
centile scores for each distribution. This information was available
during the entire session. Students familiar with signal-detection
theory (e.g., engineers) could theoretically work out the optimal rule.

Subjects were told to imagine that they were physicians assigned
the task of classifying fictitious patients into one of two categories on
the basis of clinical test scores, using one of the three previously
described rules (G, H, or I). On each tnal, the subject first selected
one of the three rules and then chose a criterion for the rule. Following
this choice, the computer printed a verbal description of the rule with

® This note briefly describes the computer simulation used to
generate the predictions for Experiment 3. Rule selection was based
on Equations 1 and 2, using the same parameters as the mean of the
estimates from Experiment 1. The similarity parameter, s(t + 1), was
set to one for the rule that was applied on the previous trial and zero
otherwise. (We could have estimated the similarity between each pair
of rules, which would have improved the fit of the model, but we
decided not to do this to make parameter-free predictions.) The
estimated performance of each rule on the first trial is unknown and
so the initial estimate for each rule was set equal to the payoff expected
on the basis of random guessing (—12.5s, where n = sample size).
The performance estimates for all subsequent trials were determined
by Equation 2. The initial value of the criterion was set to 50 (the
midpoint of the scale) for the first trial and 40 for the second trial.
All subsequent criteria were generated by Equation 3, using the same
parameters as Experiment 2 (see Footnote 6). Five hundred simulated
subjects were generated by the following algorithm. First, a rule was
randomly sampled for each trial according to Equation 1. Second, a
criterion value was generated for each rule, using Equation 3. If the
criterion fell outside the interval [0, 100], a small random magnitude
was added or subtracted to bring it back into the interval. Third, the
computer randomly sampled n fictitious patients according to the
distributions shown in Figure 7, and categorized the patients accord-
ing to the rule and criterion chosen for the current trial. Finally, the
performance estimates were updated according to Equation 2.
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the chosen criterion. At this point, the computer randomly sampled
a number of patients and categorized each patient using the rule and
criterion chosen by the subject. Finally, the computer printed a
feedback table indicating the trial number, rule, criterion, payoff
matrix, number of patients correctly and incorrectly classified sepa-
rately for each category, amount lost on that trial, and total amount
of money remaining. (Each subject started with an initial sum equal
to 6,700 and 49,000 points for the small and large sample size groups,
respectively.)

Subjects were initially given nine practice trials with the following
pair of distributions. Category B had a 4 = 0 and ¢ = 20, whereas
Category A had a u = —15 and o = 40. Following practice, they were
given the three main sessions with a 5-min break between sessions.
Subjects were tested individually in a quiet room. An IBM-XT was
used to present stimuli and record responses.

Design. Each subject experienced all three distribution conditions
(shown in Figure 7) during three sessions of training with 100 trials
per session. One of the three distribution conditions was assigned to
each session, and the presentation order was counterbalanced across
subjects. Each subject received one of the two (n = 3 or n = 15)
sample sizes during all three sessions.

Subjects. A total of 68 student volunteers from Purdue University
participated. All participants were required to have passed an under-
graduate statistics course. All subjects were paid contingent on per-
formance (each point was worth .10¢ for the small sample size group
and .01¢ for the large sample size group). On the average, subjects
earned $10 for the experiment.

Large individual differences were expected on the basis of a stu-
dent’s mathematical background, and so the 68 subjects were divided
into two groups—one group of 20 engineering/mathematics students
and another group of 48 humanities/social science students. The
engineering/mathematics subjects were expected to be able to identify
the optimal rule at the very beginning of training, but we did not
wish to prevent them from participating for ethical reasons. Eight
humanities/social science students were randomly assigned to each
of the 2 (sample size) X 3 (presentation order), or a total of six,
experimental conditions.

Results

Because of large educational differences between the engi-
neering/mathematics versus humanities/social  science
groups, separate analyses were conducted on each group.
Essentially, the engineering/mathematics group identified the
optimal rule within the first few trials and consistently used
it throughout training. This result can be interpreted in terms
of the present theory as follows: The performance estimate
for the optimal rule was relatively large at the very beginning
of training for this group because of their prior education.

The results for the humanities/social science group are
presented in Table 5 along with the predictions from the rule
competition model. Recall that optimal performance is
achieved by always choosing Rule G for Distribution 1, Rule
H for Distribution 2, and Rule I for Distribution 3.

In agreement with our first prediction, the optimal rule was
the modal choice under all conditions, but suboptimal rules
continued to compete with optimal rules throughout training.
For Distribution 1, the Optimal Rule G competed primarily
with Rule 1. For Distribution 2, the Optimal Rule H competed
with both Rules G and 1. For Distribution 3, the Optimal
Rule I competed primarily with Rule G.

In agreement with our second prediction, Distribution |
produced the highest probability of choosing the optimal rule

for the small sample size condition, but Distribution 2 pro-
duced the highest probability for the large sample size. For
both sample sizes, Distribution 3 produced the lowest proba-
bility of choosing the optimal rule.

Increasing the sample size increased the probability of
choosing the optimal rule from an average of .57 for the small
sample size (which is exactly what we predicted) to an average
of .73 for the large sample size (which is only 5% higher than
our prediction of .68).

The quantitative agreement between the predicted and
observed choice probabilities is excellent. The correlation
between the 18 predicted and observed choice proportions
equals .97. We consider this excellent because no parameters
were estimated from the data of Experiment 3.

One might ask how important the hill-climbing part of the
rule competition model is for predicting rule choice. To
answer this question, we recalculated the predictions with the
hill-climbing part of the model “turned off.” This resulted in
a significant reduction in the squared correlation between the
predicted and observed choice proportions: .94 with hill-
climbing “turned on,” and .54 with hill-climbing turned off,
that is, there was a 40% reduction in the percentage of
predicted variance. Essentially, the rate of rule learning was
substantially reduced by turning off the hill-climbing criterion
search. For example, the probability of choosing the optimal
rule for Distribution 2 dropped from .58 to .38 under the
small sample size, and it dropped from .74 to .40 under the
large sample size.

We calculated the statistical significance of the effects of
distribution and sample size on proportion of optimal rule
choice by calculating a 3 (distribution) X 2 (sample size) X 10
(trial block) analysis of variance, using the proportion of
optimal rule choices within each block of 10 trials for each
subject as the dependent variable. The following main effects
were significant: distribution, F(2, 88) = 5.69, p < .005;
sample size, F(1, 44) = 5.09, p < .03; trial block, F(9, 396) =
20.47, p < .0001; and the Sample Size by Trial Block inter-
action effect, F(9, 396) = 2.47, p < .01. No other effects were
significant at the .05 level.

Discussion

The purpose of Experiment 3 was to test the joint operation
of both the hill-climbing and adaptive network parts of the
rule competition model in a task that required subjects to
learn both rules and criteria. Quantitative, parameter-free
predictions were generated from the rule competition model
by using the parameters estimated from Experiments 1 and 2
to generate the predictions for Experiment 3. The high cor-
relation (.97) between the predicted and observed probabilities
of choosing each rule under each stimulus distribution and
sample size condition provides convincing support for the
model.

The role of the hill-climbing part of the rule competition
model was evaluated by comparing predictions with this part
of the model either turned on or turned off. Turning the hill-
climbing part of the model off eliminates all criterion learning,
and this had the effect of drastically reducing the rate of rule
learning. The percentage of variance predicted by the rule
competition model was reduced by 40% when the hill-climb-
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ing part of the model was turned off. In conclusion, both parts
of the model (the hill-climbing model and the adaptive net-
work model) are needed to yield accurate predictions for rule
learning.

General Discussion

Extensive training with veridical feedback and monetary
incentives does not guarantee that something close to an
optimal decision rule eventually will be learned. In fact, the
learning process does not seem to converge toward any single
rule, but instead it continues to explore a range of feasible
rules. Suboptimal performance cannot be explained simply
in terms of flat maxima (von Winterfeldt & Edwards, 1982),
because this fails to specify how steep the objective function
must be and how much training is needed to learn an optimal
strategy. A satisfactory answer to the question of what is
learned and how fast requires a specific model of the learning
process. We proposed and tested a model of decision rule
learning called the rule competition model.

The rule competition model consists of two interactive
learning processes: (a) an adaptive network model that learns
the payoff probabilities produced by each rule and (b) a
parameter search model that learns the parameters for each
rule. We designed the first experiment to compare the predic-
tions from three different probability learning models, and
the results supported the adaptive network model over a
frequency array model and a multiple-trace model. We de-
signed the second experiment to compare the predictions from
two different parameter search models, hill climbing versus
error correction, and the results supported the hill-climbing
model, although a mixture of the two search models remains
feasible. In the third experiment, we used a task that required
both rule and parameter learning, and the rule competition
model provided accurate parameter-free predictions for the
effects of stimulus distribution and sample size on final per-
formance. In conclusion, these results indicate that the rule
competition model provides a simple yet accurate description
of the evolution of decision rules on the basis of experience
with outcome feedback.

Multidimensional Spaces

In the preseént experiments, we focused on the learning of
decision rules for unidimensional stimuli that involve a single
criterion only. However, the hill-climbing model can be used
with multidimensional stimuli and rules that involve more
than one parameter. For example, the linear categorization
rule investigated by Ashby and Gott (1988) requires the
decision maker to learn two parameters, the slope and the
intercept of a line that divides the stimulus plane into halves.
Our Equation 3 can be applied directly to this learning
problem by defining 4 as a two-dimensional parameter vector
containing the two parameters of the linear rule.

In fact, the hill-climbing model was initially designed for
multidimensional stimuli (see Busemeyer, Swenson, & La-
zarte, 1986) and earlier applications of the hill-climbing learn-
ing model have already demonstrated that the model can be

used successfully to predict performance from multidimen-
sional learning experiments (see Busemeyer & Myung, 1987;
Busemeyer et al., 1986; Nosofsky & Gluck, 1989). We used
unidimensional stimuli in Experiment 2 to provide simpler
and more direct qualitative tests of the hill-climbing model in
comparison with the error-correction model (the latter was
developed only for unidimensional stimuli).

Extensions to Other Decision Tasks

So far, we have focused on the problem of learning cate-
gorization rules for probabilistic categorization tasks. How-
ever, the rule competition model can be applied to any
decision task that involves learning to select one rule from a
set of mutually exclusive decision rules.

For example, consider a generalization of the probabilistic
categorization task called the deferred decision rask (Buse-
meyer & Rapoport, 1988; Myung & Busemeyer, 1989). In
this task, the decision maker is asked to make a diagnosis on
the basis of a sequence of test results. After purchasing and
observing each test result, the decision maker can either stop
and make a terminal diagnosis or continue sampling by
purchasing another test. Two different stopping rules are
possible—a critical-difference rule and a counter-race rule.
According to the critical-difference rule, the decision maker
accumulates the difference in evidence favoring each diagnosis
and stops as soon as this difference exceeds a threshold. In
the counter-race rule, the decision maker sums the evidence
for each diagnosis separately in two counters and stops as
soon as one of the counters exceeds a criterion.

The rule competition model could be used to describe how
individuals learn to prefer one stopping rule over another.
The adaptive network model could be used to learn the
estimated performance for each rule, and the parameter search
model could be used to search for the best criteria.

More generally, the rule competition model could also be
applied to other decision tasks such as multiattribute decisions
(e.g., Payne, Bettman, & Johnson, 1988), or information-
processing tasks such as attention (Navon & Gopher, 1979;
Nosofsky, 1987; Sperling & Dosher, 1986) and motor per-
formance (Meyer, Abrams, Kornblum, Wright, & Smith,
1988). Finally, the rule competition model may be applicable
to rule learning in complex hypothesis testing or problem-
solving domains with graded and unreliable feedback, and
the hill-climbing model may be used to learn connectivity
weights in adaptive network models for general objective
functions. In conclusion, the rule competition model may
provide a very general framework for understanding how
humans learn complex rules on the basis of graded and
unreliable feedback.
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Appendix
Mathematical Details of the Adaptive Network Model

S(¢) is defined as a p X | situation vector used to represent
information about the experimental condition (payoffs, prior proba-
bilities, and stimulus distributions) present on trial 7 (e.g., p = 4 in
Figure 1). R(z) is a ¢ X | rule vector representing information about
the general rule (e.g., cutoff rule) that was used to make the category
decision on trial # (e.g., ¢ = 5 in Figure 1). The outer product S(z)R(¢)’
forms a p X g matrix that can be stretched out to form a (p - ¢g) X |
input vector, Z(z), which is the input to the top layer of Figure 1.
Binary valued features were used in Figure 1 for simplicity, but
generally, a continuous range of feature values can be used to repre-
sent different degrees of activation of each feature in the vectors S
and R.

V(¢) is an r X 1 payoff vector representing the actual payoff
presented on trial 7. Each element of V represents a different payoff
level (e.g., low, medium, and high). P(¢) is an r X 1 probability vector
representing the decision maker’s estimated probability of each payoff
level, and it is the output from the middle layer of the network in
Figure 1 (e.g., r = 3 in Figure 1). W(?) is the (p - ¢) X r connection
weight matrix that connects the input Z() to the output P(z). P(¢) is
obtained from the matrix product:

P(t) = W' (1)Z(2). (A1)

The weight matrix is updated according to the Hebb-delta rule (Heath
~ & Fulham, 1988; Myung & Busemeyer, 1992):

Wi+ 1y=3- - Wit)+a  ZOIVE) -y - PQ).  (A2)

Finally, let u be an r X | worth vector that connects each payoff level
to the final performance estimate. The estimated performance of a
rule being considered on trial ¢ is the inner product:

U@) = u’P(1). (A3)

Now suppose a rule, Rule X, was applied on trial 7, and a new rule,
Rule Y, is being considered for trial 7 + 1. In this case, let Z(7) = Zy
be the input vector for Rule X used on trial 7, and let Z(¢ + 1) = Zy

be the input vector for Rule Y used on trial 1 + 1. Then,
Ui+ )=uW(t+ DZt+ 1),
=u{f - WD +o- [V()—v POIZ(YZ(+ 1),
=8 - wW({Z(t+1)
+a - [WV(@) -~y - w'PW] Z'(OZ( + 1),
and substituting Z(f) = Zyand Z(t + 1) = Zy,
Udt+1)=8 - WW(OZy+a - [WV()—y - wW()Zy] - Zx'Zy,
=8-Udt)+ta-st+1) - M0)—v - U], (A4)

where the scalars, Uy(f) = wW'()Zy and Uy(t) = wW’(t)Zy, are the
performance estimates of rules X and Y after ¢ feedback trials, the
scalar v(r) = u’V(z) is simply the worth of the payoff presented on
trial ¢, and the scalar s(t + 1) = Z'(1)Z(t + 1) = Zx'Zy is the inner
product between the input vectors for Rule X from trial 1 and Rule
Y from ¢ + 1. Using Equation A4, the feature values do not need to
be specified—only the similarity (inner product) needs to be specified.
[Note that s(¢ + 1) = 0 for orthogonal vectors.]

Without loss in generality, we can assume that the input vectors
are scaled to have a maximum length equal to 1, that is, Z’'Z = |.
The new performance estimate for the rule used on the previous trial
is obtained by setting Z(r + 1) = Z(t) and s( + 1) = 1, and in this
case, Equation A4 reduces to

Ue+ D=3 -Un+a-  M)—v - Ul
B - NUY+a- ) (A5)
=n-UD+a- W),

i

where n = (8 — a - v). If the same rule is applied repeatedly under a
fixed experimental condition, then for ¢ > 0,

U+ ) =7U1)+a - k), for k=1 ...t (A6)
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