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Abstract  

This chapter presents a connectionist or artificial neural network approach to 

decision making. An essential idea of this approach is that decisions are based on the 

accumulation of the affective evaluations produced by each action until a threshold 

criterion is reached. This type of sequential sampling process forms the basis for decision 

making in a wide variety of other cognitive tasks such as perception, categorization, and 

memory. We apply these concepts to several important preferential choice phenomena, 

including similarity effects, attraction effects, compromise effects, loss aversion effects, 

and preference reversals. These analyses indicate that a relatively complex model of an 

individual’s choice process reveals a relatively simple representation of the individual’s 

underlying value structure. 
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What are computational models of cognition? 

 In his classic book on computational vision, Marr (1982) proposed three levels of 

theories about cognitive systems. At the highest level, theories aim to understand the 

abstract goals a sys tem is trying to achieve; at an intermediate level, theories are designed 

to explain the dynamic processes used to achieve the top level goals; and at the bottom 

level, theories attempt to describe the neurophysiologic substrate of the second level.  

Judgment and decision-making researchers have generally been concerned with 

theorizing at the higher and more abstract levels. From this higher point of view, 

explanations based on principles such as context dependent weights, loss aversion, and 

anchoring-adjustment are considered satisfactory.  This chapter presents arguments for 

viewing decision making from the perspective of a lower level microanalysis. By doing 

so, we can try to answer deeper questions such as: why decision weights change across 

contexts, why people are loss averse, and why anchors are more influential than 

adjustments. 

Computational models are constructed from simple units that conform to a small 

number of elementary principles of cognition, but a large number of these simple units 

are connected together to form a dynamical system. Although the properties of the 

individual units are simple, the emergent behavior of the ensemble becomes fairly 

complex.  Computational models appear in a variety of forms, but this chapter focuses on 

a class known as artificial neural networks, connectionist networks, or parallel distributed 

processing systems (see Grossberg, 1988; and Rumelhart & McClelland, 1986, for 

general overviews of these models). This class of computational models is designed to 

form a bridge that mediates between the neural and behavioral sciences.  
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How does the brain make decisions?   

A decade ago, the brain was an impenetrable black box, but with recent advances 

in neuroscience, we can start to look inside. It is informative to point out a conclusion 

arising from converging evidence obtained through neuroscience research on decision-

making. Neuroscientists have examined decision-making processes in the brains of 

Macaque monkeys using single cell recording techniques (for reviews, see Gold & 

Shadlen, 2001, 2002; Platt, 2002; Schall, 2001), as well as from the brains of humans 

using evoked response potentials (Gratten, Coles, Sirevaag, & Donchin, 1988). A simple 

but important conclusion from this work is that decisions in the brain are based on the 

dynamic accumulation of noisy activation for each action, and the action whose 

activation first exceeds the threshold is chosen. This process is illustrated in Figure 1, for 

three actions, with each trajectory representing the cumulative activation (i.e., preference 

state) for an action. The horizontal axis represents deliberation time and the vertical axis 

indicates the activation for each action at each moment in time. In this figure, action A 

reaches the threshold first, and is chosen at time T = 425. 
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Figure 1: The decision process for a choice among three actions 
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This dynamic decision process is known as a sequential sampling process 

(DeGroot, 1970). It forms the basis of decision models used in a wide variety of cognitive 

applications including sensory detection (Smith, 1995), perceptual discrimination 

(Laming, 1968; Link & Heath, 1975; Usher & McClelland, 2001; Vickers, 1979), 

memory recognition (Ratcliff, 1978); categorization (Nosofsky & Palmeri, 1997; Ashby, 

2000), probabilistic inference (Wallsten & Barton, 1982) and preferential choice 

(Aschenbrenner, Albert, & Schmalhofer, 1984; Busemeyer, 1985). 

Computational models for Decision Making. 

 Several artificial neural network or connectionist models have been recently 

developed for judgment and decision tasks: some placing more emphasis on the neural 

processing aspects (Grossberg & Gutowski, 1987; Levin & Levine, 1996; Usher & 

McClelland, 2002), and others placing more emphasis on applications to judgment and 

decision making (Holyoak & Simon, 1999; Guo and Holyoak, 2002; Busemeyer & 
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Townsend, 1993; Roe Busemeyer, & Townsend, 2001).  Here we will initially focus on 

our own, known as decision field theory, but we will also compare this to others later in 

this chapter.  

Decision field theory uses a sequential sampling process to make decisions, 

consistent with the other areas of cognition.  This theory has been applied to a variety of 

traditional decision making problems including decision making under uncertainty 

(Busemeyer & Townsend, 1993), selling prices and certainty equivalents (Busemeyer & 

Goldstein, 1992; Townsend & Busemeyer, 1995), multi-attribute decision making 

(Diederich, 1997), and multi-alternative decision making (Roe et al., 2001), and decision 

rule learning (Johnson & Busemeyer, in press). 

 To introduce decision field theory, it will be helpful to consider an example 

problem. Suppose you have to choose a penalty program for a young offender, convicted 

of a serious crime, from one of three options: (A) a mild 5 year imprisonment, with a 

population of inmates that only have minor convictions, and a possibility for parole in 2 

years; (B) a moderate 15 year imprisonment, with a population of inmates with 

moderately serious convictions, and a possibility for parole in 7 years; or (C) a severe 30 

year imprisonment with a population of hardcore criminals with no possibility for parole. 

If we assume that the offender may be either corrigible (labeled event g for good) or 

incorrigible (labeled event b for bad), then Table 1 displays the six types of possible 

consequences for this decision.  For example, if a mild penalty is chosen (option A) but 

the criminal is incorrigible (state b), then the outcome is the release of a dangerous man 

who will very likely repeat the crime. 



  Computational Models 7 

 

Table 1: Hypothetical Decision about Penalty for a Crime 

Action Event g: Corrigible  Event b: Incorrigible  

A: Mild Penalty  c11 : Reform to normal life c12: Release dangerous man 

B: Moderate Penalty c21: Damage the man c22: Delay danger 

C: Severe Penalty c31: Destroy a life c32: Safely incarcerate 

 

According to decision field theory, the decision maker deliberates over these 

courses of action by thinking about the various possible consequences of each action. 

From moment to moment, different consequences come to mind over a period of time. 

For example, at one moment the decision maker may remember something (e.g., the kind 

face of the offender) that makes her think the offender can be reformed, and then she is 

appalled by the thought wasting his life, locked behind bars for 30 years. But at another 

moment, she may recall a recent story in which a parolee committed a horrible crime, and 

she may feel a cold fear arise from the idea of releasing another on the streets in a few 

years. At each moment, the affective reactions to the consequences of each action are 

evaluated and compared, and these comparisons are accumulated over time to form a 

preference state. The preference state for an action represents the integration of all the 

preceding affective reactions produced by thinking about that action during deliberation. 

This deliberation process continues until the accumulated preference for one action 

reaches a threshold, which determines the choice and the deliberation time of the decision 

(refer back to Figure 1). 
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The threshold bound for the decision process, symbolized θ, is a key parameter 

for controlling speed and accuracy tradeoffs. If θ is set to a low threshold, then only a 

weak preference is required to make a choice. In this case, decisions are made very 

quickly, which may be reasonable for trivial decisions of small consequence. However, a 

low threshold would cause the decision to be based on little thought about the 

consequences, which is likely to lead to a choice with bad unforeseen outcomes. For 

more serious decisions, θ is set to a very high threshold, so that a very strong preference 

is required to make a decision. In this case, deliberation takes longer, but the decision is 

based on a more thoughtful evaluation of all the consequences, producing a choice that is 

more likely to result in a positive outcome. Impulsive individuals may tend to use lower 

thresholds, while perspicacious individuals may tend to use higher thresholds. 

The dynamical system used to generate this deliberation process is presented next, 

and the connectionist network is represented in Figure 2.  The three actions 

corresponding to the mild, moderate, and severe penalty option are labeled A, B, and C, 

in this figure. The network has three layers of simple units that perform the following 

computations. 
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         Figure 2: Connectionist Network Representation of Decision Field Theory 
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represents the positive evaluation of the consequence produced by reforming the offender 

and allowing him to return to society as a productive citizen, and m12 represents the 

negative evaluation of the consequence produced by releasing a dangerous man back into 

society.   
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represent an attention process. At any moment in time, the decision maker is assumed to 

attend to one of the possible events leading to consequences for each action. For example, 
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think that the offender can be reformed, then at that later moment, option A is evaluated 

at m11, option B is evaluated at m21, and option C is evaluated at m31. Thus, the inputs to 

the first layer fluctuate from one moment (time t) to another moment (time t+h) as the 

decision maker’s attention switches from one possible event to another. The probability 

of attending to a particular event at each moment reflects the decision maker’s underlying 

subjective probability or belief that the offender is corrigible. To formalize these ideas, 

we define Wg(t) and Wb(t) = 1- Wg(t) as stochastic variables, called the attention weights, 

which fluctuate across time. For example, attention may be focused at time t on the 

corrigible event so that Wg(t) > Wb(t), but a moment later at time t+h, attention may 

switch to the incorrigible event so that Wb(t+h) > Wg(t+h). The first layer of the network 

computes a weighted value for each option i within a set of n options as follows   

Ui(t) =  Wg(t)⋅mi1 + Wb(t)⋅mi2 + ε i(t),     (1) 

The last ‘error’ term, ε i(t), represents the influence of irrelevant features (e.g., in an 

experiment, these are features outside of an experimenter’s control). The above equation 

looks like the classic weighted additive utility model, but unlike the classic model, the 

attention weights are stochastic rather than deterministic (see Fisher, Jia, & Luce, 2000, 

for a related model). The mean values of the attention weights correspond to the 

deterministic weights used in the classic weighted additive model. 

The connections linking the first and second layers are designed to perform 

comparisons among weighted values of the options, to produce what are called valences. 

A positive valence for one option indicates that the option has an advantage under the 

current focus of attention, and a negative valence for another option indicates that the 

option has a disadvantage under the current focus of attention. For example, if attention is 
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currently focused on event g (corrigible), then action A has an advantage over other 

options, and option C has a disadvantage under this state. But these valences reverse 

when attention is switched to event b (incorrigible). The second layer computes the 

valence for each option i within a set of n options by comparing the weighted value for 

option i with the average of the of the other (n -1) options: 

 vi(t) = Ui(t) – U(t) ,      (2) 

where U(t) = Σ k≠ i Uk(t) / (n-1). Valence is closely related to the concept of advantages 

and disadvantages used in Tversky’s (1969) additive difference model. Note, however, 

that the additive difference model assumed complete processing of all features, whereas 

the present theory assumes a sequential sampling process that stops when a threshold is 

crossed. 

 The connections, between the second and third layers, and the interconnections 

among the nodes in the third layer, form a network that integrates the valences over time 

into a preference state for each action. This is a recursive network, with positive self-

recurrence within each unit, and negative lateral inhibitory connections between units. 

Positive self- feedback is used to integrate the valences produced by an action over time, 

and lateral inhibition produces negative feedback from other actions. The third layer 

computes the preference state for option i from a set of n options according to the linear 

dynamic system: 

 Pi(t+h) = s⋅Pi(t) + vi(t+h) –  Σ k ≠i  sik⋅Pk(t) .    (3) 

Conceptually, the new state of preference is a weighted combination of the previous state 

of preference and the new input valence. The initial preference state, Pi(0), at the start of 

a decision problem, represents a preference recalled from past experience. This is used to 
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explain carry over effects from previous decisions or past experience, such as the status 

quo effect (Samuelson & Zeckhauser, 1988). 

Inhibition is also introduced from the competing alternatives. We assume that the 

strength of the lateral inhibition connection is a decreasing function of the dissimilarity 

between a pair of alternatives. For example, in Table 1, options A and C are more 

dissimilar than options A and B, and so the lateral inhibition between A and C would be 

smaller than that between options A and B. Lateral inhibition is commonly used in 

artificial neural networks and connectionist models of decision making to form a 

competitive system in which one option gradually emerges as a winner dominating over 

the other options (cf. Grossberg, 1988; Rumelhart & McClelland, 1986). As shown later 

in this chapter, this concept serves a crucial function for explaining seve ral paradoxical 

phenomena of preferential choice. 

 In summary, a decision is reached by the following deliberation process: as 

attention switches from one event to another over time, different affective values are 

probabilistically selected, and these values are compared across actions to produce 

valences, and finally these valences are integrated into preference states for each action. 

This process continues until the preference for one action exceeds a threshold criterion, at 

which point in time the winner is chosen. Formally, this is a Markov process, and matrix 

formulas have been mathematically derived for computing the choice probabilities and 

distribution of choice response times (for details, see Busemeyer & Townsend, 1992; 

Busemeyer & Diederich, 2002; Diederich & Busemeyer, 2003). Alternatively, Monte 

Carlo computer simulation can be used to generate predictions from the model. 
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(However, all of the predictions presented below were computed from the matrix 

formulas). 

To illustrate the dynamic behavior of the model, consider a simple binary choice 

between a gamble and a sure thing. Suppose values for options A and B in Table 1 are set 

equal to the following: m11 = .96, m12=0, m21= .40, m22 = .40. With these values, option A 

can be viewed as a risky gamble, and option B can be viewed as a sure thing. Also 

assume an equal probability of attending to events g and b, i.e., Pr[Wg(t) = 1] = Pr[Wb(t) = 

1] = .50. The variance of irrelevant dimensions (variance of ε ) was set to zero, the self 

feedback was set to s = 1, and the lateral inhibition was set to sAB = sBA =  .01. 

Under these assumptions, we computed the choice probabilities and the mean 

deliberation times, for a wide range of threshold parameters (θ ranged from .20 to 8.0). 

Figure 3 plots the relation between choice probability and mean decision time for option 

A, the gamble, as a function of the threshold parameter. Both decision time and choice 

probability increase monotonically with the threshold magnitude. Busemeyer (1985) 

presents empirical evidence supporting these dynamic predictions for choices between a 

gamble and a sure thing under various time pressure conditions. 
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Figure 3: Predictions from decision field theory for binary choice  

 

 

 

 

 

 

 

 

 

 

 

 What do computational models contribute to decision theory?  

 Computational models are a lot more complex than the algebraic models 

commonly used by decision theorists. One could argue that computational models are too 

microscopic in their view, and they have little to show for their increased cost in 

complexity. Can computational models provide a gain in explanatory power that has not 

been achieved by the algebraic models? To answer this question, we will review a set of 

empirical phenomena that have resisted a coherent explanation by their algebraic 

counterparts.  

 To review these empirical phenomena within a common framework, it will be 

helpful to place the example decision problem, shown in Table 1, into a two dimensional 

representation, shown in Figure 4 below. The first dimension represents the evalua tion of 
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the options from the perspective that the offender is corrigible, and the second dimension 

represents the evaluation of the options from the perspective that the offender is 

incorrigible. Consider option A from Table 1: From the perspective that the offender is 

corrigible, then option A has a very high value; but from the perspective that the offender 

is incorrigible, then option A has a very low value. Thus option A is high on the first 

dimension and low on the second. Alternatively, option C has a low value from the 

corrigible perspective, but option C has a high value from the incorrigible perspective. 

Similarly, option B is midway between options A and C.  We can also imagine other 

possible options in this space, which are variations of those shown in Table 1.  Option D 

is another penalty program that is even more severe than option C; and option F is severe            

Figure 4: Two dimensional Representations of Actions 
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 Similarity effect.  This refers to the effect, on choice probabilities, produced by 

adding a competitive option D to an earlier choice set containing only A and C, where 

option D is very similar to option C.  Suppose that in a binary choice between A and C, 

options A and C are chosen equally frequently so that Pr[ C | {A,C} ] = Pr[ A | {A,C}]. 

Adding a new option D to this choice set, mainly takes away probability from the nearby 

option C, and leaves the probability of choosing option A unaffected. The empirical 

result is that the probability ordering for A and C changes from equality with the binary 

choice set, to Pr[ A | {A,C,D} ] > Pr[ C | {A,C,D} ] for the triadic choice set, producing a 

violation of a choice principle called independence of irrelevant alternatives (see 

Tversky, 1972, for a review).  This robust empirical finding eliminates a large class of 

probabilistic choice models called simple scalability models, which includes for example, 

Luce’s (1959) ratio of strength model. Tversky (1972) elegantly explained these results 

with a theory he called the elimination by aspects model of choice. Tversky (1972) also 

proved that the elimination by aspects model satisfies another important choice principle 

called regularity, which is considered next. 

 Attraction effect. This refers to the effect, on choice probabilities, of adding a 

decoy option F to an earlier choice set containing only options A and C, where the decoy 

F is similar to, but also dominated by, option C. Suppose, once again, that in a binary 

choice between A and C, options A and C are chosen equally frequently so that 

Pr[C|{A,C}] = .50.  A second robust finding is that adding the decoy option F to this 

choice set enhances the probability of the nearby dominant option C, so that 

Pr[C|{A,C,F}]  >  Pr[C|{A, C}], which produces a violation of the regularity principle 

(Huber, Payne, & Puto, 1982; see Heath & Chatterjee, 1995, for a review). Consequently, 
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this result cannot be explained by Tversky’s (1972) elimination by aspects model.  This 

violation of regularity also rules out a large class of random utility models of choice 

(Luce & Suppes, 1965), including Thurstone’s (1959) preferential choice theory.  

 Compromise effect.  This refers to the effect, on choice probabilities, of adding an 

intermediate option B to an earlier choice set containing only two extreme options A and 

C, where the compromise B is midway between the two extremes. Suppose, that all the 

binary choices are equal so that Pr[ A | {A,B) ] = Pr[ A | {A,C) ] = Pr[ B | {B,C) ] = .50. 

A third robust finding is that adding the compromise option B to a set containing A and C 

enhances the probability of the compromise option so that Pr[ B | {A,B,C} ]  >  

Pr[A|{A,B,C}]  =  Pr[ C | {A,B,C}], which is another violation of the independence 

between irrelevant alternatives principle (Simonson, 1989; see Tversky & Simonson, 

1993 for a review). Tversky and Simonson (1993) proposed a context-dependent 

preference model based on the principle of loss aversion to explain the attraction and 

compromise effects. However, the context-dependent preference model cannot account 

for the similarity effect (see Roe et al., 2001, for a proof). Thus no model was proposed 

to account for all three simultaneously.  

 A common explanation. Decision field theory provides an explanation for all 

three phenomena using a common set of principles (see Roe et al., 2001, for details). In 

other words, we do not need to change any of the assumptions of the model across 

phenomena, and neither do we need to change any of the model parameters. The same 

assumptions always apply, and the same parameters can be used to predict all three 

effects. The mathematical basis for these predictions is derived elsewhere (see Roe et al., 

2001; Busemeyer & Diederich, 2002), and here we only present an intuitive discussion. 
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First consider the similarity effect -- that is, the effect of adding option D to an 

earlier set containing A and C. The attention-switching property is essential for 

explaining this effect. On the one hand, whenever attention is focused on the corrigible 

event (corresponding to the first dimension in Figure 4), then option A alone gets a large 

positive advantage, while options C and D both have negative valences; on the other 

hand, whenever attention is focused on the incorrigible event (corresponding to the 

second dimension in Figure 4), then both options C and D have positive valences, while 

option A gets a large negative valence. If an individual happens to pay more attention to 

the corrigible event, then option A will tend to be chosen; but if an individual happens to 

pay more attention to the incorrigible event, then either option C or option D tend to be 

chosen. Therefore, option D only takes away probability from its neighboring option, C, 

and it does not affect the probability of choosing the more distant option, A. 

 Next consider the attraction effect. In this case the lateral inhibition mechanism 

serves a crucial purpose. Neuroscientists long ago established the fact that the strength of 

lateral inhibitory connections decrease as a function of distance, and this property is 

responsible for generating contour and edge enhancement effects in vision (cf. 

Cornsweet, 1970). According to decision field theory, lateral inhibition produces an 

attraction effect for preference in the same way that it produces an edge enhancement 

effect for vision. During deliberation, the preference state for the dominated alternative F 

is driven toward a negative state because it competes with the nearby dominant 

alternative C. The negative preference state associated with option F feeds back through a 

negative inhibitory connection to option C, producing a bolstering (disinhibitory) effect 

on option C. This bolstering effect is not applied to option A because it is too distant from 
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F, and the lateral inhibitory link is too weak. Thus option C shines out by being close to 

an unattractive alternative, F.   

Note that the attention switching and lateral inhibition processes are assumed to 

be operating all the time for both the similarity and attraction effects. These two 

components operate in synchrony to generate both effects. As a matter of fact, it is the 

interaction between these two processes that is essential for producing the compromise 

effect.  In this case, if attention happens to focus on some irrelevant features favoring the 

compromise option, B, then this sends lateral inhibition to the neighboring extreme 

options A and C, decreasing their strength, which then builds up an advantage for the 

compromise option. 

The predictions for all three effects were computed from decision field theory as 

follows. We simply set the values (mij in Equation 1) proportional to the coordinates 

shown in Figure 4, and the probabilities of attending to each dimension were equal 

(Pr[Wg(t) = 1] =  Pr[Wb(t) = 1] = .50). The self feedback loop coefficient was set to s = 

.94, the lateral inhibitory coefficient for nearby options (e.g., sCD ) was set to .04, and the 

lateral inhibitory coefficient for distant options (e.g., sAC ) was set to .001. The standard 

deviation of the error, ε, due to irrelevant dimensions was set equal to 1.25. Figure 5 

shows the predictions for the triadic choice probabilities plotted as a function of 

deliberation time, separately for each effect. As can be seen in this figure, a common set 

of assumptions, and exactly the same parameters, reproduces all three effects. 
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Figure 5: Predictions computed from decision field theory 

 

 

An interesting prediction that follows from the above explanations for the 

attraction and compromise effects is that they should become stronger as deliberation 

time increases. In other words, if decision makers are encouraged to deliberate longer, 

then the attraction and compromise effects will increase. This is because lateral inhibitory 

effects grow in strength during deliberation. Two experiments have now been reported 

that confirm these dynamic predictions of the model (Simonson, 1989; Dhar, Nowlis, & 

Sherman, 2000).  

Loss Aversion.  An influential article by Tversky and Kahneman (1991) provides 

the most compelling evidence for loss aversion. The basic ideas are illustrated in Figure 

6, where each letter shown in the figure represents a choice option described by two 
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attributes; such as for example, consumer products that vary in size and quality, or jobs 

that vary in salary and interest.  In this case, option X is high on dimension 1 but low on 

dimension 2, whereas option Y is low on dimension 1 but high on dimension 2.  

 Figure 6: Options used to examine loss aversion  
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disadvantages. Under this condition, Ry was rarely chosen again, but now Y was slightly 

favored over X. (The smaller effect using Ry may indicate that dimension 2 was less 

important than dimension 1.) Tversky and Kahneman (1991) interpreted this pair of 

results as a loss aversion effect, because X was favored when Y entailed large losses 

relative to the reference point Rx, but the opposite occurred when X entailed large losses 

relative to the reference point Ry. 

 Decision field theory provides an explanation for this loss aversion effect through 

the lateral inhibition mechanism. To derive predictions from decision field theory, we 

simply set the values (mij in Equation 1) proportional to coordinates of the options in 

Figure 6. We set the probability of attending to the first dimension equal to .55, and the 

probability of attending to the second dimension equal to .45. The remaining parameters 

were the same as used to generate Figure 5.  These predictions are shown in Figure 7, 

which shows the probability of the triadic choices as a function of deliberation time, 

separately for the two reference point conditions. As can be seen in this figure, 
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Figure 7: Decision field theory predictions for loss aversion effect. 

 

 

 

decision field theory reproduces the loss aversion effect  that is, the change in 

preference for option X relative to Y depending on the reference point. It is important to 

note that exactly the same parameters are used for both reference point conditions. This 

reversal of preference does not depend on the probability of attending to each dimension 

if we set the probabilities equal to .50 then the reversal becomes even stronger, 

although symmetric in size. In fact, the result depends primarily on the lateral inhibition 

parameter if it is set to zero, then the effect disappears. 

 The second study also manipulated a reference point, but in this case, using either 

option Sx or Sy. In one condition, participants were asked to imagine that they trained on 
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job Sx, but that job would end, and they had to choose between two new jobs X or Y. 

From this reference point, job X has small advantages and disadvantages over Sx, 

whereas Y has large advantages and disadvantages. Under these conditions, option X was 

strongly favored over option Y. In a second condition, participants were asked to imagine 

that they trained on job Sy, and in this case, preferences reversed, and option Y was 

strongly favored over option X. Tversky and Kahneman (1991) also interpreted these 

results as a loss aversion effect. 

 To apply decision field theory to this study, we assume that each option is 

described by three dimensions:  the values of the first two dimensions (e.g., salary and 

interest) are taken from the positions of the options shown in Figure 6, and the third 

dimension represents job availability. Jobs X and Y both have a positive value on 

dimension 3 (they are available), whereas jobs Sx and Sy both have negative values on 

dimension 3 (they are no longer available). For example, option Sx is assigned a slightly 

higher value on dimension 1 than option X, a slightly lower value on dimension 2 than 

option X, and it has a large negative value on dimension 3. We assumed an equal 

probability of attending to each of the three dimensions, and the remaining parameters 

were the same as used to generate Figure 5. The asymptotic choice probability results, 

predicted the theory, are summarized in Table 2, below. 
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Table 2: Predictions Computed from Decision Field Theory  

 Sx Reference Point Sy Reference Point 

Option Choice Probability Choice Probability 

X .87 .13 

Y .13 .87 

S 0 0 

 

As can be seen in the table, decision field theory again reproduces the reversal in 

preference as a function of the reference point. In sum, we find that both loss aversion 

effects, as well as attraction and compromise effects, all can be derived from the lateral 

inhibitory mechanism of decision field theory.  

 Endowment effect.  There are other phenomena that are often interpreted in terms 

of loss aversion (cf. Tversky & Kahneman, 1991), including both the endowment effect 

as well as differences between willingness to buy versus willingness to pay. Kahneman, 

Knetsch, and Thaler (1990) gave one group of subjects a mug and asked them how much 

they would be willing to pay to give up the mug, whereas another group was simply 

given some money and asked how much they would be willing to pay to buy the mug. 

They found that subjects were willing to buy the mug for only about $3, but they were 

asking a much higher price of $7 to sell the mug. This price difference is interpreted as 

the loss aversion effect produced by an owner giving up his or her mug. As Tverksy & 

Kahneman (1991) noted, the endowment effect can be viewed a special case of a more 

general finding of disparities between the price individuals are willing to accept to sell 
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something they own (WTA or selling prices), versus the price they are willing to pay to 

acquire something do not own (WTP or buying prices).  

At first glance, one might argue that differences between buying and selling 

prices are simply a strategic effect: a person may deliberately underestimate the buying 

price and overestimate the selling price to gain an advantage. But this simple explanation 

implies that buying and selling prices would still produce the same rank orders. In fact, 

this is not the case. Birnbaum, Yeary, Luce, & Zhou (2002) review several studies that 

report preference reversals between buying versus selling prices. For example, Birnbaum 

and Sutton (1992) presented subjects with the following two gambles: gamble G gives a 

.5 probability of winning $96, otherwise $0; gamble F gives a .5 probability of winning 

$48, otherwise $36 dollars. On the average, subjects gave a higher buying price to 

gamble F than gamble G, but at the same time they gave a higher selling price to gamble 

G than gamble F. Birnbaum and Sutton (1992) explained these effects as a change in 

decision weight that depends on the buyer or seller point of view.   

This type of preference reversal is predicted by decision field theory even when 

the inputs to the process used to produce buying and selling prices are based on a 

common set of weights and values.  The reversals emerge from the dynamic process used 

to select the prices. A brief presentation of the computational model used in decision field 

theory to select prices for gambles is presented below (see Busemeyer & Goldstein, 1992; 

and Townsend & Busemeyer, 1995, for more details). 

The basic idea is that prices are selected by a series of covert comparisons (refer 

to Figure 8). To find a price equivalent to a gamble, the decision maker must search for a 

candidate that produces an indifference response. During each step of this search process, 
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the decision maker compares a candidate price to the gamble, and this comparison may 

result in one of three judgments: if the candidate price is preferred, then the price is 

decremented by a small amount and the search continues (a left transition in Figure 8); if 

the gamble is preferred, then the price is incremented by a small amount and the search 

continues (a right transition in Figure 8); if the comparison produces an indifference 

judgment, then the search stops and the candidate price is reported as the price (a 

downward transition in Figure 8).  We simply use decision field theory to perform this 

comparison process, which provides the probabilities for the three judgments at each 

stage of the search process (see Busemeyer & Goldstein, 1992, for details).  Then 

Markov chain theory is used to determine the distribution of prices generated by the 

search process (see Busemeyer & Townsend, 1992, for the mathematical derivations).  

Figure 8: Illustration of the search process for finding the price of a gamble. 

 

 

When asked to find a certainty equivalent for a gamble, we assume that the search 

process starts near the middle of the feasible set of prices in an attempt to minimize the 

number of steps needed to find the price equivalent. When asked to find a maximum 

buying price for a gamble, we assume that the search process starts near the minimum of 

  36   38   40   42   44   46   48 

  Start search for buying price 

Exit search for buying price 
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the feasible set of prices, biased away from paying excess money. Finally, when asked to 

find a minimum selling price, we assume that the search process starts near the maximum 

of the feasible set of prices, biased toward saving extra money.  

This simple scheme was used to find buying and selling prices for gambles F and 

G used by Birnbaum and Sutton (1992). In this case, we simply set the values (mij in 

Equation 1) equal to the stated dollar values of the gambles, and we simply set the 

probability of attending to each event equal to the stated probabilities. Figure 9 shows the 

distribution of prices produced by this model for buying prices (top panel) and selling 

prices (bottom panel). 
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Figure 9: Predicted Buying Prices (top panels) and Selling Prices (bottom panels)  

 

 

As can be seen in Figure 9, the predicted buying prices (or WTP) are lower than 

the predicted selling prices (or WTA), accounting for the well known disparity between 

these measures. More importantly, preference reversals occur for buying and selling 

prices: referring to the top panels, the mean buying price for gamble F is larger than the 

buying price for gamble G; referring to the bottom panels, the mean selling price for 

gamble G is greater than the mean selling price for gamble F.  

There is an intuitive explanation for these computational results. The price for 

gamble F is restricted to a small range, which makes the price insensitive to changes in 

the starting position produced by the selling or buying price task. However, the price for 

gamble G has a wide range of possible values, and it is more strongly affected by the 
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starting position produced by buying and selling tasks. This idea is similar to earlier 

anchoring and adjustment models of preference reversal (e.g., Goldstein & Einhorn, 

1987).  However, unlike these earlier anchoring and adjustment theories, the amount of 

adjustment is not a free parameter in decision field theory, because it is derived from the 

dynamics of the search process. 

Preference reversals also occur between prices and choices (Lichtenstein and 

Slovic, 1971; see Slovic and Lichtenstein, 1983, for a review). Decision field theory can 

also reproduce these types of preference reversals by using a common set of weights and 

values as inputs into the choice and price processes (Busemeyer & Goldstein, 1992). 

Decision field theory can also explain discrepancies reported by Hershey and Shoemaker 

(1985) between certainty equivalents and probability equivalents for gambles (Townsend 

& Busemeyer, 1995). 

Preference reversals under time pressure. Up to this point we have argued that 

computational models, such as decision field theory, provide a deeper level analysis of 

several traditional effects from the decision-making literature. Now we turn to new 

predictions that arise from the dynamic nature of the model.  

There is a growing body of evidence showing that it is possible to reverse an 

individual’s preference by changing the amount of time given to make the decision. For 

example, Svenson and Edland (1987) asked people to choose among apartments under 

short vs. long time deadlines. Under the short time deadlines, the lower rent apartment 

was chosen more frequently; but under longer time deadlines, they preferred apartments 

with higher rents that provided other attractive features. Diederich (2003) extended these 

findings by asking individuals to choose between two gambles, and each gamble could 
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yield either a monetary reward or a blast of noise punishment. Several individuals 

reversed their preferences under time pressure. For example, if avoiding noise was more 

important than winning money, then the low noise gamble was chosen more frequently 

under short deadlines, but the high monetary payoff gamble was chosen more frequently 

under the longer deadlines.  

A common explanation for these effects is that decision makers switch strategies 

(Payne, Bettman, & Johnson, 1993). Under short deadlines, it is hypothesized that 

decision makers use a non-compensatory heuristic strategy such as a lexicographic rule or 

an elimination by aspects rule. These strategies are quick and easy to execute but are not 

very accurate in the sense of maximizing weighted additive utility. Under longer 

deadlines, decision makers can use the more time consuming compensatory strategy such 

as a weighted additive rule which increases accuracy.  

Sequential sampling models provide an alternative view, which simply assumes 

that individuals reduce their threshold criterion under time pressure.  Diederich (1997) 

developed a multi –attribute version of decision field theory, which assumes individuals 

sequentially sample information over time, but they begin processing the more important 

dimension, and later switch to process the other less important dimensions. Under short 

deadlines, a low threshold is used, only the most important dimension tends to get 

processed, and so this dimension alone determines the choice. Under long deadlines, a 

high threshold is used, and now there is sufficient time to process additional attributes. If 

these additional attributes disagree with the most important attribute, then this additional 

processing can reverse the direction of the evolving preference state. Diederich (1997) 
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showed that this model provided a very accurate quantitative account of her preference 

reversals under time pressure. 

Are computational models testable?  

 One might argue that computational models are so complex that they cannot be 

empirically tested. On the contrary, it is possible to rigorously test these models both 

quantitatively as well as qualitatively. For example, to quantitatively test decision field 

theory, one can estimate all of the model parameters from a set of binary choice 

probabilities, and then use these same parameters to predict other measures of preference 

including choice response times, triadic choice probabilities, and buying/selling prices 

(see, for examples, Dror, Busemeyer, & Basola, 1999; Diederich & Busemeyer, 1999; 

Diederich, 2003a; and Diederich, 2003b). Qualitative tests of the theory are also possible: 

on the one hand, decision field theory predicts violations of strong stochastic transitivity, 

but on the other hand it predicts that weak stochastic transitivity will be satisfied 

(Busemeyer & Townsend, 1993). In agreement with the first qualitative prediction, 

violations of strong stochastic transitivity frequently occur (see Mellers & Biagini, 1994, 

for a review); but contrary to the second qualitative prediction, violations of weak 

stochastic transitivity also have been reported under special conditions (see Gonzalez – 

Vallejo, 2002, for a recent review and explanation for this result).  

What are some alternative computational models? 

 Up to this point we have highlighted one computational model, decision field 

theory, but there are a growing number of new computational models for decision 

making. Three of these are briefly described below. 
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 Competing accumulator model. Usher and McClelland (2001, 2001) have recently 

proposed a competing accumulator model that shares many assumptions with decision 

field theory, but departs from this theory on a few crucial points. The connectionist 

network of the competing accumulator model is virtually the same as shown in Figure 2. 

However, this model makes different assumptions about (a) the evaluations of advantages 

and disadvantages (what we call valences in Equation 2), and (b) the dynamics of 

response activations (what we call preference states in Equation 3). First, they adopt 

Tversky and Kahneman’s (1991) loss aversion hypothesis so that disadvantages have a 

larger impact than advantages. Using our own notation, the valence for alternative i ∈ 

{A,B,C}, and i ≠ j ≠ k, is computed as follows: 

 vi(t) = F[Ui(t) – Uj(t)] + F[Ui(t) - Uk(t)] + c   (4) 

Where F(x) is a nonlinear function that satisfies the loss aversion properties presented in 

Tversky & Kahneman (1991). Thus, rather than deriving loss aversion effects indirectly 

from the dynamics as we have done, they build this effect directly into the model. 

Second, they use a nonlinear dynamic system that restricts the response activation to 

remain positive at all times, whereas we use a linear dynamical system that permits 

positive and negative preference states. The non-negativity restriction was imposed to be 

consistent with their interpretation of response activations as neural firing rates.  

Usher and McClelland (2002) have shown that the competing accumulator model 

can account for the main findings concerning the similarity effect, the attraction effect, 

and the compromise effect, using a common set of parameters. Like decision field theory, 

this model uses an attention switching mechanism to produce similarity effects, but 

unlike decision field theory, this model uses loss aversion to produce the attraction and 
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compromise effects. Further research is needed to discriminate between these two 

models. 

 ECHO model. Guo and Holyoak (2002; see also Glockner, 2002) proposed a 

different kind of connectionist network, called ECHO, adapted from Thagard and 

Millgram (1995). Figure 10 illustrates the model for two attributes and three options. At 

the far left in this figure, there is a special node, called the external driver, representing 

the goal to make a decision, which is turned on when a decision is presented. The driver 

node is directly connected to the attribute nodes, with a constant connection weight. Each 

attribute node is connected to an alternative node with a bidirectional link, which allows 

activation to pass back and forth from the attribute node to the alternative node. 

Figure 10: Illustration of the Echo Model for 2 dimensions and 3 alternatives  
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The connection weight between an attribute node and an alternative node is determined 

by the value of the alternative on that attribute (our mij). There are also constant lateral 

inhibitory connections between the alternative nodes.  

The decision process works as follows. Upon presentation of a decision problem, 

the driver is turned on and applies constant input activation into the attribute nodes, and 

each attribute node then activates each alternative node (differentially depending on 

value). Then each alternative node provides positive feedback to each attribute node, and 

negative feedback to the other alternative nodes. Activation in the network evolves over 

time according to a nonlinear dynamic system, which keeps the activations bounded 

between zero and one. The decision process stops as soon as the changes in activations 

fall below some threshold. At that point, the probability of choosing an option is 

determined by a ratio of activation strengths. 

Guo and Holyoak (2002) used this model to explain the similarity and attraction 

effects. To account for these effects, they assumed that the system first processes the two 

similar alternatives, and during this time, the lateral inhibition produces a competition 

between these two options. After this initial comparison process is completed, the system 

processes all three options, including the dissimilar option. In the case of the similarity 

effect, the initial processing lowers the activation levels of the two similar options; in the 

case of the attraction effect, the initial processing enhances the activation level of the 

dominating option. Thus lateral inhibition between alternatives plays a crucial role for 

explaining both effects. Although the model has been shown to account for the similarity 

and attraction effects, at this point, it has not been shown to account for the compromise 

effect or loss aversion effects. 
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The ECHO model makes an important prediction that differs from both decision 

field theory and the competing accumulator model. The ECHO model predicts that as one 

option becomes dominant during deliberation, this will enhance the activation of the 

attribute nodes favored by the dominant alternative. The enhancement is caused by the 

feedback from the alternative node to the attribute node, which tends to bias the 

evaluation of the attributes over time. This property of the model is related to the 

dominance-seeking principle included in other decision-making theories (Montgomery, 

1989; Svenson, 1992). Holyoak and Simon (1999) tested this hypothesis by asking 

individuals to rate attribute importance at various points during deliberation, and they 

report evidence for increases in the importance of attributes that are favored by the 

dominant alternative during deliberation.   

Affective Balance Theory. Grossberg and Gutowski (1987) presented a dynamic 

theory of affective evaluation based on an opponent processing network called a gated 

dipole neural circuit. Habituating transmitters within the circuit determine an affective 

adaptation level, or reference point, against which later events are evaluated.  Neutral 

events can become affectively charged either through direct activation or antagonistic 

rebound within the habituated dipole circuit.  This neural circuit was used to provide an 

explanation for the probability weighting and value functions of Kahneman and 

Tversky’s (1979) prospect theory, and the affective dynamics of addiction and 

withdrawal symptoms hypothesized by Solomon and Corbit (1974).   

Computational models of inference.  Although this chapter focused on 

computational models of preference, there are also new developments for probabilistic 

inference and prediction. Dougherty, Gettys, and Ogden (1999) developed an instance-
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based memory model for probability judgments that accounts for overconfidence effects 

and conjunctive fallacies. Read, Vanman, and Miller (1997) developed a connectionist 

model for social inference judgments which is closely related to the ECHO model used 

by Holyoak and Simon (1999). Busemeyer, Byun, Delosh, and McDaniel (1997) 

proposed a connectionist model for cue - criterion prediction tasks. 

Concluding Comments  

During the past 40 years, decision theorists have let the utility function do most of 

the work of explaining choice results. By positing the simplest possible hypotheses about 

the choice processes, all the explanatory power falls upon the utility function itself. 

Consequently, during this 40-year span of time, the forms of utility functions have 

become increasingly complex (see Luce, 2000, for a review). However, it is possible that 

if theorists work harder in understanding the complexities inherent in the choice 

processes, then the underlying utility representations may become simpler and more 

coherent.  As others have argued (cf. Plott, 1996), it may be too early for decision 

theorists to accept the conclusion that utilities are constructed on the fly for every 

variation of task and context, and instead it may be possible to retain a stable underlying 

value system that is expressed through a very complex choice process. 
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