Sequential Sampling Models of Decision Making in Cognitive Psychology

 

 

 

Figure 1. Basic Idea

 

 

 


 

Convergence of Opinions

Models of Neural Firing

Ricciardi (1983)

Memory Recognition

Ratcliff(1978)

Tuckwell (1988)

Heath (1982)

Sensory Processing

Smith (1995)

Categorization

Nosofsky & Palmeri (1997)

Rudd (1996)

Ashby (2000)

Perceptual Discrimination

Laming (1968)

Link & Heath(1975)

Decision Making

Aschenbrenner et al. (1982)

Usher & McClelland (2002)

Busemeyer (1992)

 


 


 

 

Figure 2. Progression of Idea

 

 

 

1. Signal Detection Theory

 

·        Take a fixed sample of N observations

{ X1 X2 … XN }

 

·        Compute the evidence from the fixed sample

      LA = log { Pr[ {X1 X2 … XN } | HA)}

      LB = log { Pr[ {X1 X2 … XN } | HB)}

     

·        Compare the total evidence to a criterion

        Choose A if LA – LB > criterion

        Choose A if LB – LA > criterion

 

 

2. Random Walk

 

·        Sequentially Sample Observations

o       { X1 X2Xn ...}

 

·        Cumulate the evidence online

LA(n+1) = LA(n) + log{Pr[Xn+1 | HA]}

LB(n+1) = LB(n) + log{Pr[Xn+1 | HB]}

 

·        Decide when to stop and then what to choose

Stop and choose A if (LA(n+1) - LB(n+1) > Threshold

Stop and choose B if (LB(n+1) - LA(n+1) > Threshold

 

3. What is Gained?

 

·        Signal Detection Model

o       Explains Hit and FA Rates

o       Uses 2 parameters

§        d’ = discriminability

§        b = criterion bias

 

·        Random Walk Model

o       Explains Hits and FA rates, plus RT Distributions

o       Uses 3 Parameters

§        d’ = discriminability

§        z = biased starting value (LA(0) - LA(0) )

§        q   = Threshold Bound

 

4. Speed – Accuracy Trade-Offs

 

·        The threshold used in Random Walk Models also provides a direct way of explaining and measuring speed – accuracy trade off effects

·        Providing more time to decide tends to produce more accurate decisions

·        Instructions emphasizing accuracy

·        Deadline Time Limits

·        Individual Differences in impulsiveness

 

 

5. Discrete Time Stochastic Linear Systems

 

·        L(n+1) = (1-a)L(n) + V(n+1)

·        V(n+1) = evidence from new observation

·        a = growth – decay parameter

·        V(n+1) = m + e(n+1)

o       m = E[ V(n) ] = mean drift rate

o       Var[e(n+1)] = s2 = variance

o       d’ = (m / s)

 

6. Limit to Continuous Time Diffusion Models

·        t = nh   h, 2h, 3h, ….

·        L(t+h) = (1-ah) L(t) + V(t+h)

·        V(t+h) = mh + e(t+h)

o       m h= E[ V(t) ] = mean drift rate

o       Var[e(t+h)] = h s 2 = variance

·        L(t+h)-L(t) = -ah∙L(t) + m h + e(t+h)√h

o       dL(t+h) = L(t+h)-L(t)

·        dL(t+h) = -ah∙L(t) + m h + e(t+h)√h

·        When we let h à 0 we get the

§        Ornstein – Uhlenbeck diffusion model

§        dL(t) = [m -aL(t) ] dt + e(t)√dt