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In a two-state deferred decision making task one of two mutually exclusive states of nature 
is responsible for generating a sequence of independent, identically distributed, and costly 
observations. After purchasing each observation, the decision maker must either (a) stop 
purchasing costly observations and make a terminal choice favoring one of the two states, or 
(b) continue purchasing at least one more observation. We describe a new method, called pat- 
tern analysis, for distinguishing alternative models of deferred decision making. Seven different 
psychological models are evaluated including the optimal stopping rule, fixed sampling, 
random walk, lixed forgetting, horse race or accumulator, runs, and hybrid stopping rules. 
Violations of basic properties implied by each of these seven models are reported. The most 
promising psychological model was a myopic stopping rule, which prescribes purchasing 
observations until the expected loss of making a terminal decision after purchasing n obser- 
vations is less than or equal to the sum of the costs of purchasing n + I observations. $0 1988 
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PSYCHOLOGICAL MODELS OF DEFERRED DECISION MAKING 

How do physicians decide when to stop conducting medical tests and make a 
final diagnosis? How do school psychologists decide when to stop administering IQ 
tests and categorize a child as mentally gifted, normal, or retarded? How do scien- 
tists decide when to stop performing experiments on a new phenomenon and 
publish their conclusions ? How do military commanders decide when to stop 
collecting intelligence reports and take action? These decision situations are all 
examples of deferred decision problems. The present article investigates rules that 
individuals may actually use to decide when to stop purchasing costly observations 
and commit to a terminal decision in a two-state deferred decision task. 

General Task Description 

The two-state deferred decision task is characterized by a data generating 
process, choice alternatives, and a payoff structure. 
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Data generator. The decision maker is informed that one of two stochastic 
processes, labeled S, or S,, is generating a sequence of costly observations 
[Z(l), Z(2), . . . . Z(n)]. For example, in a medical decision context S, may represent 
a patient with “disease present,” S, may represent a patient with “disease absent,” 
and Z(n) may represent the nth observation in a sequence of costly laboratory tests. 

The models evaluated in this article generally assume that the sequences are iden- 
tically and independently distributed random variables, and that the decision maker 
is provided information about the probability laws and the prior probability of 
each process. Of course, many deferred decision problems encountered in real life 
involve sequences that are not identically and independently distributed. Although 
the models can be adapted to the dependent observation case, it may be wise to 
begin with the simplest case that assumes independence, and subsequently extend 
the models to the more complex dependent case. 

Choice alternatives. After purchasing n observations, the decision maker has a 
choice among three alternatives: stop the sequence and choose R, (e.g., diagnose 
the patient as having disease S,), stop the sequence and choose R, (e.g., diagnose 
the patient as having disease S,), or continue the sequence by purchasing another 
observation (e.g., conduct another laboratory test). The random variable N 
represents the total number of observations purchased before making a terminal 
decision. In some cases only a limited number of observations (denoted M) can be 
purchased. 

Payoff structure. If a terminal decision Rj (j = A, B) is made when, in fact, the 
sequence was generated by process Si (i = A, B), then a terminal monetary payoff, 
vii, is incurred depending on the event (Sj, R,). If the decision maker purchases 
another observation, then a monetary fee, c(n), must be paid, which may depend on 
the number of observations already sampled. The loss incurred at the end of each 
sequence is therefore defined as L = [v,, - vL,] + 1 c(n), where Si is the process that 
generated the sequence, R, is the terminal response, and summation extends from 
n=l toN. 

Fixed us sequential sampling tasks. Sequential sampling tasks differ from fixed 
sampling tasks in the following way. With fixed sampling, the decision maker must 
select the number of samples before observing any of the sample values, wheras 
with sequential sampling, he or she must decide whether to stop sampling after 
observing each sample value. Whereas the random variable N is independent of the 
obtained sample values for fixed sampling, it is dependent on the obtained sample 
values for sequential sampling. 

The Optimal Model 

The major purpose of the present article is to empirically evaluate psychological 
models of deferred decision making. These models are reviewed in the discussion 
section after presenting the empirical results. However, the optimal model is briefly 
described at this point because it is useful for suggesting important task properties. 



DEFERRED DECISION MAKING 93 

The optimal decision rule is defined as the decision rule that minimizes the expec- 
ted loss, E[L] (cf., DeGroot, 1970). This rule prescribes making a terminal decision 
after purchasing n observations if the expected loss of making a terminal decision 
on the basis of the n obtained sample values is less than or equal to the expected 
loss of deferring the decision and purchasing additional observations. It is for- 
mulated in terms of two components-an evidence accumulator and a stopping 
rule: 

Evidence accumulator. Define s(n) as the evidence engendered by the observation 
Z(n), where s(n) > 0 represents evidence favoring the presence of process S,, and 
s(n) < 0 represents evidence favoring the presence of process S,. According to the 
optimal model, s(n) is set equal to the log odds corresponding to the observation 
Z(n) = z (i.e., s(n) = ln[fJz)/fs(z)], wheref. is the density function for process Si). 
The log posterior odds after purchasing n observations equals the sum of the log 
odds, s(O) + s( 1) + s(2) + . . . + s(n), where s(O) represents the log of the prior odds. 
Previous research on probabilistic inference using tasks similar to the present one 
supports the additive rule for combining evidence (Shanteau, 1970; Wallsten and 
Sapp, 1977). 

Stopping rule. If the log posterior odds is greater than or equal to some upper 
bound, a(n), then R, is selected, whereas if the log posterior odds is less than or 
equal to some lower bound, -P(n), then R, is chosen; otherwise sampling 
continues. 

In general, the criterion bounds a(n) and --B(n) vary within a sequence of obser- 
vations depending on the number of remaining observations. For a given pair of 
stochastic processes, the rules for assigning criterion bounds after each observation 
are influenced by the cost of observation, c(n), the terminal payoffs, vii, and the 
limit, M, on the number of observations that can be purchased. (For real time 
decisions, the interval of time required to reach a decision may be a critical factor.) 
The exact values of the upper and lower criterion bounds can be calculated by 
dynamic programming (see Rapoport and Burkheimer, 1971, for details). 

Rapoport and Burkheimer’s (1971) theoretical investigation of the optimal policy 
revealed several interesting properties. Assume that a total of M observations can 
be purchased, the prior probabilities are equal, and the payoffs are symmetric (i.e., 
v,~,,, =uBB, vAB= vBA). When the observation costs are constant (c(n)=c), the 
criterion bounds remain constant as long as the number of observations remaining 
to be purchased is large. When the observation costs increase (c(n + 1) > c(n)), the 
criterion bounds decrease in magnitude after each observation converging to a com- 
mon meeting point. Finally, when the observation costs decrease (c(n + 1) < c(n)), 
the criterion bounds initially increase in magnitude after each observation but even- 
tually converge toward a meeting point as the number of observations purchased 
approaches the limit, M. 

Situations where the observation costs either increase or decrease are abundant. 
For an example of increasing costs, consider the use of X-rays in a medical 
diagnosis problem-the health hazards produced by another X-ray test are much 
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more severe after several tests are administered. As an example of decreasing costs, 
consider the costs associated with the initiation of a new line of research. The initial 
set-up costs are very high, but replications of experiments become cheaper because 
the same resources are reused each time. 

PREVIOUS RESEARCH 

Much of the previous research employed a simple paradigm similar to the follow- 
ing example. Subjects are asked to decide which of two possible diseases, S, and 
SB, are present based on a sequence of independent laboratory tests. Each test 
yields a binary outcome, say Z(n) = + 1 or - 1. The conditional probability of a 
positive test given disease S, equals the conditional probability of a negative test 
given SB, and both conditional probabilities exceed 0.5. The prior probabilities are 
equal, the terminal payoffs are symmetric, the observation costs are constant, and 
there is no limit on the number of tests. 

For this simple case, the log posterior odds after n tests is proportional to the dif- 
ference, denoted d(n), between the number of positive and negative tests results 
observed after n tests. The optimal decision rule is to (a) decide R, as soon as 
d(n) 2 K, (b) decide R, as soon as d(n) < -K, and (c) continue sampling otherwise 
(cf. Edwards, 1965). Note that for this particular task, the optimal model predicts 
that subjects use a constant critical difference, K, as the stopping rule. 

One of the most interesting conclusions from this research-which contradicts 
the optimal model-is that subjects tend to require less evidence to make a terminal 
decision as the number of observations purchased increases (Pitz, Reinhold, and 
Geller, 1969; Sanders and Ter Linden, 1967; Viviani, 1979; Wallsten, 1968). 
Apparently, the critical difference K decreases as the number of observations 
purchased increases. For example, Sanders and Ter Linden (1967) and later Viviani 
(1979) found that the tendency to stop after observing a subsequence of strong 
evidence was much greater when the subsequence was preceded by a non-diagnostic 
subsequence. Even more interesting is the finding by Pitz et al. (1969) that subjects 
frequently terminate information purchasing with d(n) = 0 (no evidence) late within 
a sequence of tests, which is impossible if subjects use a constant critical difference 
stopping rule. 

Several alternative models may account for the results. Most of these will be con- 
sidered in the discussion section after presenting the new results of the present 
experiments. However, two explanations can be ruled out by prior research. One is 
a “noisy counter” hypothesis which states that decisions are based on an estimate of 
d(n) that is perturbed by error. This hypothesis may be plausible when a large num- 
ber of test results are presented very rapidly as in the Sanders and Ter Linden 
(1967) study. However, it is less plausible when the studies by Pitz et al. (1969) are 
considered. Pitz et al. compared the performances of two groups-one group was 
required to keep track of the difference mentally because physical records of the test 
results were neither available nor allowed; the second group was provided with 
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physical counters so that perfectly accurate estimates were always available. For 
both groups, presentation of the sample observations was self paced. The results of 
the study indicated that the presence or absence of physical counters produced no 
effect; both groups displayed an equal tendency to stop on a difference of zero after 
long sequences of non-diagnostic information. 

The second hypothesis, called the “sample size” hypothesis, states that when the 
log posterior odds are held constant, long sequences have greater impact on subjec- 
tive probabilities than short sequences. Pitz and Barrett (1969) tested the sample 
size hypothesis by initially presenting subjects with free samples that were equal in 
terms of log posterior odds, but varied according to sample size. They found that 
the size of the initial free sample had little effect on the subsequent number of obser- 
vations purchased, and concluded that this hypothesis was inadequate. 

The purpose of the present article is to investigate rules that individuals use to 
decide when to stop purchasing information and make a terminal decision. Three 
experiments are reported. In the first two, the observation costs varied across sam- 
ples within a sequence and the test results were binomially distributed. A new 
method called pattern analysis is proposed to evaluate alternative stopping rules. In 
the third experiment the number of observations was limited, the test results were 
normally distributed, and the terminal payoffs were manipulated. This last study 
provides a replication of some of the findings from the first two studies using a 
continuous rather than a discrete distribution of costly observations. 

EXPERIMENTS 1 AND 2 

Method 

Subjects 

Three male and three female subjects from Purdue University volunteered to par- 
ticipate in the first experiment. Five of these subjects were undergraduates enrolled 
in a statistics course. The remaining subject, labeled S5, was a graduate student in 
quantitative psychology. 

Four subjects volunteered to take part in Experiment 2. All four were male 
graduate students in psychology at Purdue. Two were experimental psychologists 
who had completed a graduate psychology course in statistics. The other two were 
quantitative students with substantial training in statistics (one of these was S5 
from Experiment 1). 

Procedure 

In both Experiments 1 and 2, subjects were to imagine that they were physicians 
specializing in the diagnosis of cancer. Each sequence of observations was said to be 
generated by a randomly selected patient who had one of two diseases. At any stage 
within a sequence, the subject had a choice between terminating the decision by 
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making a diagnosis favoring one of the two diseases or sampling another test result. 
Each test produced a positive (evidence for disease S,) or a negative (evidence for 
disease S,) result. Subjects were told that they could sample as many tests as they 
wished, including none at all. 

Subjects were instructed that a computer program began each sequence by ran- 
domly selecting a patient from a population afflicted with either disease using a 
procedure similar to flipping a coin so that each disease was equally likely to be 
present before testing began. Subjects were further told that if a patient had disease 
S,, then the probability of a positive test equaled .65, and if a patient had disease S, 
then the probability of a negative test equaled .65. The computer algorithm was 
programmed exactly in this manner. 

In Experiment 1, each subject received initially $10.00 per session. For each 
sequence that terminated with an incorrect decision the subject lost 25 cents. Sub- 
jects received nothing for correct decisions ( uAA = usB = 0, uAB = uBA = - 25). Three 
observation cost conditions were employed: for the decreasing condition 
c(n) = 23-” cents; for the constant condition c(n) = .25 cents; for the increasing cost 
condition, c(n) = 2”’ 4 cents. There was no limit on the number of tests that could 
be purchased. 

In Experiment 2, each subject started out with $12.00 per session. For each 
sequence that terminated with an incorrect decision the subject lost 20 cents. Sub- 
jects received nothing for correct decisions (11~~ = ass = 0, vAB = usA = - 20). Three 
observation cost conditions were employed again: for the slow increasing cost con- 
dition c(n) = (.l)( 1.4)” ’ cents; for the constant cost condition c(n) = 4 cents; for 
the fast increasing cost condition c(n) = (. I)( 1 .8)np ’ cents. There was no limit on 
the number of tests that could be purchased. 

Each subject was individually tested during 15 sessions. With few exceptions, 
daily sessions were scheduled with at most one or two sessions per day. Sessions 
scheduled on the same day were separated by several hours. During each session, a 
total of 75 sequences were presented with blocks of 25 sequences under each obser- 
vation cost condition. The order of observation cost conditions was counter- 
balanced across subjects and sessions. Altogether 75 15 = 1125 sequences were 
presented to each subject. 

The experiment was conducted on an IBM-PC microcomputer; stimuli were 
presented on a color monitor and responses were recorded by depressing a key. 
Each block of 25 sequences began with a message indicating the observation cost 
condition. Each sequence began with a random sequence of tones (to alert the sub- 
ject that a new patient was selected) and a random patient number. Each choice 
opportunity began with the following information displayed on the monitor: (a) the 
cost of the next test, (b) the loss produced by an incorrect decision, (c) the total 
amount of money spent buying previous sample tests on the current patient, and 
(d) the three choice alternatives. 

If a sample test was requested, the result was graphically displayed on the 
monitor using a striking combination of colors, tones, and movements to dis- 
tinguish positive and negative tests. The subject was required to press one of two 
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keys after observing the test depending on the test result, and the program would 
not continue until the correct key was selected. 

If a correct terminal diagnosis was made, then a brief tune was played followed 
by a message on the monitor indicating that the decision was correct. If the 
incorrect terminal diagnosis was selected, then a different tune was played, and a 
message that the decision was incorrect and the amount lost was printed on the 
monitor. 

After completing each block, subjects were shown the total amount of money lost 
during that block (summed across payoffs and observation costs). At the end of 
each session, subjects were shown their percentage correct for each disease and 
observation cost condition, and the average number of tests purchased for each 
observation cost condition. During the entire experiment, a chart illustrating (a) the 
prior and conditional probabilities, and (b) the cost of each observation depending 
on the number of tests was always visible. Subjects were asked not to record test 
results with a paper and pencil because this would greatly increase the amount of 
time required to complete a session. A session usually lasted about 45 min. 

There was one major difference between the stimulus displays of Experiments 1 
and 2. In Experiment 1, subjects had to remember the number of positive and 
negative test results. In Experiment 2, the exact number of positive and negative test 
results obtained from a patient was displayed on the video monitor prior to each 
choice. 

Optimal Decision Rule 

For the first two experiments, the log posterior odds is proportional to 
d(n) = Z( 1) + . . + Z(n), or in other words, the difference between the number of 
positive and negative test results. In this case, the optimal terminal decision is to 
choose R,4 if d(N) is positive, and to choose R, if d(N) is negative. Note that the 
optimal terminal decision is not necessarily correct. The correct decision is defined 
as the event (Si, Rj, i =,j). 

The optimal stopping rules were calculated using the observed monetary payoffs 
and observation costs’. Table 1 shows the upper bound, a(n), ordered according to 
the number of tests already purchased, for each cost condition of Experiments 1 
and 2. For example, with the constant cost condition of Experiment 1, the optimal 
model prescribes that a terminal decision should be made as soon as the difference 
equals four in magnitude. With the increasing cost condition of Experiment 1, the 
optimal model prescribes that a terminal decision should be made after purchasing 
the second observation if the difference equals two in magnitude. 

’ The dynamic programming algorithm used to compute the upper criterion bound a(n) for the 
optimal rule is based on the assumption that there is a finite limit on the number of observations that 
can be purchased, denoted M. Although an unlimited number of observations could be purchased in 
Experiments 1 and 2, the criteria in Table 1 were computed by setting M = 50. Thus a(n) represents the 
upper cirterion bound when n observations have already been purchased and there are (M-n) = 
(50 - n) observations remaining to be purchased. The solutions are the same for sutliciently large M and 
small n. 
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TABLE 1 

Upper Criterion Bound for the Optimal Stopping Rule 

Expt 1 Expt 2 

n D C I S C F 

0 1 1 1 1 1 1 
1 2 2 2 2 2 2 
2 3 3 2 3 3 2 
3 4 4 1 2 3 2 
4 5 4 1 2 3 1 
5 6 4 0 2 3 1 
6 I 4 0 1 3 0 
7 8 4 0 1 3 0 
8 9 4 0 1 3 0 
9 10 4 0 1 3 0 

10 11 4 0 0 3 0 
11 12 4 0 0 3 0 
12 13 4 0 0 3 0 
13 14 4 0 0 3 0 
14 15 4 0 0 3 0 
15 16 4 0 0 3 0 
16 17 4 0 0 3 0 
17 18 4 0 0 3 0 
18 18 4 0 0 3 0 
19 19 4 0 0 3 0 
20 19 4 0 0 3 0 
21 20 4 0 0 3 0 
22 20 4 0 0 3 0 
23 20 4 0 0 3 0 
24 20 4 0 0 3 0 
25 20 4 0 0 3 0 

Note. n =number of observations purchased, D= 
decreasing cost, C = constant cost, I = increasing cost, 
S = slow increasing cost, F = fast increasing cost. 

Note that for the decreasing cost condition, the criterion magnitude is greater 
than the number of observations purchased for n < 18. In this case, the optimal 
model prescribes purchasing another test. The extremely large criterion produced 
by the decreasing cost condition results from the fact that the observation costs are 
rapidly approaching zero. A more realistic model which includes a subjective cost 
for waiting would not produce such an extremely large criterion. 

Results of Experiments 1 and 2 

The following results were obtained by pooling sequences across sessions 2 
through 15. The first session was not included because subjects were unfamiliar with 
the task. 
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Marginal Statistics 

Relative frequency distribution. Table 2 presents the cumulative percentages of 
the number of tests purchased, N. The percentages within each column are based on 
25 x 14 x 6 = 2100 observations in Experiment 1, and 25 x 14 x 4 = 1400 obser- 
vations in Experiment 2. The first column indicates the possible values for N. The 
next six columns show the cumulative percentages pooled across subjects for all 
sequences within each cost condition. For example, consider the constant cost 
condition of Experiment 1. The percentage of observed sequences with N < 7 was 
53.1%. 

For the increasing cost condition of Experiment 1 and the fast increasing cost 
condition of Experiment 2, the cost of the 10th test exceeded the loss produced by 
an incorrect decision. Consequently, almost all sequences terminated by N = 10. 
For the slow increasing cost condition of Experiment 2, the cost of the 17th 
test exceeded the loss produced by an error. Consequently, almost all sequences 
terminated by N = 17. 

Note that the cumulative percentages for the decreasing and constant cost 
conditions of Experiment 1 crossover at N = 6. Prior to this point, the cumulative 
percentages for the decreasing condition dominate, but after this point the cumu- 
lative percentage for the constant cost dominate. This distribution crossover was 
consistent across all subjects of Experiment 1. One explanation for this result is the 
fact that tests were more expensive uner the decreasing cost condition for N < 5, but 
tests were more expensive under the constant cost condition for N > 5. 

Proportion of correct decisions. Table 3 shows the proportion of correct terminal 
decisions for each disease state as well as the mean, median, and standard deviation 
of the number of tests purchased for each subject and cost condition of 
Experiments 1 and 2. The first column indicates the condition, the second indicates 
the subject number, the third and fourth columns show the proportion of correct 
decisions for states S, and SB, respectively, and the last three columns show in turn 
the mean, median, and standard deviation of the number of tests purchased. 

The proportion of correct decisions increases almost linearly as the mean number 
of tests purchased increases. (A simple linear regression yields a square correlation 
of .85.) On the average, approximately a 2% gain in accuracy is obtained with each 
additional test. (This is restricted to the range of 4 to 13 tests.) As the cost of an 
error equaled 25 cents in Experiment 1, each additional test was worth 
approximately one-half cent on the average. (This cost analysis ignores the evidence 
provided by previous test results, which strongly influences the expected value of 
each new test.) 

The proportions of correct decisions are nearly equal for each state, which 
suggests that the terminal decision was unbiased. The means and medians differ by 
a small amount, indicating a slight positive skew in the distribution of N. The 
standard deviations are farily large for the decreasing and constant conditions of 
Experiment 1, and tend to be an increasing function of the means. 
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TABLE 2 

Cumulative Relative Frequency Distributions 

Experiment 1 Experiment 2 

n D c I S c F 

.O 1.1 .1 .3 .I .O .O 

1.0 2.5 .9 1.4 .1 .3 .3 
2.0 4.8 1.9 4.4 4.1 5.9 7.8 
3.0 15.1 10.7 25.1 18.7 22.0 26.4 
4.0 27.1 25.6 48.2 36.1 39.8 52.6 
5.0 37.4 35.9 75.5 53.7 56.2 72.1 
6.0 45.5 45.8 89.2 69.1 68.1 82.9 
7.0 52.4 53.1 99.4 79.0 76.4 91.7 
8.0 57.6 59.8 99.9 83.9 83.4 97.2 
9.0 63.1 64.4 99.9 88.1 86.5 99.6 

10.0 61.6 70.3 100.0 91.9 90.0 100.0 
11.0 70.9 74.3 100.0 94.8 91.9 100.0 
12.0 74.6 79.4 100.0 97.3 93.7 100.0 
13.0 77.1 82.3 100.0 98.8 95.4 100.0 
14.0 79.6 84.6 100.0 99.6 96.1 100.0 
15.0 82.8 87.0 100.0 99.8 96.7 100.0 
16.0 85.1 89.5 100.0 99.9 97.3 100.0 
17.0 86.8 91.1 100.0 100.0 97.7 100.0 
18.0 88.2 92.5 100.0 100.0 98.1 100.0 
19.0 89.7 93.6 100.0 100.0 98.3 100.0 
20.0 91.1 94.9 100.0 100.0 98.6 100.0 
21.0 92.5 95.5 loo.0 100.0 98.6 100.0 
22.0 93.5 96.3 100.0 100.0 98.9 100.0 
23.0 94.1 96.6 100.0 100.0 98.9 100.0 
24.0 94.8 97.3 100.0 100.0 99.0 loo.0 
25.0 95.4 97.5 100.0 100.0 99.1 100.0 
26.0 96.2 97.9 100.0 100.0 99.2 100.0 
27.0 97.0 98.1 100.0 100.0 99.3 100.0 
28.0 97.4 98.8 100.0 100.0 99.3 100.0 
29.0 97.9 99.0 100.0 100.0 99.3 loo.0 
30.0 98.2 99.1 100.0 100.0 99.5 100.0 
40.0 99.4 99.9 100.0 loo.0 99.9 100.0 
50.0 99.8 100.0 loo.0 100.0 99.9 100.0 
65.0 100.0 100.0 100.0 100.0 100.0 100.0 

Note. n = number of observations purchased. D = decreasing cost, 
C = constant cost, I = increasing cost, S = slow increasing cost, F = fast increas- 
ing cost. 
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TABLE 3 

Percentage Correct for Each State, Mean, Median, and Standard Deviation of 
the Number of Observations Purchased 

Condition Subj. PCR, I s,41 PCRB I SBI Mean N Median N Std. N 

D 
C 
I 

D 
c 
I 

D 
c 
I 

D 
C 
I 

D 
C 
I 

D 
C 
I 

s 
C 
F 

s 
C 
F 

s 
c 
F 

s 
C 
F 

1 .88 .89 10.47 9.00 7.09 
1 .90 .87 9.12 7.00 5.89 
1 .I4 .74 5.19 5.00 1.53 

2 .80 .83 5.36 4.00 3.07 
2 .82 .82 5.18 5.00 2.23 
2 .75 .73 4.45 4.00 1.46 

3 .92 .94 12.19 10.00 8.60 
3 .91 .88 11.32 8.00 7.91 
3 .81 .70 4.43 4.00 1.24 

4 .87 .89 9.84 8.00 7.75 
4 .88 .85 8.87 8.00 5.53 
4 .73 .75 4.37 5.00 1.22 

5 .87 .84 10.95 9.00 8.75 
5 .94 .84 11.04 10.00 5.50 
5 .74 .75 4.38 5.00 1.24 

6 .86 .81 8.62 7.00 6.26 
6 .89 .81 7.86 6.00 5.37 
6 .78 .78 4.59 4.00 1.60 

5 .85 32 5.19 5.00 1.21 
5 .78 .I9 5.21 5.00 1.68 
5 .75 .81 4.09 4.00 0.88 

I .84 .88 8.40 8.00 3.03 
7 .88 .88 9.54 8.00 6.76 
I .80 .73 5.98 6.00 1.76 

8 .84 .76 5.11 
8 .84 .80 5.10 
8 .78 .74 4.55 

9 .80 .81 4.69 
9 .77 .82 4.97 
9 .76 .77 4.15 

5.00 
5.00 
4.00 

4.00 
4.00 
4.00 

2.37 
2.55 
1.91 

2.13 
2.64 
1.56 

Nofe. Subjects 1 to 6 participated in Experiment 1, subjects 5, 7, 8, and 9 participated in 
Experiment 2. D = decreasing cost, C = constant cost, I = increasing cost, S = slow increasing 
cost, F= fast increasing cost. 
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Proportion of optimal terminal decisions. The proportion of optimal terminal 
decisions was calculated separately for each subject as follows. The number of 
sequences terminating with {R, and d(N) > 0} or { RB and d(N) <O> was divided 
by the number of sequences terminating with {d(N) < 0) or {d(N) > 0). The 
following proportions were obtained from subjects 1 through 6 of Experiment 1: 
.995, 1.00, .997, .991, .994, .987, with a mean equal to .994. In other words, the non- 
optimal decision was selected an average of 6 out of 1050 sequences. The 
corresponding proportions for subjects 5, 7, 8, and 9 of Experiment 2 were .996, 
.999, .999, .995, with a mean equal to .997. In other words, the non-optimal 
terminal decision was selected an average of 3 out of 1050 sequences. 

For all practical purposes, the terminal decision was determined by the final 
difference, d(N), between the number of positive and negative tests. This fact places a 
constraint on possible psychological models. For example, if subjects only paid 
attention to the (n-m) most recent test results or if they randomly forgot m test 
results, then they would frequently fail to choose the optimal terminal decision. 
This results from the fact that the sign of the partial sum based on only n-m test 
results will be imperfectly correlated with the sign of the total sum based on all n 
test results. The fact that non-optimal terminal decisions were almost never chosen 
implies that subjects were basing their terminal decision on a statistic that was 
nearly perfectly correlated with the sum of all the evidence. 

To be even more specific, suppose that when n >/ 10 tests were observed, subjects 
in Experiment 1 randomly forgot m > 3 out of n test results and based their decision 
on the sign of the partial sum of n -m test results. The probability that the sign of 
this partial sum matches the sign of the total sum given that Id(n)\ = 1 is less than 
.712 (assuming that subjects choose randomly when the partial sum equals zero). 
However, the proportion of optimal terminal decisions pooled across all 54 
sequences in Experiment 1 ending with ld( N)I = 1 and N > 10 equaled 51/54 = .944, 
which is significantly higher than expected by the forgetting model. 

Joint frequencies of d(N) and N. Table 4 shows the joint relative frequency 
distribution of the terminal difference, d(N), and the number of tests purchased, N, 
for each condition and experiment. The first column indicates the cost condition for 
each experiment. The second column indicates the ‘magnitude of the terminal 
difference grouped into three intervals: Id(N)\ < 1, 2 < (d( N)I G 4, and Id( N)J 2 5. 
The third column indicates whether the percentages are observed (0) or predicted 
(P). (Predicted percentages will be discussed later.) The last 11 columns indicate the 
number of tests purchased grouped into 11 intervals of size three, except for the first 
interval which only includes N = 0. Crossing the three intervals for Id(N)1 with the 
11 intervals for N produces a 3 x 11 matrix. There are three matrices for each of the 
two experiments, and the percentages within each cell are averages across subjects. 
For example, under the constant cost condition of Experiment 1, subjects stopped 
with 2< (d(N)1 64 and lo< N < 12 an average of 10% of all sequences. 

Previous research suggests that subjects are willing to stop with less evidence as 
the number of tests purchased increases, even when the monetary observation costs 



TABLE 4 

Joint Relative Frequency Distribution of the Number of Observations 
Purchased and the Terminal Difference 

Number of observations purchased 

Cond. d(N) 0 1-3 4-6 7-9 l&12 13-15 1618 19-21 22-24 25-27 28-30 

D o-1 00 2 2 
D &lPl 2 I 

D 24 0 0 9 20 
D 224 PO 7 18 

D 25 0 0 0 5 
D 25 P 0 0 5 

C ts100 1 0 
C o-1 PO 1 2 

c 24 0 0 7 26 
C 224PO 6 23 

C 25 0 0 0 5 
C >5 P 0 0 5 

I O-l 0 0 I 21 
I &I PO 2 20 

I 24 0 0 22 45 
I 224 P 0 18 52 

I a500 0 1 
I 25 P 0 0 1 

s O-100 0 3 
S O-1 PO 3 6 

s 24 0 0 17 46 
s 24 P 0 17 39 

S a500 0 3 
S 25 P 0 0 2 

C O-100 0 6 
C f&l PO 3 5 

C 24 0 0 20 39 
c 2-4 P 0 17 36 

C 25 0 0 0 3 
C 35 P 0 0 2 

F (rl 00 0 11 
F (tl PO 3 11 

F 224 0 0 23 46 
F 24 P 0 19 48 

F >5 0 0 0 1 
F 25 P 0 0 1 

1 0 0 
2 1 1 

7 7 3 
12 10 6 

10 5 6 
8 4 3 

2 0 1 
2 1 1 

10 10 6 
15 11 6 

7 5 3 
7 3 3 

7 0 0 
6 0 0 

2 0 0 
0 0 0 

0 0 0 
0 0 0 

6 
7 

12 
15 

1 
2 

4 
5 

11 
12 

2 
3 

10 
12 

7 
5 

0 
0 

0 
0 

0 
1 

7 
6 

0 
1 

0 
0 

0 
0 

0 
0 

2 
1 

1 
0 

0 
0 

0 
0 

3 
2 

0 
1 

0 
0 

0 
0 

0 
0 

0 
0 

4 
4 

3 
1 

0 
0 

5 
4 

1 
2 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

2 
1 

0 
1 

0 
0 

0 
0 

0 
0 

0 
0 

2 
2 

3 
1 

0 
0 

2 
2 

1 
1 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
1 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

1 
1 

1 
0 

0 
0 

2 
1 

0 
1 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

1 
1 

2 
0 

0 
0 

1 
1 

0 
1 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

1 
0 

1 
0 

0 
0 

1 
0 

0 
1 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

Note. Relative frequencies were rounded off to two decimal places. 
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are constant. Whenever subjects terminate with (d(N)\ < 2 after purchasing more 
than one observation (N> l), then it is clear that they initially required more 
evidence than a difference of - 1 or + 1 to make a terminal decision (since they 
passed it up after each odd serial position within a sequence), but later this same 
difference was sufficient to make a terminal decision. Subjects in Experiment 1 
stopped with Id(N)\ ~2, N> 1, on 6.6, 6.8, and 29.2% of the sequences presented 
during the decreasing, constant, and increasing cost conditions, respectively. Sub- 
jects in Experiment 2 stopped with Id(N)1 ~2, N> 1, on 12.7, 10.7, and 21.7% of 
the sequences presented during the slow increasing, constant, and fast increasing 
cost conditions, respectively. 

Conditionul Statistics 

Responses following last observation. According to the optimal model, subjects 
should never stop and choose R, immediately following a negative test result, nor 
should they stop and choose R, immediately following a positive test result. The 
tendency to choose R, immediately following a negative test result or RB 
immediately following a positive test result depended on the final difference between 
the number of positive and negative tests. If the last test was negative but the final 
difference was positive, or if the last test was positive and the final difference was 
negative, then subjects usually decided in agreement with the final difference and 
contrary to the last test result. 

Table 5 presents the joint frequencies for the eight possible combinations defined 
by crossing the sign of the final test result, Z(N), the sign of the final difference, 
d(N), and the two terminal responses. The results are pooled across all sequences 
for each cost condition and experiment, separately.2 The first row of the table 
indicates the sign of the final test result, the second indicates the sign of the final 
difference, and the third indicates the terminal response. The next three rows 
labeled D, C, and Z, show the frequencies for the decreasing, constant, and increas- 
ing cost conditions of Experiment 1. The seventh row shows the totals from 
Experiment 1. The next three rows show the frequencies for the slow increasing, 
constant, and fast increasing cost conditions, respectively, and the last row shows 
the totals for Experiment 2. For example, under the constant cost condition of 
Experiment 2, a total of 10 sequences ended with a positive test result, a negative 
terminal difference, and the selection of response R,. 

Overall, subjects terminated with the combinations [R,, Z(N) < 0] or 
[R,, Z(N) > O] on 166 sequences. On 89.2% of these 166 sequences they ended 
with either the combination [d(N) < 0, Z(N) > 0, R,] or the combination 

*Due to a memory limitation, the computer program used to store the results of Experiment 1 
recorded the patterns only up to and including n=8. The memory limitation was increased to n= 30 
for Experiment 2. The frequencies for Experiment 1 in Table 5 are, therefore, limited to sequences with 
N<8, which include 97.2% of the sequences for the increasing cost condition, but only about 60% of 
the sequences for the constant and increasing cost conditions (see Table 2). All sequences were included 
for the increasing cost condition, and 99.5% were included for the constant cost condition in 
Experiment 2. 
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TABLE 5 

Frequencies of the Joint Events Formed by Crossing the Sign of 
the Final Test Result, the Sign of the 

Final Difference, and the Final Choice Alternative 

Event 

Final test 1 1 1 1 -1 -1 -1 -1 
Final difference 1 I -1 -1 1 I -1 -I 
Final choice A B A B A B A B 

D 537 1 2 4 7 1 0 485 
c 592 0 1 7 11 0 2 517 
I 978 1 7 50 29 5 8 952 

Total 2107 2 10 61 47 6 10 1954 

s 693 1 2 5 5 0 1 670 
C 666 0 2 10 4 0 0 675 
F 681 3 0 5 11 0 1 666 

Total 2040 4 4 20 20 0 2 2011 

Note. The value listed for the linal difference indicates only whether the tinal 
difference was positive or negative, and it does not reflect the magnitude of the 
difference. D = decreasing cost, C = constant cost, I = increasing cost, S = slow 
increasing cost, F= fast increasing cost. 

[d(N) > 0, Z(N) ~0, RA]. This pattern was common across individuals, and was 
not due to any single subject. In sum, subjects occasionafly (2%) stopped and chose 
an alternative that was contrary to the evidence produced by the last observation. 
Whenever this occurred, they usually (89%) decided in favor of the sum of all the 
evidence. 

Pattern anal.vsis. After purchasing n tests and observing the particular binary 
pattern of results y = [z,, . . . . ~~1, th e subject had to choose between three alter- 
natives-stop and choose R,, stop and choose R,, or continue to sample another 
test. In this section we analyze the percentage of each choice following various 
patterns of test results. Two different kinds of analyses are performed. The first is 
based on the percentages of terminal decisions that followed each pattern produced 
by the initial four tests. These percentages are averaged across subjects within each 
condition and are shown in Tables 6A and 6B. The second analysis is based on the 
percentages of terminal decisions that followed each pattern produced by the four 
most recent test results. These percentages were calculated separately for each 
subject and condition. They are presented in Appendix A. 

The percentage of terminal responses to the initial patterns was calculated for 
each subject as follows. Detinef(n, y) as the frequency that at least n observations 
were purchased and pattern y occurred. Define f(n, y, R,) as the frequency that at 
least n observations were purchased, pattern y occurred, and the subject’s response 
was Rj. The relative frequency of R, responses to pattern y was calculated from the 

480,‘3?:2-2 
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TABLE 6 

Relative Frequency of Making a Terminal Decision Conditioned on the Test Pattern 

A. Experiment 1 

Pattern d(n) 

Decreasing Constant Increasing 

.f Pt.41 04 / 0.4) 04 f  4-4) P(B) 

11 
11 

21 
21 

22 
22 

31 
31 

32 
32 

33 
33 

34 
34 

41 
41 

42 
42 

43 
43 

44 
44 

45 
45 

46 
46 

47 
41 

48 
48 

3 1 
1 -1 

33 2 
11 -2 

31 0 
13 0 

333 3 
111 -3 

331 1 
113 -1 

313 1 
131 -1 

133 1 
311 -1 

3333 4 
1111 -4 

3331 2 
1113 -2 

3313 2 
1131 -2 

3133 2 
1311 -2 

1333 2 
3111 -2 

3131 0 
1313 0 

3113 0 
1331 0 

3311 0 
1133 0 

169 2 0 177 1 0 173 1 0 
117 0 1 172 0 1 176 0 1 

87 5 0 95 2 0 94 5 0 
93 0 3 96 0 1 96 0 5 

19 0 0 81 0 0 71 0 0 
83 1 0 76 0 0 79 0 0 

51 31 0 57 21 0 52 71 0 
52 0 29 57 0 22 49 0 59 

32 1 0 36 0 0 31 1 0 
38 0 1 37 0 0 43 1 0 

40 3 0 38 2 0 40 1 0 
41 0 1 36 0 2 40 0 3 

42 3 0 39 0 0 38 5 0 
38 0 2 43 0 2 31 0 6 

21 39 0 28 55 0 10 91 0 
23 0 42 28 0 46 12 0 87 

16 3 
17 0 

18 6 0 6 12 0 
16 0 2 12 0 15 

18 27 
22 0 

21 17 0 19 51 0 
21 0 23 23 0 37 

23 17 
22 0 

0 
2 

0 
14 

0 
14 

0 
20 

0 
0 

0 
0 

2 
0 

21 17 0 22 53 0 
19 0 18 20 0 40 

24 22 
21 0 

23 29 0 18 58 0 
24 0 16 20 0 52 

16 0 
18 0 

17 0 
17 1 

18 2 
20 1 

16 1 
16 3 

19 0 
16 0 

15 0 
18 1 

15 0 
15 0 

14 0 
17 0 

17 0 
19 2 0 

Table continued 
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TABLE &Continued 

Pattern d(n) 

B. Experiment 2 

Slow Increasing Constant 

f  P(A) P(B) f  P(A) P(B) 

Fast Increasing 

f  P(A) P(B) 

11 
11 

21 
21 

22 
22 

31 
31 

32 
32 

33 
33 

34 
34 

41 
41 

42 
42 

43 
43 

44 
44 

45 
45 

46 
46 

41 
47 

48 
48 

3 1 
1 -1 

33 2 
II -2 

31 0 
13 0 

333 3 
111 -3 

331 I 
113 -1 

313 I 
131 -1 

133 1 
311 -1 

3333 4 
1111 -4 

3331 2 
1113 -2 

3313 2 
1131 -2 

3133 2 
1311 -2 

1333 2 
3111 -2 

3131 0 
1313 0 

3113 0 
1331 0 

3311 0 
1133 0 

174 0 0 177 0 0 174 1 0 
176 0 0 173 0 0 177 0 0 

94 I 0 97 10 0 94 15 0 
94 0 8 93 0 11 98 0 12 

80 0 0 79 0 0 79 0 0 
82 0 0 80 0 0 79 0 0 

55 49 0 53 54 0 46 69 0 
53 0 43 46 0 59 50 0 66 

33 1 0 35 0 0 33 0 0 
34 0 0 36 I 0 37 0 0 

38 1 0 38 0 0 41 4 0 
40 0 2 43 0 0 44 0 2 

42 1 0 37 4 0 35 2 0 
42 0 1 42 0 1 38 0 1 

17 82 0 20 62 0 19 82 0 
23 0 78 14 0 60 18 0 93 

16 0 0 11 5 0 7 25 0 
12 1 10 11 0 8 0 0 0 

18 27 0 18 39 0 19 59 0 
17 0 24 19 0 37 19 0 56 

20 32 0 22 36 0 20 56 0 
20 0 31 23 0 42 23 0 59 

24 31 0 19 42 0 20 65 0 
24 0 38 24 0 45 23 0 59 

18 0 0 16 0 0 20 0 0 
20 0 0 20 0 0 21 0 0 

19 0 0 17 0 0 15 0 0 
18 0 0 17 0 0 14 0 0 

15 0 0 17 0 1 14 0 0 
17 0 0 17 0 0 18 0 0 

Nore. f= pattern frequency, P(A) = percentage of responses favoring alternative A, P(B) = percentage 
of responses favoring alternative B. The percentage of reponses favoring continued testing equals 
1 - P(A) - P(B). All statistics are averages across subjects, including the pattern frequencies. The second 
column indicates the particular test pattern, where 3 indicates a positive test result, and 1 indicates a 
negative test result. For example, 331 represents the occurrence of two positive test results followed by a 
negative test result. 
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ratio f(n, y, R,)/f(n, y). The percentage of responses equals 100 times this ratio. 
Note that for any given n, there are 2” possible patterns. Consequently, the present 
analysis is limited to n d 4. 

The percentages shown in Tables 6A and 6B are the arithmetic means of the 
individual percentages. The first column indicates an arbitrary pattern identification 
number. The second column indicates a particular pattern, where the integer 1 sym- 
bolizes the occurrence of a negative test result, and the integer 3 indicates the 
occurrence of a positive test result. (These two integers are easier to discriminate 
than + and - packed closely together.) For example, the pattern 3313 represents 
the sequence (+ 1, + 1, - 1, + 1) obtained from the first four observations. The 
third column indicates the difference between the number of positive and negative 
test results, d(n). 

Note that the patterns are organized according to the difference, d(n), and the 
serial position of the minority outcome. Consider, for example, the patterns labeled 
42, 43, 44, and 45. All produced a difference equal to 2 in magnitude. The minority 
outcome occurs at the fourth position for pattern 42, at the third position for 
pattern 43, at the second position for pattern 44, and at the first position for 
pattern 45. A similar serial position ordering was used for the patterns labeled 32, 
33, and 34. 

Columns 4, 5, and 6 in Table 6A present the mean frequency of each pattern, the 
mean percentage of R, responses to each pattern, and the mean percentage of R, 
responses to each pattern, respectively, for the decreasing cost condition of 
Experiment 1. Columns 7, 8, and 9 show these same statistics for the constant cost 
condition, and columns 10, 11, and 12 present the same statistics for the increasing 
cost condition of Experiment 1. In Table 6B, columns 4, 5, 6 are for the slow 
increasing cost condition, columns 7, 8, and 9 are for the constant cost condition, 
and columns 10, 11, and 12 are for the fast increasing cost condition of 
Experiment 2. 

Three important findings warrant special attention: 

(1) Under the constant cost conditions (as well as other conditions), subjects 
frequently terminated after pattern 43 despite the fact that the last pair of test 
results in the sequence was non-diagnostic. Assuming constant costs and unlimited 
number of observations, the optimal model predicts that subjects should continue 
sampling until a constant critical difference is exceeded. If the critical difference has 
not been exceeded prior to the non-diagnostic subsequence, then it cannot be 
exceeded after the non-diagnostic subsequence. Therefore, subjects should never 
terminate following non-diagnostic subsequences. 

(2) Under the increasing cost conditions, subjects frequently terminated with 
R, following a negative test or terminated with R, following a positive test (pat- 
tern 42). As noted earlier (Table 5), this is another obvious violation of the optimal 
model because an observation was purchased at the end that could not change the 
optimal terminal decision. 
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(3). There is a strong recency effect. The percentage of terminal decisions 
increased across the four patterns 42, 43, 44, and 45. Thus, the tendency to stop 
cannot be described as a function of n and d(n) alone. 

The theoretical implications of these findings are discussed in more detail after 
the presentation of the results of Experiment 3. At present, two explanations can be 
ruled out. The first explanation is that subjects make occasional random guesses 
because of lack of attention or memory failure. Consequently, the non-zero precen- 
tages of terminal decisions after patterns 42 and 43 are due to random guesses. This 
conjecture cannot explain the present results for the following four reasons. First, if 
random guesses were responsible, then these guesses should be equally distributed 
across all patterns including the non-diagnostic patterns 46, 47, and 48. However, 
subjects almost never terminated on these particular non-diagnostic patterns. 
Second, subjects almost always selected the optimal terminal decision. If subjects 
were guessing at random, then they would occasionally make an error and choose, 
for example, R, when the majority of the evidence favored SB. Third, physical 
counters were always available during Experiment 2. Subjects only had to look at 
the video monitor to obtain a perfectly accurate count before each choice. Finally, 
all subjects were highly practiced and motivated to perform well because their 
monetary payoff depended on their decisions. 

The second explanation is that the deviations result from a couple of ideosyn- 
cratic subjects, while the majority of subjects behave according to the optimal 
model. The individual analyses shown in Appendix A indicate that this possibility is 
incorrect. Under constant cost conditions, all subjects tended to make a terminal 
decision immediately after observing the non-diagnostic subsequence occurring at 
the end of pattern 43. Under fast increasing cost conditions, all but one subject 
showed a tendency to stop by choosing R, immediately following a negative test, 
or stop by choosing R, immediately following a positive test after observing pattern 
42. (The one exception resulted from the fact that subject S9 never permitted pat- 
tern 42 to occur in the first place.) Finally, all subjects demonstrated a recency 
effect. In sum, the previously described conclusions drawn from Table 6 hold for the 
majority of subjects. 

EXPERIMENT 3 

Method 

Experiment 3 was conducted in 1968 at the Hebrew University of Jerusalem by 
Rapoport, Kubovy, and Tversky. The subjects in this experiment were tested on 
several different decision tasks including fixed sample and sequential sampling 
tasks. The present article is only concerned with the results obtained from the 
deferred decision task. Readers interested in the results of other decision tasks are 
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referred to Kubovy, Rapoport, and Tversky (1971) and Rapoport and Tversky 
(1970). 

Procedure 

Subjects recorded a sequence of four digit numbers representing the heights of 
individuals (in millimeters) randomly sampled from a population of males (labeled 
here as S,) or females (labeled here as S,). At any stage within a sequence, the sub- 
ject had a choice between three alternatives-terminate the sequence by deciding 
that the sequence was being sampled from (a) the male population, (b) the female 
population, or (c)defer the decision and purchase another observation. The 
maximum number of observations that could be purchased was limited as described 
below. 

The stimuli were two sets of 500 four-digit numbers constructed so as to provide 
the best approximation to two normal distributions with means of 1797 for the 
males and 1630 for the females, and a common standard deviation of 167. Exactly 
half of the sequences were selected from each population. All the subjects received 
the same set of sequences in the same order. 

The payoff for incorrect decisions was always zero (uAB = uBA = 0), and the payoff 
for a correct decision was the same for both alternatives (uAA = uBB). The payoff for 
a correct decision was equal to 5, 25, or 100 monetary units. The cost for each 
observation was always equal to 1.0 monetary unit. The maximum number of 
observations that could be purchased was 10 for both payoff conditions 5 and 25, 
and 20 for the payoff condition 100. 

Each subject participated in a total of 32 one-hour sessions, which were dis- 
tributed across a variety of different types of decision tasks. The deferred decision 
task occurred on session 11 for payoff condition 25, session 13 for payoff condition 
5, and session 16 and 25 for payoff condition 100. The experiment took place across 
a 2-month period with five sessions per week. Forty sequences were presented 
during each session. 

Subjects were run simultaneously in one large room. Communication among the 
subjects was not permitted. The stimuli were presented by a slide projector and the 
responses were recorded manually. The number of points gained was computed at 
the end of each sequence. 

Subjects 

The subjects were seven volunteers-four male and three females-all first year 
psychology majors at the Hebrew University of Jerusalem. Subjects were paid in 
proportion to the number of points earned. The mean payoff was about $4.00 per 
hour. 

Results of Experiment 3 

Percentage of Correct Terminal Decisions 

Table 7 shows the percentage of correct decisions separately for each subject, 
condition, and state. The first two columns show the percentage of correct decisions 



DEFERRED DECISION MAKING 111 

separately for each state. The last two columns show the mean and standard 
deviation of the number of observations purchased. 

The percentage of correct decisions tends to increase as the mean number of 
observations purchased increases. On the basis of a simple linear regression of the 
percentage of correct decisions (averaged across states) on the mean number of 
observations purchased, each additional observation produces a 5% increase in 
percent correct ( R2 = 32). 

The percentage of correct decisions for states A and B were quite different under 
payoff condition 5, but the direction of the bias varied across subjects. Subjects 
purchased very few observations under payoff condition 5, and the fluctuations in 
percent correct were due to chance. The percentage of correct decisions were nearly 
equal under payoff conditions 25 and 100. The mean number of observations 
purchased increased as the magnitude of the terminal payoff increased. The stan- 
dard deviation was an increasing function of the mean. 

TABLE 7 

Percentage Correct for Each State, Mean and Standard Deviation of 
the Number of Observations Purchased 

Payoff Condition Subj. PC& I S” 1 PC&l SBI Mean N Std. N 

5 1 0.75 0.45 0.05 0.22 

25 1 0.80 0.80 5.68 2.43 

loo 1 0.95 0.95 8.55 2.82 

5 2 0.75 0.45 0.28 0.71 

25 2 0.80 0.90 4.48 2.19 
100 2 0.95 0.90 8.12 4.16 

5 3 0.45 0.55 0.05 0.31 
25 3 0.80 0.75 3.20 1.36 

loo 3 0.90 1.00 6.30 2.83 

5 4 0.55 0.70 1.08 0.91 
25 4 0.80 0.90 4.93 1.33 

100 4 0.80 1.00 8.28 2.86 

5 5 1.00 0.00 0.00 0.00 
25 5 0.80 0.80 4.70 1.86 

100 5 0.90 1.00 7.30 3.55 

5 6 0.70 0.65 1.08 0.26 
25 6 0.75 0.85 2.53 0.77 

100 6 0.95 0.95 4.85 2.25 

5 7 0.75 0.75 1.88 0.84 
25 7 0.80 0.80 3.48 1.47 

loo 7 0.90 1.00 5.55 2.10 
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Responses following the Last Observation 

One of the most intruiging findings from the first two experiments was the fact 
that subjects occasionally made a terminal decision favoring an alternative that the 
majority of evidence supported, immediately after observing evidence against that 
same alternative (see Table 5). The following analysis was performed to determine 
whether a similar result occurred with normally distributed stimuli. 

The evidence engendred by the observation Z(n) = z was defined as the log odds, 
s(n)=ln[f,(z)/f,(z)], where f, is the density of Z(n) given state Sj and In is the 
natural logarithm. Assuming an independent and identically distributed sequence of 
normally distributed random variables, s(n) is proportional to the deviation score 
X(n)= [Z(n)- 1713.51, where 1713.5 is the average of the two state means. Recall 
that N is the total number of observations purchased on a given sequence. The 
evidence produced by the last observation is said to favor state S, if J!(N) > 0 and 
to favor state S, if X(N) < 0. The log posterior odds is said to favor S, if 
d(N)=X(l)+ . . + X(N) > 0, and the log posterior odds favors S, if d(N) < 0. 

Table 8 shows the frequencies of the eight possible combinations obtained by 
crossing the sign of the evidence produced by the last observation, the sign of the 
log posterior odds, and the terminal response pooled across subjects for each payoff 
condition. The first row indicates whether the evidence from the last observation 
favored S, ( + 1) or SB (- l), the second row indicates whether the log posterior 
odds favored S,., ( + 1 ), or S, (- l), and the third row indicates the terminal 
response. The next three rows show the frequencies for payoff conditions 5, 25, and 
100, respectively. The last row shows the total frequencies for each combination. 
For example, under payoff condition 25, subjects stopped and chose R,4 when the 
log posterior odds favored state A but the most recent observation favored state B 
on 11 sequences. 

TABLE 8 

Frequencies of the Joint Events Formed by Crossing the Sign of 
the Final Test Result, the Sign of the Final Log Posterior Odds, and 

the Final Choice Alternative 

Event 

Final test 1 I 1 1 -1 -1 -1 -1 
Final log odds 1 1 -1 -1 1 1 -I -1 
Final choice A B A B A B A B 

5 52 2 1 1 0 2 7 54 
25 129 4 4 12 11 6 1 113 

IO0 130 2 6 5 12 1 I 123 
Total 311 8 11 18 23 9 9 290 

Note. The values listed for the final test and final log odds indicate only the 
sign and not the magnitude of final test and log odds. The numbers 5, 25. and 
100 on the far left indicate the payolf conditions. 
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The combinations [X(N) < 0, RA] or [X(N) > 0, R,] occurred on 58 sequences 
(8.5%). (This percentage is a bit higher than the first experiment, but the difference 
may be partly due to the binary categorization of the continuous distribution of 
evidence.) The combinations [X(N) < 0, d(N) > 0, R,,,] or [X(N) > 0, d(N) < 0, R,] 
occurred on 71% of these 58 sequences. In conclusion, the results of Experiment 3 
replicate and strengthen one of the most interesting findings of Experiments I and 
2subjects occasionally stop and choose an alternative that is contrary to the 
evidence produced by the most recently experienced observation. Whenever this 
occurs, they usually decide in favor of the log posterior odds. This finding was 
obtained with both binomial and normally distributed observations. 

DISCUSSION 

Results from all three experiments refute the optimal model of deferred decision 
making behavior. Considering both (a) the difficulty of computing the optimal stop- 
ping rule and (b) the limited information processing capacity of human decision 
makers, this conclusion is not very surprising. We now turn to the evaluation of 
seven psychological models that are more limited in their information processing 
requirements. These seven models are discussed one at time, beginning with a brief 
description of each stopping rule followed by an empirical evaluation of each 
model. 

For the first six models, parameter free qualitative tests are possble under fairly 
general assumptions, Specifically, we assume that the stopping criteria vary 
systematically as a function of the prior probabilitites, the costs of the observations, 
and the terminal payoffs. The criteria are also permitted to differ across subjects. 
Furthermore, the criteria may fluctuate stochastically across sequences for a given 
subject and payoff condition. However, the criteria are assumed to remain constant 
within a given sequence of observations. 

The last model to be considered allows the criteria to vary within a sequence of 
observations. In the latter case, quantitative tests based on specific parameters are 
required to assess lack of lit. 

1. Fixed Sample Model 

A fixed sample size, M’, is selected prior to each sequence. A total of M’ obser- 
vations are purchased, independent of the observed test results. Alternative R, is 
chosen if the log posterior odds is greater than some criterion, 8, and R, is chosen 
if the log posterior odds is less than p. For example, in the first two experiments, 
subjects may sample M’ = 4 tests and then make a terminal decision depending on 
whether d(4) is greater or less than B = 0. Pitz et al. (1969), Swenson and Thomas 
(1974), and Stone (1960) have discussed this model. 

The fixed sample model predicts that the decision to stop purchasing obser- 
vations is independent of the observed pattern of test results. Consequently, this 
model can account for the fact that subjects occasionally stop on differences of zero 
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or one in magnitude (Table 4), and the fact that subjects stop and choose one alter- 
native immediately after experiencing evidence that favors the contrast alternative 
(Table 5): 

A problem arises from the prediction that the probability of termination is equal 
for all sequences of identical length. Referring to Table 6, the probability of 
termination following the highly diagnostic pattern 41 should be equal to that for 
non-diagnostic patterns such as 46, 47, and 48. Similarly, the probability of 
stopping after pattern 31 should be equal to that for patterns 32, 33, and 34. It is 
clear that this prediction is incorrect. 

2. Constant Bound Random Walk Model 

Observations are purchased until either (a) the log posterior odds is greater than 
or equal to a fixed upper bound, c(, in which case response RA is chosen, or (b) the 
log posterior odds is less than or equal to a lower bound, -/I, in which case 
response R, is chosen. For example, in the first two experiments, subjects may 
continue purchasing observations until d(n) 2 cx = 3 or until d(n) B -/I = - 2. This 
model was proposed by Audley and Pike (1965), Laming (1968), Pitz et al. (1969), 
and Stone (1960). Link and Heath (1975) proposed a similar model except that the 
cumulative evidence does not necessarily equal the log posterior odds. 

The constant bound random walk model predicts that subjects will never ter- 
minate on sequences that end with a positive log posterior odds that is less than or 
equal to a positive log posterior odds occurring earlier in the sequence. Nor should 
they terminate on sequences that end with a negative log posterior odds that is 
greater than or equal to a negative log posterior odds occurring earlier in the 
sequence. Referring to Table 6, a terminal decision should never occur following 
patterns 42, 43, 46, 47, and 48 simply because the last two tests do not increase the 
magnitude of the log posterior odds. 

This model can explain why subjects are more likely to stop after diagnostic 
patterns such as 31 and 41 as compared to non-diagnostic patterns such as 46, 47, 
and 48 in Table 6. It also explains why subjects are more likely to terminate after 
patterns 44 and 45 than pattern 42, despite the fact that terminal differences are 
equal. The log posterior odds increases in magnitude at the end for patterns 44 and 
45, but it decreases at the end for pattern 42. 

The problem with this model is that subjects should never stop immediately after 
observing a non-diagnostic subsequence. Referring to Table 6, subjects should never 
stop on the patterns numbered 42 and 43, but all subjects frequently do stop on 
these patterns. Furthermore, Pitz et al. (1969) have noted that according to the ran- 
dom walk model, subjects should never stop with a terminal difference equal to 
zero or one after purchasing more than one test. As can be seen in Table 4, this 
prediction is clearly incorrect. 

3. Fixed Forgetting Model 

Morgan and Robertson (1980) described a version of the random walk model 
with memory limited to the m most recent observations. Subjects continue purchas- 
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ing tests until the log odds summed across the m most recent tests exceeds an upper 
criterion or crosses below a lower criterion. For example, in the first two 
experiments, sampling may continue until the sum of the last m = 4 tests exceeds 2 
in magnitude. 

This model also predicts that subjects should never stop on patterns 42 and 43 in 
Table 6. This is true for any value of m. As noted in the preceding paragraph, this 
prediction is clearly incorrect. 

4. Hybrid Random Walk and Fixed Sample Model 

Pitz et al. (1969) proposed the following hybrid rule: the terminal decision is 
determined by a constant bound random walk strategy as long as the number of 
observations sampled is less than some self imposed limit, M’. However, if a 
decision was not reached after M’ samples, then the random walk process is abor- 
ted, and a decision is based on a fixed sample decision rule. For example, in the first 
two experiments, sampling may continue until either the magnitude of d(n) equals a 
critical difference of 3 or until the number purchased equals M’= 4, whichever 
comes first. 

A simple test of this model can be performed by considering sequences ending 
with a non-diagnostic subsequence (patterns 42, 43, 46, 47, 48 in Table 6). For 
these sequences, the hybrid model predicts that subjects terminate only if the num- 
ber of tests purchased exceeds the fixed sample size M’. In this case, the hybrid 
model makes exactly the same predictions as the pure fixed sample model-the 
probability of terminating after pattern 43 should equal that for patterns 46, 47, 
and 48. As can be seen in the tables, this is clearly incorrect. 

5. Horse Race or Accumulator Model 

A separate evidence accumulator is used for each alternative. A positive 
accumulator sums the log odds corresponding to the subsequence of observations 
that produced positive evidence favoring state S,. A negative accumulator sums the 
log odds corresponding to the subsequence of observations that produced negative 
evidence favoring state SB. Observations are purchased until either (a) the positive 
accumulator is greater than or equal to positive criterion c(, in which case R, is 
chosen, or (b) the negative accumulator is less than or equal to a negative criterion 
-/IL in which case RB is chosen. For example, in the first two experiments, testing 
may continue until either cc = 4 positive test results occur or until /? = 3 negative test 
results occur in any order. Audley and Pike (1965), Pike (1968), Pitz et al. (1969), 
and Vickers (1979) have described versions of this model under various names such 
as accumulator model, counter model, recruitment model, and “world series” 
model. 

An unbiased accumulator model cannot explain the fact that subjects 
occasionally stop on a log posterior odds equal to zero, since this event is 
impossible if a = /I. To account for the fact that subjects occasionally stopped with a 
difference equal to zero in the study by Pitz et al. (1969) or in our first two 
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experiments, it is necessary to assume that a bias (a # /I) was present on some 
sequences. 

The accumulator model can explain why subjects occasionally stop on patterns 
ending with a non-diagnostic subsequence such as pattern 43 in Table 6. For exam- 
ple, subjects would stop on pattern 3313 if the criteria were set to c( = /? = 3, so that 
the positive counter would accumulate three positive test results for the first time on 
the fourth observation. 

Note that the accumulator model implies that the terminal response always 
agrees with the sign of the log odds produced by the last observation. Thus, the 
accumulator model predicts that response R, should never ocur if the terminal log 
posterior odds is positive but the evidence from the last observation is negative. 
Similarly, the response R, should never occur if the terminal log posterior odds is 
negative but the evidence from the last observation is positive. The results in 
Tables 5 and 8 indicate that this prediction is systematically violated for both 
binomial and normal distributions. 

Referring to Table 6, the accumulator model predicts that subjects should never 
stop and choose R, following the pattern 3331, and the response R, should never 
occur following the pattern 1113. This prediction is frequently violated under the 
increasing cost conditions for pattern number 42. 

The accumulator model also predicts an ordering of the cumulative frequency 
distributions shown in Table 2. If observation costs only influence the criterion 
bounds, then the cumulative frequencies for one of the cost conditions should 
always exceed the cumulative frequencies for another cost condition (see Appen- 
dix B). For example, if the cumulative frequencies for the decreasing cost condition 
exceed the cumulative frequencies for the constant cost condition at n < 5, then this 
dominance relation should also be maintained for all n > 5. As can be seen in 
Table 2, the cumulative distributions crossover at n = 5 which contradicts the 
predicted distribution ordering property. 

6. Simple and Cumulative Runs Models 

There are two different versions of the runs model. The simple version (cf. Audley 
& Pike, 1965; Estes, 1960) assumes that subjects continue to purchase observations 
until either (a) the log odds of each of the a most recent observations are all 
positively signed, in which case response R, is chosen, or (b) the log odds of each 
of the fi most recent observations are all negatively signed, in which case response 
R, is chosen. For example, in the first two experiments, testing may continue until 
a consistent run of CL = 3 positive tests occur, or until a consistent run of /I = 2 
consecutive negative tests occur. 

This model predicts that a terminal decision should never occur following a run 
length which is less than or equal to earlier run lengths of the same sign. Referring 
to Table 6, a terminal decision should never occur following patterns 43, 46, or 47. 
The results for the pattern 43 indicate that this prediction is wrong. 

The cumulative runs models states that subjects continue purchasing obser- 
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vations until either (a) the posterior log odds is consistently positive on the tl most 
recent observations, in which case R, is chosen, or (b) the posterior log odds is 
consistently negative on the /3 most recent observations, in which case response RB 
is chosen. For example, in the first two experiments, testing may continue until d(n) 
is consistently positive on the last c( = 4 observations, or until d(n) is consistently 
negative on the last /? = 3 observations. 

The cumulative runs model can easily explain why subjects stop on patterns such 
as 42 or 43 in Table 6. For example, if u = p = 4 and pattern 3331 is observed, then 
d( 1) > 0, d(2) > 0, d(3) > 0, and d(4) > 0 which meets the criterion for stopping and 
choosing R,. Furthermore, they would not stop on the patterns 46, 47, and 48 
since u’(n) is not consistently positive or negative. 

The problem with this model is that it predicts that subjects should be equally 
likely to stop on patterns 41, 42 and 43, and more likely to stop on pattern 42, than 
44 and 45. However, Table 6 indicates that the tendency to stop on pattern 42 was 
far below that for patterns 41, 43, 44, and 45. Also, the cumulative runs model 
predicts that subjects should never terminate with a difference equal to zero after 
purchasing one test, but the results reported by Pitz et al. (1969), and to a lesser 
extent the present study, indicate that occasionally they are willing to do so. 

7. Myopic Decision Rules 

Recall that the optimal model prescribes purchasing additional observations until 
the expected loss of making a terminal decision is less than the expected loss after 
purchasing one or more additional observations. This decision rule requires 
planning many steps ahead-until the termination of the task-because the 
possibility of purchasing any number of additional observations must be considered 
(see Rapoport & Burkheimer, 1971). 

There is strong evidence suggesting that the decision maker’s planning horizon is 
severely limited (Rapoport, 1966). Suppose that the decision maker considers only 
a small number of steps (say m steps) and uses the following stopping rule: If the 
expected loss of making a terminal decision on the basis of the current information 
is less than the expected loss of making a terminal decision after purchasing at most 
m more observations, then stop; otherwise, purchase another observation. For 
example, if m = 1, then this rule prescribes purchasing another observation if and 
only if the expected loss of making a terminal decision on the basis of the current 
information is more than the expected loss of making a terminal decision after 
purchasing just one more observation. Of course, m may be larger than one step, 
but M must be fairly small (m < 3) to make predictions that differ from those 
generated by the optimal rule for each cost condition. 

The problem with this decision rule is that it always prescribes stopping with 
a terminal difference smaller than m + 1 in magnitude. For example, if m = 1 then 
this rule prescribes stopping after purchasing the very first observation (see 
Appendix C). However, the results shown in Table 4 indicate that terminal 
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differences larger than 4 in magnitude frequently occurred, which is contrary to the 
supposition that m is fairly small. 

The following myopic decision rule minimizes future planning: If the expected 
loss of making a terminal decision after purchasing n observations is less than or 
equal to the sum of the costs of n + 1 observations, then a terminal decision is 
made; otherwise another observation is purchased. To be more specific, let 
PCS, 1 d(n) = d] be the posterior probability of state Si conditioned on the observed 
difference d(n) = A. If R,., is chosen, then the expected loss equals 

Jr,@, 4 = PCS, I 0) = 4 . Cu,u - oml + 1 c(k), k=l,n 

and if R, is chosen then the expected loss equals 

J,h 4 = PCS, I d(n) = 4 . Cum - u,ul + 1 c(k), k= 1, n. 

According to the myopic rule, another observation is purchased if and only if 
J(n, d) = min[J,(n, d), J,(n, d)] > c(l) + ... + c(n + 1). Following the decision to 
stop purchasing observations, R, is chosen over R, if J,(n, d) < J,(n, d), R, is 
chosen over R, if the inequality is reversed, and the choice is made randomly if the 
two expected losses are equal. 

Under the conditions of Experiments 1 and 2, the myopic stopping rule can 
be reformulated as follows (see Appendix D). For c(n + 1) > 0, define 
r(n) = (u, - uY)/c(n + 1) as the ratio of the cost of an incorrect terminal decision to 
the cost of the next test. Then according to the myopic stopping rule, another 
observation is purchased if and only if Id(n)\ <h(n), where 

S(n) = 
WXn) - 1 llWG7) for r(n)> 1, 

(1) 
0 for r(n) < 1, 

p = P[Z(n) = + 1 1 S,], and q = 1 -p. (Recall that Z(n) is the nth test result in a 
sequence of observations.) Following the decision to stop purchasing observations, 
R, is chosen if d(n) > 0, R, is chosen if d(n) < 0, and the choice is made randomly if 
d(n) = 0. 

The ratio r(n) is not defined for c(n + 1) = 0. This problem is circumvented by 
postulating a subjective cost of waiting to make a terminal decision. The longer one 
has to delay the terminal response, the more impatient one becomes, especially 
when the stopping time is uncertain (cf. Osuna, 1985). Define w(n) as the increment 
to the cumulative waiting cost produced by purchasing the n th test. Although this 
function is unknown (except that w(0) =O), we approximated it by the linear 
function, w(n) = b .n, (where b >O is a scaling constant that expresses the cost of 
waiting in monetary units). The subjective cost of purchasing the nth observation is 
defined as c’(n) = c(n) + w(n). Hereafter, the stopping criterion, s(n), is defined by 
Eq. 1 with c’(n) substituted for c(n). 

jeromebusemeyer
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The stopping rule described above is deterministic; for a fixed pattern of test 
results, the probability of making a terminal decision will be zero or one. The 
results in Table 6 indicate that variability must be introduced into the decision 
process. For 6(n) > 0, it may be difficult to evaluate the difference z = Id(n)1 - 6(n). 
In this case, the probability of stopping was represented by logistic function 

F(z)= [l +exp(-0.2)]-‘, with z = Id(n)1 -6(n). 

The coefficient, 0 > 0, determines the degree of discriminability. Nearly perfect dis- 
criminability can be achieved as a special case by setting 0 to a very large number. 

If the cost of the next test is more than the loss expected by random guessing 
(S(n)=O), then there is little doubt that it is time to stop testing. (In fact, subjects 
almost never purchased another test under these conditions.) Therefore, the 
probability of stopping was set to 1.0 for 6(n) = 0. 

There is one last consideration. The impatience of the subject may wax and wane 
during a session. For example, subjects may become more impatient towards the 
end of a session or the end of a week. This heterogeneity was taken into account by 
defining h (the scaling constant for waiting cost) as a random variable. The dis- 
tribution of this random variable was approximated by a binomial distribution over 
a set of 26 values (6, & , . . . . g). A binomial distribution was chosen because it 
produces a skewed bounded distribution that depends on only one parameter (the 
mean, denoted p). The upper bound of the set (b= 2.5) was chosen to be large 
relative to the observation costs (e.g., if b = 2.5 then ~(10) = 25 cents, which is a 
large cost for a single test). 

In sum, the myopic decision rule, requires estimation of two parameters-the dis- 
criminability coefficient, 0, and the mean of the distribution of the waiting cost 
scaling constant, p. The discriminability coefficient was assumed to remain constant 
across all conditions. However, the mean of the scaling constant was allowed to 
vary across cost conditions because of variation in the expected waiting time for 
different conditions (cf. Osuna, 1985). Subjects expected that a decision would be 
reached within a small number of tests with the fast increasing cost conditions, but 
they were unable to predict how long they would have to wait for the decreasing or 
constant cost condtions. 

Test of the myopic model. The model described above was evaluated in two 
phases. First, the parameters were estimated by fitting the model to joint relative 
frequency distributions presented in Table 4, separately for each individual. Then, 
predictions for the relative frequencies shown in Table 6 were calculated using the 
same parameters estimated from Table 4. The frequencies in the two tables are not 
independent, but the results in Table 4 are pooled over patterns, while the results in 
Table 6 are conditioned on specific patterns. The details of the model fitting 
procedure are given in Appendix D. 

The discriminability parameter for all subjects and conditions was fixed at 
0 = 2.0. The means of waiting cost scaling parameter, p, for each subject and con- 
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dition are shown in Table 9. Note that while it was necessary to allow p to vary 
across conditions in Experiment 1, it was possible to fix p across conditions in 
Experiment 2 without substantially reducing the fit of the model. Further discussion 
of these parameters is delayed until the predictions are discribed. 

The predictions for the joint frequency distribution of d(N) and N can be 
evaluated by comparing the two adjacent rows for observed (denoted 0) and 
predicted (denoted P) frequencies in Table 4. Although the fit is not perfect, no 
large systematic deviations are apparent. Note that the model generates non-zero 
percentages of stopping on a difference less than or equal to one in magnitude after 
N > 1 similar to the observed results. At the same time, the model correctly predicts 
that large terminal differences frequently occur under certain cost conditions. Also 
note that the systematic changes in the joint frequencies across observation cost 
conditions in Experiment 2 are accurately reproduced, even though both 
parameters were fixed across conditions in this experiment. (In other words, only 
two parameters were required to lit all of the joint frequencies in Experiment 2.) 

Table 10 shows the observed (denoted 0) and predicted (denoted P) percentages 
of sequences that subjects stopped after observing a particular pattern on the first 
four tests. The first column indicates the type of pattern (the pattern number refers 
to the same patterns listed in Table 6), and the last six columns indicate the obser- 
vation cost conditions for Experiments 1 and 2. Because of the symmetry of the 
results, the data were averaged across adjacent patterns associated with the same 

TABLE 9 

Parameter Estimates of the Mean of the Distribution of 
the Scaling Coeffkients for 

the Subjective Cost of Waiting 

Experimental Condition 

Expt. Subj. 1 2 3 

1 1 0.25 0.25 0.22 
1 2 0.95 1.02 0.77 
1 3 0.18 0.20 0.82 
I 4 0.18 0.30 0.72 
1 5 0.18 0.12 0.72 
1 6 0.33 0.37 0.62 

2 5 0.85 0.85 0.85 
2 7 0.18 0.18 0.18 
2 8 0.57 0.57 0.57 
2 9 0.72 0.72 0.72 

Note. For Experiment 1, conditions 1, 2, and 3 refer to the 
decreasing, constant, and increasing cost conditions; for 
Experiment 2, conditions 1, 2, and 3 refer to the slow, con- 
stant, and fast increasing cost conditions, respectively. 
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TABLE 10 

Predicted and Observed Relative Frequencies of 
Stopping and Making a Terminal Decision 

Conditioned on the Preceding Pattern of Test Results 

Pattern 

Expt. 1 Expt. 2 

D C I S C F 

41 0 
41 P 

42 0 
42 P 

43 0 
43 P 

44 0 
44 P 

45 0 
45 P 

46 0 
46 P 

47 0 
47 P 

48 0 
48 P 

41 
42 

3 
6 

21 
8 

16 
9 

21 
9 

0 
0 

51 89 80 61 
43 94 14 13 

4 14 6 7 
I 36 20 19 

20 44 26 38 
9 43 27 26 

18 47 32 39 
9 44 28 28 

23 55 35 44 
9 44 28 28 

1 3 0 0 
0 2 1 I 

1 2 
0 2 

1 3 
0 2 

0 0 
1 1 

0 1 
1 1 

88 
85 

13 
29 

58 
31 

58 
38 

62 
38 

0 
2 

0 
2 

0 
2 

Note. The pattern numbers correspond to the pattern num- 
bers shown in Table 6. 0 = observed percentage, P = predicted 
percentage. 

labels in Table 6. For example, the third pair of rows in Table 10 show the observed 
and predicted percentage of sequences on which subjects stopped after observing 
pattern number 43, i.e., after observing either pattern 3313 or pattern 1131. 

Table 10 shows that predictions for highly diagnostic (41) or non-diagnostic 
(46,47,48) patterns are fairly accurate. Also, the model correctly predicts that sub- 
jects will occasionally stop on pattern 43 under constant and decreasing cost con- 
ditions, and more frequently stop on both patterns 42 and 43 under increasing cost 
conditions. However, it is also apparent that there are systematic discrepancies. For 
example, although the model correctly predicts that the percentage for pattern 42 is 
less than that for pattern 43, the predicted difference is much smaller than the 
observed difference. Although the model correctly predicts that the percentages for 
patterns 43, 44, and 45 are approximately equal, the predicted values are 
systematically lower than the observed values. 

Are the discrepancies shown in Table 10 due to the myopic decision rule 
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per se or the axiliary assumptions ? To explore this possibility, we varied the 
assumption concerning the subjective cost of waiting (by comparing models with 
MI(~) = 6, w(n) = b .n, or w(n)= b .n2), but the linear function (w(n)= b .n) 
produced the best overall results. In addition, the model was fit to the data shown 
in Table 10 using new parameters. The results of this analysis indicated that the 
most serious discrepancies were eliminated by increasing the discriminability 
parameter (e.g., setting c( = 4). However, increasing the discriminability substan- 
tially reduced the lit to the results in Table 4. Thus, the problem does not seem to 
be fitting the results in Table 10, but rather the model is unable to account for the 
results in both tables simultaneously. 

Another problem for the model is the variation of the mean of the waiting cost 
scaling constant, p, across conditions in Experiment 1 for subjects 3-6. Although 
the means for the decreasing and constant cost conditions were approximately 
equal, both of these means tended to be smaller than the mean for the increasing 
cost condition. Possibly, the increased mean for the increasing cost condition 
indicates that the stopping criteria decrease in magnitude more rapidly than 
predicted on the basis of observation costs alone. 

In sum, the myopic decision rule captures several of the qualitative features of the 
data, yet there are systematic discrepancies from the model. Possibly with some 
subjects, planning beyond the next observation occurred on some of the sequences, 
However, the myopic model may be considered better than the other psychological 
models for two reasons. First, all of the other models can be rejected on the basis of 
parameter free predictions that are disconfirmed by the known facts, but the 
parameter free predictions of the myopic decision model remain consistent with the 
known facts. Second, the myopic decision model provides a simple way to describe 
how changes in observation costs influence the stopping rule, whereas the other 
psychological models require ad hoc assumptions that relate changes in observation 
costs to the parameters of the stopping rule. 

CONCLUSION 

This research investigated psychological models of deferred decision making. A 
new method of evaluating these models, called pattern analysis, proved to be very 
diagnostic. The fixed sample, constant bound random walk, hybrid fixed sample- 
constant bound random walk, fixed forgetting, horse race or accumulator, simple 
and cumulative runs models all generate parameter free predictions that were 
falsified by the results of three experiments. A myopic stopping rule provided a bet- 
ter account of these results. The essential idea of the latter model is that subjects 
continue purchasing observations until the expected loss of a terminal decision after 
purchasing n observations is less than the sum of costs of n + 1 observations. The 
shortsighted nature of this stopping rule allows one to wastefully purchase obser- 
vations that have no impact on the final decision. 

Are the conclusions of the present study relevant to more complex extra- 
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laboratory settings? Although a complete answer to this question must await 
further research, two preliminary answers are worth mentioning. First, any psy- 
chological theory of deferred decision making general enough to be applicable to 
complex settings should be able to account for behavior in simple laboratory set- 
tings, provided that subjects are sufficiently well motivated (as they were in the 
present studies). Second, Young, Fried, Hershey, Eisenberg, and Williams (1985) 
reported results similar to the present findings that were based on decisions made 
by physicians who were asked to answer a questionnaire containing complex 
realistic medical scenarios. Young er al. found that physicians would occasionally 
fail to recommend a treatment for a disease before observing a piece of evidence, 
but later decide to recommend treatment after observing a piece of evidence that 
actually lowered the probability that the disease was present. This result is similar 
to the present finding that subjects occasionally make a terminal decision in favor 
of one disease immediately following evidence that favors the alternative disease. 

APPENDIX A 

Individual analyses of responses to patterns. The results in Table A were 
calculated for each subject in Experiments 1 and 2 as follows. Recall that 
y = cz,, ..., z,] represents a particular pattern of test results obtained from the first 
n observations. The pattern y* = [z,-~, z,-~, z,_ 1, z,,] represents the results of 
the four most recent tests in the pattern y. DefineS(n, y*) as the frequency that at 
least n observations were purchased and the pattern y* occurred on the four most 
recent tests. Define S(n, y*, R,) as the frequency that at least n observations 
were purchased, y* occurred, and the response R, was chosen. The relative 
frequency of a terminal decision to the pattern y* was obtained from the ratio 
Cf(n, y*, R,)Ef(n, y*), where the summation ranges from n = 4 to n = 8. The 
percentage of responses equals 100 times the relative frequency. 

Pooling across n was needed to obtain frequencies large enough to provide 
reasonable estimates for individual analyses. The analyses were limited to n = 8 
because few sequences extended beyond n = 8 in Experiment 2. 

The first column in Table A indicates the subject number, and the fourth column 
is the difference between the number of positive and negative tests based on the last 
four observations. The remaining columns are defined exactly the same as in 
Table 6. 

APPENDIX B 

The purpose of this appendix is to derive a cumulative distribution ordering 
property from the horse race model. When the test results are binomially dis- 
tributed, as they were in Experiments 1 and 2, then the horse race stopping rule can 
be defined as follows. Let A(n) and B(n) be the number of positive and negative test 
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TABLE A 

Relative Frequency of Stopping Conditioned on the Test Pattern 
Appearing on the Four Most Recent Tests 

Subj. Pattern 

1 1 3333 
1 1 1111 

1 2 3331 
1 2 1113 

1 3 3313 
1 3 1131 

1 4 3133 
1 4 1311 

1 5 1333 
1 5 3111 

1 6 3131 
1 6 1313 

1 7 3113 
1 7 1331 

1 8 3311 
1 8 1133 

2 1 3333 4 17 
2 1 1111 -4 21 

2 2 3331 2 18 
2 2 1113 -2 15 

2 3 3313 2 56 
2 3 1131 -2 56 

2 4 3133 2 59 
2 4 1311 -2 48 

2 5 1333 2 54 
2 5 3111 -2 60 

2 6 3131 0 59 
2 6 1313 0 55 

2 7 3113 0 34 
2 7 1331 0 47 

2 8 3311 0 41 
2 8 1133 0 43 

Decreasing Constant Increasing 

d .r 
4 83 

-4 95 

2 65 
-2 60 

2 69 
-2 82 

2 86 
-2 100 

2 93 
-2 101 

0 71 
0 78 

0 76 
0 67 

0 69 
0 59 

P(A) 04 .f P(A) P(B) .f P(A) P(B) 

41 0 90 42 
0 38 82 0 

3 0 47 4 
0 0 63 0 

16 0 68 10 
0 4 76 0 

13 0 73 14 
0 12 85 0 

15 0 88 30 
0 12 98 0 

0 0 64 0 
1 0 73 1 

0 0 62 0 
0 0 67 1 

0 0 63 0 
2 0 71 3 

59 0 
0 76 

0 
0 

0 
7 

41 
0 

59 
0 

52 
0 

0 
9 

3 
0 

0 
7 

0 
27 

19 79 
24 0 

18 6 
20 0 

49 31 
55 0 

0 
50 

0 
52 

8 
0 

63 
66 

69 
54 

49 
40 

0 
9 

12 
0 

45 
45 

36 
43 

44 
0 

57 
0 

0 
7 

0 
0 

0 
14 

0 24 
44 42 

0 21 
2 30 

0 46 
9 62 

0 54 
15 66 

0 47 
21 53 

3 67 
0 66 

0 52 
0 46 

0 43 
0 47 

0 13 
79 12 

0 7 
5 9 

0 45 
40 45 

0 51 
50 53 

0 41 
50 38 

4 38 
0 38 

0 30 
0 42 

17 31 
0 42 

83 0 
0 76 

19 5 
3 27 

39 0 
2 31 

52 0 
0 53 

57 0 
0 53 

3 16 
26 2 

6 2 
4 9 

0 19 
28 0 

100 0 
0 100 

0 0 
22 0 

58 0 
0 56 

75 0 
0 77 

71 0 
0 61 

0 24 
13 3 

10 0 
0 26 

0 32 
19 0 

Table continued 
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TABLE A-Continued 

Subj. Pattern d 

Decreasing Constant Increasing 

f P(A) 04 f P(A) P(B) f 0.4) P(8) 

3 1 3333 4 
3 1 1111 -4 

3 2 3331 2 
3 2 1113 -2 

3 3 3313 2 
3 3 1131 -2 

3 4 3133 2 
3 4 1311 -2 

3 5 1333 2 
3 5 3111 -2 

3 6 3131 0 
3 6 1313 0 

3 7 3113 0 
3 7 1331 0 

3 8 3311 0 
3 8 1133 0 

4 1 3333 4 
4 1 1111 -4 

4 2 3331 2 
4 2 1113 -2 

4 3 3313 2 
4 3 1131 -2 

4 4 3133 2 
4 4 1311 -2 

4 5 1333 2 
4 5 3111 -2 

4 6 3131 0 
4 6 1313 0 

4 7 3113 0 
4 7 1331 0 

4 8 3311 0 
4 8 1133 0 

91 42 
100 0 

58 0 
82 0 

88 5 
88 0 

99 10 
106 0 

94 12 
99 0 

75 0 
77 0 

80 0 
82 0 

78 0 
71 1 

89 
104 

59 
54 

80 
71 

87 
91 

77 
85 

68 
58 

59 
69 

60 
58 

37 
0 

0 
0 

7 
0 

10 
0 

14 
0 

0 
2 

0 
0 

0 
0 

0 109 
49 105 

0 61 
0 56 

0 91 
2 82 

0 96 
11 88 

0 81 
10 97 

0 90 
0 84 

0 73 
0 82 

3 64 
0 72 

0 61 
34 92 

0 60 
0 63 

0 74 
4 80 

0 78 
9 81 

0 80 
12 81 

1 72 
0 71 

0 70 
0 61 

5 70 
0 74 

51 
0 

0 
0 

2 
0 

13 
0 

15 
0 

0 
1 

0 
0 

0 
3 

52 
0 

0 
0 

7 
0 

15 
0 

20 
0 

0 
4 

1 
0 

0 
3 

0 
53 

0 
2 

0 
2 

0 
9 

0 
22 

1 
0 

0 
0 

0 
0 

0 
49 

0 
0 

0 
7 

0 
10 

0 
17 

1 
0 

0 
0 

1 
0 

10 loo 0 
10 0 100 

6 0 0 
9 0 22 

43 56 0 
35 6 49 

43 72 0 
33 0 76 

46 78 0 
40 0 65 

38 3 21 
44 36 2 

36 25 0 
33 3 12 

40 0 27 
36 17 0 

19 loo 
15 0 

10 20 
18 0 

36 58 
44 0 

48 65 
39 0 

41 76 
41 0 

40 5 
38 18 

28 21 
29 7 

34 0 
32 28 

0 
loo 

0 
33 

0 
50 

0 
59 

0 
71 

38 
8 

14 
14 

41 
6 

Table continued 
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TABLE A-Continued 

Subj. Pattern d 

Decreasing Constant Increasing 

f P(A) P(B) f P(A) P(B) f P(A) P(B) 

5 1 
5 1 

5 2 
5 2 

5 3 
5 3 

5 4 
5 4 

5 5 
5 5 

5 6 
5 6 

5 I 
5 I 

5 8 
5 8 

6 1 
6 1 

6 2 
6 2 

6 3 
6 3 

6 4 
6 4 

6 5 
6 5 

6 6 
6 6 

6 I 
6 I 

6 8 
6 8 

3333 
1111 

3331 
1113 

3313 
1131 

3133 
1311 

1333 
3111 

3131 
1313 

3113 
1331 

3311 
1133 

3333 
1111 

3331 
1113 

3313 
1131 

3133 
1311 

1333 
3111 

3131 
1313 

3113 
1331 

3311 
1133 

4 
-4 

2 
-2 

2 
-2 

2 
-2 

2 
-2 

0 
0 

0 
0 

0 
0 

4 
-4 

2 
-2 

2 
-2 

2 
-2 

2 
-2 

0 
0 

0 
0 

0 
0 

97 24 0 137 21 0 18 12 
109 0 23 141 0 13 14 0 

61 0 0 85 0 0 10 40 
53 0 2 19 0 3 19 0 

59 14 0 93 3 0 32 66 
78 0 1 78 0 3 43 0 

14 14 0 98 13 0 45 62 
II 0 13 80 0 9 46 0 

84 17 0 112 13 0 43 14 
73 0 14 87 0 5 40 0 

5s 0 2 85 2 1 33 15 
70 0 0 81 1 0 38 13 

78 3 0 77 0 0 30 17 
63 3 0 62 0 2 34 9 

13 0 0 13 0 0 25 4 

57 2 0 86 2 0 29 24 

60 
110 

0 
43 

0 
2 

0 
16 

0 
13 

0 
19 

2 
0 

0 
8 

4 
0 

70 
85 

56 
51 

72 
71 

96 
0 

45 
61 

61 
70 

52 
0 

2 
2 

22 
0 

69 12 
85 0 

79 29 
81 0 

80 
71 

93 
69 

64 0 
0 52 

7 0 
0 2 

31 0 
0 23 

21 0 
0 25 

37 0 
0 12 

58 
59 

50 
45 

68 
75 

56 
86 

6-l 
67 

66 
58 

26 
37 

9 
22 

26 
45 

50 
42 

45 
48 

39 
54 

31 
41 

44 
35 

11 
0 

62 
0 

50 
0 

69 
0 

3 
13 

23 
4 

2 
14 

0 
79 

0 
32 

0 
70 

0 
59 

0 
72 

24 
3 

10 
24 

36 
7 

0 
86 

11 
5 

4 
56 

0 
60 

0 
56 

13 
6 

13 
30 

14 
3 

Table continued 



DEFERRED DECISION MAKING 127 

TABLE A-Ccontinued 

Subj. Pattern d 

Decreasing Constant Increasing 

f P(A) P(B) s P(A) P(B) f P(ff) P(B) 

5 1 3333 4 
5 I 1111 -4 

5 2 3331 2 
5 2 1113 -2 

5 3 3313 2 
5 3 1131 -2 

5 4 3133 2 

5 4 1311 -2 

5 5 1333 2 
5 5 3111 -2 

5 6 3131 0 
5 6 1313 0 

5 7 3113 0 
5 7 1331 0 

5 8 3311 0 
5 8 1133 0 

7 1 3333 4 
1 1 1111 -4 

7 2 3331 2 
I 2 1113 -2 

7 3 3313 2 
7 3 1131 -2 

7 4 3133 2 
I 4 1311 -2 

7 5 1333 2 
1 5 3111 -2 

7 6 3131 0 
I 6 1313 0 

7 7 3113 0 
7 7 1331 0 

7 8 3311 0 
7 8 1133 0 

52 100 0 41 76 0 0 0 0 
40 0 97 29 0 76 6 0 100 

23 0 4 23 4 0 4 75 0 
28 4 0 27 0 0 0 0 0 

50 40 0 57 56 2 30 97 0 
58 0 38 53 0 51 30 0 100 

60 65 0 48 54 0 32 94 0 
64 0 48 72 0 53 36 0 92 

66 52 0 47 47 0 27 100 0 
56 0 48 65 0 49 39 0 95 

38 0 21 56 0 18 38 0 29 
45 11 0 49 14 0 34 35 0 

53 15 2 47 19 0 18 28 6 
41 0 22 46 0 15 33 0 45 

36 0 25 40 0 13 25 0 20 
56 18 0 52 21 0 29 17 0 

86 
103 

71 
59 

49 
0 

0 
0 

94 
78 

71 
63 

33 
48 

59 
74 

89 
105 

88 
96 

111 
89 

86 
72 

43 0 104 
0 58 85 

0 0 58 
0 0 63 

6 0 78 
0 4 87 

28 0 93 
0 11 91 

14 0 88 
0 17 102 

0 2 73 
2 0 82 

1 0 69 
0 0 70 

0 1 72 
4 0 62 

9 
0 

13 
0 

25 
0 

0 
1 

0 
0 

67 
13 

0 
5 

0 
47 

0 
0 

0 
6 

0 
14 

0 
21 

1 
0 

0 
0 

3 
0 

83 
59 

84 
63 

70 
81 

58 
51 

46 
61 

79 0 
0 79 

3 6 
2 0 

27 0 
0 32 

35 0 
0 31 

45 0 
0 40 

0 13 
9 0 

2 0 
0 12 

0 20 
13 0 

Table continued 
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TABLE A-Continued 

Subj. Pattern d 

Decreasing Constant Increasing 

f‘ P(A) 44 s P(A) P(B) f P(A) P(B) 

8 1 3333 4 
8 1 1111 -4 

8 2 3331 2 
8 2 1113 -2 

8 3 3313 2 
8 3 1131 -2 

8 4 3133 2 
8 4 1311 -2 

8 5 1333 2 
8 5 3111 -2 

8 6 3131 0 
8 6 1313 0 

8 7 3113 0 
8 7 1331 0 

8 8 3311 0 
8 8 1133 0 

9 1 3333 4 
9 1 1111 -4 

9 2 3331 2 
9 2 1113 -2 

9 3 3313 2 
9 3 1131 -2 

9 4 3133 2 
9 4 1311 -2 

9 5 1333 2 
9 5 3111 -2 

9 6 3131 0 
9 6 1313 0 

9 7 3113 0 
9 7 1331 0 

9 8 3311 0 
9 8 1133 0 

27 93 
27 0 

16 6 
21 0 

42 38 

51 0 

53 38 
70 0 

60 52 
48 0 

62 2 
61 7 

51 4 
47 6 

39 0 
42 17 

12 100 
3 0 

7 0 

I1 0 

46 41 
23 0 

54 52 
41 0 

53 70 
63 0 

41 0 
43 5 

30 0 
47 0 

43 0 
40 5 

0 31 
96 22 

0 25 
5 25 

0 45 
24 54 

0 65 
49 59 

0 58 
48 56 

3 35 
0 44 

0 47 
0 45 

15 46 
0 37 

0 7 
loo 4 

0 6 
18 3 

0 33 
57 47 

0 57 
56 48 

0 51 
84 47 

5 42 
0 57 

0 56 
0 51 

14 52 
0 41 

87 0 
0 91 

4 0 
0 8 

29 0 
0 26 

42 0 
0 51 

41 0 
0 45 

0 3 
11 0 

9 2 
0 2 

2 7 
14 0 

86 0 
0 100 

17 0 
0 0 

61 0 
0 45 

47 0 
0 48 

76 0 
0 91 

0 0 
0 2 

0 2 
0 6 

0 6 
10 0 

18 89 0 
18 0 94 

19 16 5 
15 0 13 

36 39 0 
33 0 30 

54 44 0 
53 0 62 

61 61 0 
44 0 50 

36 3 11 
48 13 4 

39 5 0 
44 7 16 

39 0 23 
48 21 0 

0 0 0 
0 0 0 

0 0 0 
0 0 0 

35 83 3 
34 0 88 

48 58 0 
31 0 73 

37 89 0 
41 0 98 

42 2 14 
45 0 2 

31 0 16 
35 9 0 

30 0 13 
26 15 4 
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rest&s, respectively, that have been observed after purchasing n observations, and 
note that n = A(n) + B(n) so that B(n) = n - A(n). A terminal decision favoring R, 
occurs after purchasing N observations if and only if A(N) = c1 and B(n) < j3, and a 
terminal decision favoring R, occurs if and only if B(N) = j?, and A(N) < CL. 

The probability that the total number purchased, N, is less than or equal to n, 
denoted P[Nd n J, will be a function of the stopping criteria OL and 8. The 
proposition to be proved asserts: 

If a horse race stopping rule is used, then P[N d n ( cc, /?I is a non-increasing 
function of c( and /?. 

The proof is straightforward. 

P[N> n j a, p] = P[A(n) <a]. P[B(n) </I ) A(n) < LY] 

=P[A(n)<a].P[A(n)>n-fl[ A(n)<cY] 

= P[n - p < A(n) < ct] = 1 P[A(n) = r], 

where the summation ranges from n --fi + 1 to (a - 1). In the expression above 
P[A(n) = r] = [n!/((n - r)! r!)] .pr. q (n-r) 

resuh 
for 0 < r < n, and zero otherwise, where 

p is the probability of a positive test and q = 1 -p. Note that the parameters 
CI and B enter into only the range of sumation. Increasing either tl or /I extends this 
range, which cannot decrease P[N> n I a, /3]. (See Proposition 9.9 on page 285 of 
Townsend and Ashby (1983) for a related derivation.) 

APPENDIX C 

The purpose of this appendix is to show that if the decision maker’s planning 
horizon is limited to m steps, then the observed terminal differences must be less 
than or equal to m in magnitude. In the first two experiments, the test results 
Z( 1 ), .*., Z(n) were generated by a Bernoulli sequence with P[Z(n) = + 1 ( S,] =p, 
P[Z(n) = + 1 1 S,] = 1 -p= q, and PCS,] = PCS,] = .5. Define LR as the ratio 
LR = p/q. The posterior probability of state S, conditioned on d(n) = d equals 

PCS,41d]=1/C1+LR-d], 

and the posterior probability of state S, given d(n) = d equals 

PCS, 1 d] = l/[l + LRd]. 

The probability of observing Z(n + 1) = -7 conditioned on the previous difference, 
d(n) = d, equals 

P[z) d]= [LRd+= + l]/[(LRd+ l).(LR=+ l)]. 

For Experiments 1 and 2, uii = 0 and v,- = -u for i #j, so the loss after purchasing n 
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tests equals L = - uii + C c(k), k = 1, n. Whenever a terminal decision is made, the 
decision maker chooses the response that minimizes the expected loss. The expected 
value of the loss given that n tests were purchased, d(n) = d was observed, and the 
response R, was chosen equals 

Similarly, 

EIL 

ECL 

In,d,R,]=v.P[S,)d]+Cc(k), k = 1, n. 

In,d,R,]=u.PCS,Idl+~c(k), k=l,n. 

The decision makes will choose the smallest of the two expected losses shown 
immediately above, and this minimum, denoted J[n, d(n)], can be expressed as 
follows: 

J[n, d(n)] = u/Cl + LR”(“‘l] +C c(k), k=l,n. 

First consider a one-step stopping rule (m = 1). Suppose that n observations have 
already been purchased and the difference d(n) was observed. If the decision maker 
plans to purchase another test, then the expected loss of making a terminal decision 
after purchasing one more test (but before observing the result) equals 

E(J[n + 1, d(n + 1)] I d(n)) =I P[z \ d(n)] ..I[n + 1, d(n + 1)], 

where the sum ranges across the two possible values of z. Whenever d(n) is non- 
zero, then E(J[n + 1, d(n + l)] 1 d(n)} = J[n + 1, d(n)]. When d(n) =O, then 
E{J[n+ 1, d(n+ l)] 1 d(n)} =J[n+ 1, 11. If the decision maker decides to stop as 
soon as J[n, d(n)] < E{J[n + 1, d(n + l)] I d(n)}, then a terminal decision will be 
reached as soon as Id(n)\ = 1. This will occur after the very first observation. 

Next consider a two-step stopping rule (m = 2). In this case the decision maker 
compares the expected loss of making a terminal decision based on the current 
information with the expected loss of making a terminal decision after purchasing 
either one or two more observations. Suppose that- n >, 2 observations have been 
purchased and d(a) B 2. Consider what could happen if a decision to purchase 
observation Z(n + 1) is made. The difference would change to either 
d(n + 1) = d(n) + 1 or d(n + 1) = d(n) - 1, and in either case, the second observation 
Z(n + 2) will not be chosen because E(J[n + 2, d(n + 2)] 1 d(n + l)} = J[n + 2, 
d(n + l)] > J[n + 1, d(n + l)] given that d(n + 1) > 0. Therefore, the decision maker 
would plan not to purchase observation Z(n + 2). But now the problem is reduced 
to the one-step stopping rule described earlier, and recall that in this case the next 
observation is purchased if and only if d(n) = 0. Assuming that d(n) > 2, observation 
Z(n + 1) would not be purchased either. A similar argument can be made if one 
assumed that d(n) d -2. Therefore, if a two-step rule is used, then a terminal 
decision would be made at or before the occurrence of Id(n)1 = 2. 
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The argument for the m = 3 step rule follows the same line of reasoning as was 
used with the m = 2 step rule. Suppose that n > 3 observations have been purchased 
and d(n) 2 3. Consider what could happen if a decision to purchase both obser- 
vations Z(n + 1) and Z(n + 2) is made. Note that d(n + 2) must exceed zero, and in 
this case, E{J[n + 3, d(n + 3)] 1 d(n + 2)) = J[n + 3, d(n + 2)] > J[n + 2, d(n + 2)], 
and therefore observation Z(n + 3) will not be chosen. But now the problem is 
reduced to the two-step rule described earlier. Since d(n) Z 2, neither Z(n + 1) or 
Z(n + 2) will be chosen. A similar argument can be made if one assumes that 
d(n) d - 3. Therefore, if a three-step rule is used, then a terminal decision would be 
made at or before the occurrence of Id(n)1 = 3. 

This argument can be applied recursively to show that for any small integer m, 
the m-step rule implies that the terminal difference will never exceed m in 
magnitude. 

APPENDIX D 

The purpose of this appendix is to describe how the myopic decision rule was 
tested with the results shown in Tables 4 and 6. The rule asserts that the decision 
maker stops testing as soon as the expected loss from error falls below the cost of 
the next test. If a terminal decision is made, then the response producing the 
smallest expected loss is selected. 

In Appendix C, it was shown that 

E[L ) n, d(n), RA] = u/[ 1 + UP’“‘] + 1 c(k), k=l,n 

E[L 1 n, d(n), R,] = u/[ 1 + LKd’“‘] + 1 c(k), k= 1,n. 

If a terminal decision is made, then the response producing the smaller of the 
two expected values shown above is chosen. Note that E[L 1 n, d(n), RA] < 
E[L ( n, d(n), R,] iff d(n) >O, and the inequality is reversed iff d(n) ~0. So the 
response R, is chosen if d(n) > 0, and R, is chosen if d(n) < 0. When d(n) = 0, the 
two expected values are equal, and the choice is assumed to be random. The expec- 
ted loss of making a terminal decision will be equal to the minimum of the two 
expected losses shown above, and this minimum is denoted J[n, d(n)]. It was noted 
in Appendix C that J[n, d(n)] = u/[ 1 + L#‘““] + C c(k), k = 1, n. 

The myopic stopping rule states that a terminal decision is made as soon as 

J[n,d(n)],<C(l)+ ... +c(n+l), 

=j u/[ 1 + LRld’““] d c(n + I), 

a LRld(“)l 2 r(n) - 1, 
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where r(n)=u/c(n+ 1) for c(n+ l)>O. Define G(n)=ln[r(n)- l]/ln(p/q) for 
r(n) > 1 and 6(n) = 0, otherwise. Then a terminal decision will be made as soon as 
W)l 2 CJ). 

The stopping rule described above does not include the subjective cost of waiting 
since c(n) simply represents the monetary costs. The subjective cost of purchasing 
the nth observation is defined as c’(n) = c(n) + h. n. Hereafter, the criterion bound, 
6(n), is defined as before with c’(n) substituted for c(n). 

The predictions for Table 4 were obtained as follows. The decision process may 
be modeled by a time-varying Markov chain. The state space can be partitioned 
into two sets, a set of transient states and a single absorbing state. The absorbing 
state represents the decision to stop and make a terminal decision. 

The set of transient states is defined on the set of integers { --m, -m + 1, . . . . - 1, 
0, 1, . ..) m}. Each transient state represents the conjunction of (a) the value of the 
difference, d(n), and (b) the decision to continue testing after observing this 
difference. The upper limit, m, is chosen to be larger than the largest possible value 
of 6(n). For the present studies, m = 10 was sufficiently large. 

The (2m + 1) row vector, P(n), represents the probability distribution across the 
transient states after observing n test results. P,(n) = P[d(n) = i and N > n], where 
N is a random variable representing the total number of observations that are 
purchased on each sequence. 

The (2m + 1) X(2m + 1) transition matrix for the transient states, denoted T(n), 
can be factored into two matrices-T(n) = D. G(n). The (2m + 1) X(2m + 1) matrix 
D is time invariant, and it contains the transition probabilities D, = P[d(n + 1) = 
j 1 d(n) = i] = P[Z(n) =j- i / S,]. 

The (2m + 1) X(2m + 1) matrix G(n) is a time variable diagonal matrix. Each off- 
diagonal element is zero, and each diagonal element equals G,(n) = P[N > n ) N 2 n, 
d(n) = i]. If 6(n) > 0, then G,(n) =F[@n) - Ii]], and G,(n) =0 otherwise, where 
F[z] is the logistic function defined in the discussion section. 

The initial starting vector, P(O), was set to zero except for state d(0) = 0, which 
was normally set to 1.0. However, if 6(O) = 0, then the entire vector was set to zero 
(i.e., no observations were purchased). The probability distribution for n > 0 was 
calculated iteratively by the matrix product P(n) = P(n - 1). D. G(n). 

The (2m + 1) row vector Q(n) contains the desired joint probabilities 
Q;(n) = P[N = n, d(n) = i]. These absorbtion probabilities can be obtained from the 
matrix product Q(n) = P(n - 1). D . [I - G(n)], where I is an identity matrix. 

A total of 26 sets of probability distributions were calculated, one set for each of 
the 26 possible values {&, &, . . . . 3.) of the subjective waiting cost scaling constant, 
b. A mixture distribution, Q(n) = C W, . Q(n 1 h), was computed by setting 
W,=(25!)/[(25-k)!.k!].@(l -!7)25-k, where k=lO.b and Z7=&. The 
relative frequencies shown in Table 4 were computed from this mixture distribution. 

The two parameters, 0 and p, were estimated separately for each subject by 
minimizing the x2 lack of lit criterion computed from the predicted and observed 
relative frequencies, separately for each subject. (The -2 . log likelihood ratio x2 
formula described on p. 737 of Hays (1973) was used. However, due to the strong 
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dependence of the observations across sequences, it is not possible to assume that 
this lack of fit index has a x2 distribution.) 

The predictions for Table 6 were calculated using the same parameters estimated 
from Table 4 as follows. The probability of stopping immediately after observing 
the pattern y = (z,, z2, z3, zq) can be obtained from 

PCN=nlN>n-l,?,]=l-(P[N>nl,]/P[N>n-1 IJ]). 

For 6(O) > 0, 

PCN>n lyl=G,,(l)~G,(2)...G,(~), 

where d,=z, + ... +z,, and G,(n) is the ith diagonal element of the matrix G that 
was used to fit the results in Table 4. 
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