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Abstraction was investigated by examining extrapolation behavior in a function-learning task.
During training, participants associated stimulus and response magnitudes (in the form of
horizontal bar lengths) that covaried according to a linear, exponential, or quadratic function.
After training, novel stimulus magnitudes were presented as tests of extrapolation and
interpolation. Participants extrapolated well beyond the range of learned responses, and their
responses captured the general shape of the assigned functions, with some systematic
deviations. Notable individual differences were observed, particularly in the quadratic
condition. The number of unique stimulus-response pairs given during training (i.e., density)
was also manipulated but did not affect training or transfer performance. Two rule-learning
models, an associative-learning model, and a new hybrid model with associative learning and
rule-based responding (extrapolation-association model [EXAM]) were evaluated with
respect to the transfer data. EXAM best approximated the overall pattern of extrapolation
performance.

Research on conceptual behavior has historically focused
on category learning and the application of categorical
knowledge. So dominant is this focus that the terms concept
and category are often used interchangeably (e.g., see
Bourne, 1966; Smith & Medin, 1981). It is useful to
distinguish these two terms, however, because there are
many types of concepts that can not be adequately character-
ized as categories (Busemeyer, McDaniel, & Byun, 1997;
Estes, 1995). In general, concepts also pertain to causal
variables (e.g., intelligence) and relationships between these
variables (e.g., income is correlated with intelligence). This
article investigates functions, which conceptualize the rela-
tionship between causal variables.

By definition, a function maps a set of input values (called
the domain of the function) into a set of output values (called
the range of the function), such that each input value is
assigned only one output value. In function-learning situa-
tions, the range is composed of a continuous set of response
magnitudes (e.g., predict a student's GPA on the basis of IQ
scores). In category learning, on the other hand, outputs
consist of discrete and nominal response categories (e.g.,
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classify a student as normal vs. gifted on the basis of IQ
scores). We call concept-learning tasks that involve a
continuum of response magnitudes function-learning tasks
and those with discrete and nominal response categories
category-learning tasks.

A central issue in theoretical treatments of concept
learning is whether conceptual behavior is based on associa-
tions between previously encountered instances and as-
signed responses (e.g., Brooks, 1978; Estes, 1986; Gluck &
Bower, 1988a, 1988b; Hintzman, 1986; Kruschke, 1992;
Medin & Schaffer, 1978; Nosofsky, 1984, 1986) or also
involves the abstraction of a rule that represents the relation
between instances and responses (Anderson, 1990; Ashby &
Gott, 1988; Smith & Medin, 1981; Trabasso & Bower,
1968). Although this is still a hotly debated issue, the
balance of evidence seems to support an associative-learning
or exemplar-based approach to concepts (for a review, see
Nosofsky, 1992; Nosofsky & Kruschke, 1992). The evi-
dence stems primarily from experiments on category learn-
ing, however, and it remains to be seen whether an associa-
tive-learning or a rule-based approach provides a better
explanation of conceptual behavior with functions (for a
comparison of these approaches, see Busemeyer, Byun,
DeLosh, & McDaniel, in press; Koh & Meyer, 1991).

To discriminate between associative-learning and rule-
based accounts as they pertain to functions, we examined
extrapolation behavior in the present study. Consider the
common uses of different types of concepts. Categories are
typically used to assign new stimuli from a given conceptual
domain to previously learned response categories (e.g., if 1,
2, 3, 5, and 7 are prime numbers, is 9 also a prime number?).
Abstract rules, on the other hand, may be used to construct
new responses in reaction to novel stimuli from the concep-
tual domain (e.g., if I, 2, 3, 5, and 7 are prime numbers, what
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is the next prime number after 9?). The latter use of concepts
is called extrapolation. As demonstrated in the following
example, function-learning tasks are ideally suited to study-
ing extrapolation behavior.1

One possible function, a quadratic function, is shown in
Figure 1. Suppose a participant is trained with a set of
stimulus values that lie inside the two vertical lines shown in
the figure and learns the response values that lie inside the
two horizontal lines. An extrapolation test is denned as the
presentation of a novel stimulus value that lies outside the
training domain, that is, outside of the two vertical lines in
Figure 1 (whereas an interpolation test involves the presen-
tation of a novel stimulus value that lies within the training
domain). Responding on an extrapolation test trial with a
response magnitude that is outside the training range (i.e.,
outside the two horizontal lines in Figure 1) is termed an
extrapolation response.

To illustrate the theoretical implications of extrapolation
behavior, Carroll (1963) outlined extreme versions of asso-
ciative-learning versus rule-based models as they apply to
the above example. An extreme form of an associative-
learning model assumes that participants store each stimulus-
response pair presented during training and, when a new
stimulus is given, produce the response associated with the
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most similar training stimulus. This model does not allow
novel responses to be generated; therefore, one would not
expect participants to extrapolate at all by this account.
Instead, the response generated on an extrapolation test
should be equivalent to one of the responses learned during
training (i.e., a trained response at the boundary of the
trained response range). An extreme form of rule-based
models, on the other hand, states that participants abstract
the training rule itself and, when a new stimulus is given,
generate a new response consistent with that rule. For the
function shown in Figure 1, an extrapolation response would
be of a smaller magnitude than those learned during training.

Numerous studies have investigated the relative learning
rate of different types of functions (e.g., Brehmer, 1974;
Deane, Hammond, & Summers, 1972; Summers, Summers,
& Karkau, 1969; for a review, see Busemeyer, Byun, et aL,
in press), but only three function-learning studies have
investigated transfer to extrapolation tests. One is an unpub-
lished technical report (Carroll, 1963), and another is a
briefly mentioned experiment that was peripheral to the
thrust of the chapter in which it was reported (Surber, 1987).
The third study included three experiments in which partici-
pants had to predict future pollution levels when given
pollution levels for the previous 5 years, but the scope of the
study was limited to a single type of function (exponential)
and a small range of extrapolation values (Waganaar &
Sagaria, 1975). All three of these studies indicated that
participants extrapolate in the direction of the training
function, thereby suggesting that an extreme version of an
associative model may be ruled out. Given the limited
database available, this conclusion must be viewed as
preliminary, however, and additional empirical research is
warranted.

The need for further empirical work notwithstanding, the
experiments cited above do not resolve the issue of whether
functions are learned by associations or by rules because
there are more sophisticated versions of associative-learning
models that assume stimulus generalization (e.g., Kruschke,
1992; Nosofsky, 1984, 1986). When applying these models
to function-learning tasks in which responses lie on a
continuum, it is appropriate to include response generaliza-
tion as well, and in this case some extrapolation is possible.
Although the extent of extrapolation that can be generated
by such models is still quite limited (as we show in a later
section), the models remain viable because the extent to
which humans extrapolate has not yet been established.
Consequently, a more systematic investigation of extrapola-

Stimulus Magnitude

Figure 1. A quadratic functional relation between stimulus and
response magnitudes, showing a sample stimulus-response set and
the resultant interpolation and extrapolation regions.

1 A common idea is that abstraction is necessary for extrapola-
tion, but our idea, as implied in the title, is that extrapolation is the
essential condition for abstraction. It is possible, for instance, that
the need for accurate extrapolation may have led to the evolution of
an abstraction process. The idea that extrapolation is a necessity for
abstraction is especially appropriate in the context of this article,
because in the extrapolation-association model (EXAM) that we
propose, abstraction does not take place until extrapolation is called
for. These are the deeper meanings of our title.
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tion behavior vis-a-vis current models is needed. Toward
this objective, we evaluated four different models of func-
tion learning with respect to extrapolation behavior.

We examined two rule-learning models: the polynomial
hypothesis-testing model, first outlined by Carroll (1963)
and later elaborated by Brehmer (1974), and the log-
polynomial adaptive-regression model, proposed more re-
cently by Koh and Meyer (1991). These rule-learning
models were specifically developed for function-learning
tasks to explain previous empirical findings concerning the
learning rates of different types of functions. The third
model we tested was the associative-learning model (ALM),
recently proposed by Busemeyer, Byun, et al. (in press). It is
an extension of an exemplar-based connectionist model
called attention learning covering map (ALCOVE; Krus-
chke, 1992). ALCOVE was specifically developed for
category-learning tasks to account for the learning rates of
various category structures and is currently the most power-
ful formulation of this class (see Nosofsky & Kruschke,
1992). Note that ALCOVE was not developed with function-
learning tasks in mind. However, Busemeyer, Byun, et al.
showed that their extension of ALCOVE can account for the
learning rates of different types of functions. Moreover, the
stimulus and response generalization incorporated in this
model allows for some extrapolation. ALM is therefore a
viable alternative to rule-learning models, and it is worth-
while to determine whether this type of model—although
originally developed for category learning—can be ex-
tended to account for extrapolation behavior in function
learning.

The fourth model we tested was a new hybrid model
called the extrapolation-association model (EXAM). This
model is based on the same associative-learning assump-
tions as ALM, but it also incorporates a rule-based response
mechanism capable of linear interpolation and extrapolation.
EXAM is essentially an extension of ALM for producing
systematic extrapolations beyond the range of learned
responses, and it is motivated by Waganaar and Sagaria's
(1975) observation that extrapolation is approximately lin-
ear, even for nonlinear (exponential) functions.

The present article is organized as follows. First, we
present the empirical results of two experiments that investi-
gated extrapolation in a function-learning task. We exam-
ined extrapolation for three function forms (linear, exponen-
tial, and quadratic) and three density conditions (low,
medium, and high density, where density is the number of
unique stimuli given during training). Then, a more com-
plete description of the models is presented, followed by a
comparison of the model predictions to the observed results.
We conclude by summarizing the new findings on extrapola-
tion behavior and evaluating associative versus rule-based
explanations of function learning.

Experiment 1

In Experiment 1, we investigated three different function
forms: a linear, an exponential, and a quadratic function. The
linear function was included to evaluate extrapolation in the
simplest possible case. If participants learned a linear rule,

then their transfer responses should have continued to be
linear in the extrapolation regions. The nonlinear functions
were included to ensure that extrapolation, if found, was not
limited to a simple linear relation.

Participants were first trained on stimuli from the middle
of the range of possible stimulus magnitudes (i.e., inside the
two vertical lines in Figure 1). After training, 45 transfer
trials were presented as tests of extrapolation and interpola-
tion. Three different types of transfer stimuli were used.
Low-extrapolation items consisted of 15 new stimulus
values sampled from the low end of the stimulus scale (to the
left of the left vertical line in Figure 1); high-extrapolation
items consisted of 15 new stimulus values sampled from the
high end of the stimulus scale (to the right of the right
vertical line in Figure 1); and interpolation items consisted
of 15 new stimulus values sampled from the middle of the
scale (inside the two vertical lines and of different values
than the training stimuli). Although we focused on extrapola-
tion performance, we included interpolation trials in order to
compare directly performance for novel stimuli from within
the training domain to performance for those that lie outside
the training domain. Of foremost concern was the extent to
which participants extrapolated beyond learned responses
and the nature of their extrapolations (e.g., would they
overestimate or underestimate the training function?).

In order to evaluate the generality of the results, we also
manipulated the density of training stimulus magnitudes. In
a low-density condition, participants were trained with 25
replications of 8 equally spaced stimulus values. In a
medium-density condition, participants received 10 replica-
tions of 20 stimulus values. In a high-density condition,
participants received 4 replications of 50 stimulus values. In
each case, the set of training stimuli spanned the entire
training domain. According to an associative-learning view,
the function-learning task used was equivalent to learning a
list of stimulus-response associations. Therefore, the high-
density condition corresponded to a long stimulus list, and
the low-density condition corresponded to a short stimulus
list. The typical finding in associative learning is that longer
lists are learned more slowly than short lists (e.g., Gillund &
Shiffrin, 1984; Murdock, 1962; Roberts, 1972; Waugh,
1972). Thus, an associative-learning framework led us to
expect slower learning in the high-density condition than the
low-density condition.

The density manipulation might also have affected trans-
fer performance in the following manner. Participants may
have relied on stimulus-response associations (i.e., memory
for exemplars) when given a small set of stimulus values
repeated many times (cf. Homa, Sterling, & Irepel, 1981;
Kellogg & Bourne, 1989); therefore, they may have exhib-
ited little extrapolation. When given a large set of stimulus-
response pairs, participants may instead have used a rule-
based strategy to summarize the mapping between stimuli
and responses, thereby promoting extrapolation. If density
did influence strategy choice in this fashion, extrapolation
performance would be better for the high-density condition
than the low-density condition.
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Method

Participants and apparatus. One hundred and eight Purdue
University undergraduates participated in partial fulfillment of a
requirement for an introductory psychology course. The experi-
ment was conducted in a small laboratory room equipped with a
single desk and microcomputer. Participants sat at the desk and
viewed the experiment on a 14-in, color monitor from a distance of
about 60 cm; they responded by using a standard keyboard placed
on the desk in front of the monitor. A computer program controlled
the presentation of the instructions and stimuli and collected
participant responses.

Design. The experiment used a 3 X 3 (Function X Density)
between-subjects factorial design with 12 participants randomly
assigned to each of the nine experimental conditions. Density,
defined as the number of unique stimulus magnitudes (inputs)
presented during training, was either 8 (low), 20 (medium), or 50
(high). The correct response magnitudes (outputs) corresponding to
the stimulus magnitudes were computed using either a linear,
exponential, or quadratic function.

The training phase of the experiment consisted of 200 correct-
response feedback trials. The scale of possible stimulus magnitudes
ranged from 0 to 100 (as indicated by an unfilled horizontal bar
labeled 0 to 100 in 10-point increments). However, to allow for
extrapolation trials during the transfer phase of the experiment, the
magnitudes presented during training were limited to values
between 30 and 70. Within the specified input range of 30 to 70,
participants were presented either 8, 20, or 50 unique stimuli
according to the assigned density level. A single stimulus set was
constructed for each density condition, such that the stimuli were
spaced out as evenly as possible within the training domain, given
the constraint of rounding off to half-point values and the necessity
of excluding points to be used on interpolation trials (see Appendix
A for the exact stimulus magnitudes). During the training phase, the
assigned stimulus set was presented as a block of trials, such that
each input magnitude was presented once and only once within a
trial block. These blocks were then repeated until a total of 200
trials were presented. Thus, there were 25, 10, and 4 block
repetitions (and therefore item repetitions) for the low-, medium-,
and high-density conditions, respectively. The order of stimulus
presentation within a trial block was randomized separately for
each block and each participant

The response magnitudes used for feedback during the training
phase were computed using the following equations: v = 2.2* + 30
for the linear function; y = 200(1 - «~J(/23) for the exponential
function; and y = 210 ~ (x ~ 50)2/12 for the quadratic function.
The range of response magnitudes allowed on training and blank
trials was 0 to 250 (as indicated by an unfilled horizontal bar
labeled 0 to 250 in 10-point increments). The outputs produced by
the assigned function were rounded to the nearest integer prior to
screen representation.

The transfer phase of the experiment consisted of 45 trials
without feedback, using stimulus magnitudes that had not been
presented during training. Fifteen equally spaced values were
selected from the training domain for interpolation trials; 15 values
from below the training domain were selected for low-extrapola-
tion trials; and 15 values from above the training domain were
selected for high-extrapolation trials (see Appendix B). Identical
transfer stimuli were used in all conditions of the experiment.
During the transfer phase, the 15 stimulus magnitudes from each
region were grouped together as a trial block. The order of
presentation of the three resulting trial blocks was counterbalanced
across conditions. In addition, the order of stimulus presentation
within a block was randomized separately for each block and each
participant.

Pmcedure. At the beginning of the experiment, participants
read two pages of instructions on the computer monitor. In these
instructions, participants were told that they were to learn by trial
and error the relation between amounts of an unknown substance
and the levels of arousal they cause in humans, using feedback as a
guide. The instructions also described the format of the presenta-
tion screen and the appropriate keys to use for making a prediction.
Participants were not informed that they would be given new trials
after training. Once these instructions were understood, a sample
trial was provided in order to familiarize the participant with the
presentation screen and response procedure.

After the sample trial, participants proceeded with the training
phase of the experiment During training, three unfilled horizontal
bars were presented simultaneously on the monitor. The top bar
was titled Substance X and had tick marks and value labels every
10 units from 0 to 100; the remaining two bars were titled Predicted
Level of Arousal and Actual Level of Arousal, respectively, with
tick marks and value labels every 10 units from 0 to 250. The
relative lengths of these unfilled bars on the screen were propor-
tional to the number of units they represented. On a given trial, the
uppermost bar was filled in from the zero point (at the left end of
the bar) to the input value representing the amount of substance
administered. Participants then used the arrow keys to fill in the
second bar from the zero point to the desired prediction value and
pressed the space bar when finished. Once the space bar was
pressed, the correct level of arousal (i.e., the output value of the
assigned function) was represented on the third horizontal bar.
Participants were also shown the absolute deviation of then-
prediction from the correct response and an accuracy score that
ranged from 0 to 100, which was computed as 100 minus the square
of the deviation. The next trial was initiated when the participant
pressed the enter key. The time allotted for making a prediction and
for studying feedback was participant-determined, although partici-
pants were told that they should not spend more man 20 s on any
one trial in order to complete the experiment on time.

Once participants completed the training phase of the experi-
ment, they were given a 1-min break, which was followed by
transfer instructions and the transfer tests. Transfer trials proceeded
exactly like training trials except the output bar was not displayed
and feedback was no longer provided.

Results and Discussion

Training performance. The measure used to examine
training performance was the absolute deviation of partici-
pants' predictions from the correct function value for each
training trial. The absolute deviations were averaged over
blocks of 20 trials, yielding 10 successive average deviation
scores for each participant.2 An alpha level of .05 was used
for this and all other analyses reported in this study.

2 Participants occasionally responded with the default value of
zero or produced responses highly inconsistent with their trend of
predictions by accidentally hitting the space bar. Four participants
also made a few erratic predictions toward the end of training.
Therefore, a five standard deviation rule was invoked in an attempt
to filter out extreme outliers. Any prediction whose error (deviation
from the assigned function) was more than five standard deviations
greater than the average error of the preceding block of 20 trials
was eliminated. Using this method, we removed less than 0.5% of
the data points, with no apparent bias toward any function or
density condition.
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Figure 2. The mean deviation of participants' responses from the
assigned linear, exponential, and quadratic functions across blocks
of training trials in Experiment 1.

Figure 2 shows the average absolute deviation for each
trial block and training function. At the beginning of
training, performance was best for the linear function,
second best for the exponential function, and worst for the
quadratic function. As training progressed, this difference
diminished: The learning curves converged to an average
absolute deviation of 2.4 units on a response scale of 250
units. A 3 X 3 X 10 (Function X Density X Trial Block)
mixed analysis of variance (ANOVA) supported this impres-
sion, yielding a Function X Trial Block interaction, F(18,
891) = 22.25, MSE = 5.67, p < .001. These relative
Learning rates are consistent with past research on the
learnability of functions, which has shown that monotonic
functions are learned faster than nonmonotonic functions
(e.g., Brehmer, 1974; Carroll, 1963; Deane, Hammond, &
Summers, 1972) and that linear functions are learned
slightly faster than nonlinear monotonic functions (see
Busemeyer, Byun, et al., in press, for a review). Thus, the
current training procedures reproduced standard findings.

It was somewhat surprising that there were no significant
effectsof density on training performance^ < 2.40,p > .10,
for the main effect and interactions).3 A post hoc explanation
is that participants in the low-density condition benefited
from more item repetitions, and participants in the high-
density condition benefited from an increase in interitem
similarity (whereas participants in the medium-density con-
dition benefited from both to a lesser extent). Thus, the lack
of differences in training performance as a function of
stimulus density may have resulted from concurrent effects
of repetition and similarity.

Transfer performance. The three panels of Figure 3
show the average of participants' predictions plotted as a
function of the stimulus input values given during transfer.
The left, center, and right panels display the results for the
linear, exponential, and quadratic functions, respectively.
Bach panel is divided into three regions showing the

participants* predictions in the low-extrapolation, interpola-
tion, and high-extrapolation regions.

First, consider the interpolation region. It is apparent that
participants, on average, approximated the assigned func-
tions very well in this region. The average absolute deviation
score for interpolation was 3.2, which compares favorably
with the 2.4 deviation score achieved at the completion of
training. Participants performed nearly as well on the
interpolation transfer stimuli as they did on the trained
stimuli, despite the fact that the transfer stimuli had not been
shown previously.

Next, consider the extrapolation regions. Participants in
all three function conditions extrapolated much beyond the
range of response magnitudes learned during training. In
addition, the pattern of responses produced by participants
captured the general shape of the functions in the extrapola-
tion regions even though participants were trained on a
considerably limited range of stimulus magnitudes. This
general finding poses problems for possible associative-
learning accounts of function learning, because extant
associative models do not provide a mechanism for extrapo-
lating far outside the range of learned responses (as we
demonstrate in a later section).

Another aspect of the findings that is noteworthy is that
participants' predictions deviated more from the assigned
function in the extrapolation regions than in the interpolation
region. Furthermore, and perhaps of greater importance,
participants' predictions underestimated the assigned func-
tion for the linear condition but overestimated the assigned
function for the exponential and quadratic conditions. DeLosh
(1995) has replicated these results for the linear and quad-
ratic functions (also see Byun, 1995). This pattern of over-
and underestimation poses problems for rule-based models
of function learning. If participants abstracted a simple rule
for the linear condition, for example, then they should
perform equally well on extrapolation and interpolation
tests. However, participants systematically underestimated
the linear function in both extrapolation regions even though
they were very accurate on interpolation trials. Thus, the
ensemble of transfer results challenges both associative-
learning and rule-based models as they apply to function

3 An ANOVA using data that had not been trimmed with the five
standard deviation rule yielded the same results given above.
Several additional analyses of the training data were also con-
ducted: one in which average deviation scores that increased at the
end of training (which occurred in 4 participants) were replaced
with the average deviation score of the preceding trial block;
another in which data from the first 100 trials were examined; and
yet another in which data from the 6 most accurate participants
from each condition were tested. The only new findings occurred in
the latter analysis, which yielded a density main effect (p < .01),
qualified by a Function x Density interaction (p < .05). An
analysis of simple effects revealed that the effect of density on
training performance was localized to the linear function, where the
deviation scores were 1.9, 3.1, and 5.2 for the density conditions of
8f 20, and 50, respectively (p < .001). Thus, only among the very
best learners was a substantial effect of density on training evident,
and among these participants the effect occurred only in the case of
the linear function.
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Figure 3. The mean of participants* predictions across transfer trials for the linear, exponential, and
quadratic functions in Experiment 1.

learning. This issue is considered more rigorously in a later
section where we formally test the models mentioned earlier.

We conducted a statistical examination of the transfer data
by performing a 3 X 3 X 3 (Function X Density X Transfer
Region) mixed ANOVA, using the signed deviations of
participants' predictions from the assigned function.4 This
analysis yielded main effects of both function and region,
F(2,99) = 34.43, MSE = 562.72,p< .001,andF(2,198) =
25.16, MSE - 298.03, p < .001, respectively, qualified by a
Function X Region interaction, F(4,198) = 27.41, MSE =
298.03, p < .001. Analyses of simple effects revealed that
performance did not differ across function conditions in the
interpolation region, F(2, 269) = 0.07, MSE = 386.26, p >
.10, but did significantly differ across functions in the low-
and high-extrapolation regions, ^8(2, 269) = 31.25 and
61.15, respectively, MSEs = 386.26, ps < .001, supporting
the general impressions discussed above. The density manipu-
lation did not reliably affect transfer performance (Fs < 2.30,
ps > .05, for the main effect and interactions).

Individual differences. To this point, we have focused
our attention on group performance. In order to get a sense
of the degree to which group data were representative of
individual learners rather than an artifact of averaging over
learners, we examined the learning and transfer data for
individual participants. For the linear and exponential func-
tions, all participants extrapolated in the direction of the
group averages, indicating that the group data were reflec-
tive of individual processes. For the quadratic group, most
participants performed in accordance with the group aver-
age, but there were seven notable exceptions. Therefore, we
describe individual differences for the quadratic condition in
greater detail.

Of the 36 participants, 29 extrapolated at both ends of the
function, as seen in the group data; Figure 4 reveals that at
least some of them approximated the quadratic function very
well in their extrapolations. Five of the 36 participants
extrapolated in the low-extrapolation region but not the
high-extrapolation region; Figure 5 shows two examples of
this type of pattern. Two participants did not extrapolate in
either region; Figure 6 shows the response patterns for these
participants.5 The latter 2 participants behaved in a manner

4 Signed deviations were analyzed instead of absolute deviations
to test statistically for the over- and underestimation patterns
observed in Figure 3. As with the training data, outliers in the
transfer data were excluded using a five standard deviation rule.
Any prediction with an error more than five standard deviations
larger than the average error of the appropriate transfer region
(interpolation, low extrapolation, or high extrapolation) was elimi-
nated. In all, less than 0.3% of transfer responses were excluded.

5 In order to separate participants into qualitative groups, the
following value was computed for each participant and extrapola-
tion region:

X'-X1

5'

where X" is the mean of the participant's predictions from the five
most extreme extrapolation input values in the extrapolation
region, X' is the output value at the boundary of the training range,
and s' is the standard deviation of that participant's error in the
interpolation region. A score of 3 was selected as the criterion as to
whether a participant extrapolated in an extrapolation region. This
criterion value was not critical because there were no borderline
cases. All participants either did not exceed the learned response
range in absolute value or did so with a z score of at least 10.54.
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consistent with a simple associative model. Their responses
on neighboring stimulus values were very similar, yielding
flat segments in the response curves, which are especially
striking in the left panel. Moreover, the output magnitudes of
these flat segments corresponded to the responses learned
during training, indicating that these participants produced
old training responses to new transfer stimuli. Thus, it
appears that there were at least three types of learners as
typified by their extrapolation performance. Note that if we
examined only training or interpolation performance, these
differences among individual learners would not have been
revealed.6

Experiment 2

Because very little empirical data exist on extrapolation in
function-learning tasks, we conducted a second experiment
to examine the reliability of our findings and to assess the
generalizability of the results over variations in the proce-
dural details of the task. Experiment 2 generally replicated
the quadratic function condition of Experiment 1, but two
potentially important aspects of the design and procedure
were altered. In the initial instructions, participants were not
told to learn the stimulus-response relationship, nor were
they told that such a relationship was present. This change
was incorporated to determine whether the results of Experi-
ment 1 would generalize to a condition in which participants
were not explicitly instructed to attend to the relationship
between stimulus and response dimensions. In addition, the
particular stimulus-response interpretation was changed to
amount of growth hormone and plant height to ensure that

the extrapolation results in Experiment 1 did not stem from
prior knowledge about arousal functions.

Method

Twenty-four Purdue University undergraduates participated for
pay; their pay ranged from $4 to $7, depending on the accuracy of
their performance. Several aspects of the design and procedure
were modified from Experiment 1 to assess the generalizahility of
the results over variations in procedural details. First, participants
were instructed simply to learn each individual stimulus-response
pair as it was presented. They were not told to determine the
relationship between stimuli and responses, nor were they told that
the stimuli and responses were in any way related. Second, the
stimulus and response interpretation (i.e., cover story) involved the
amount of a plant hormone and plant height, rather than drug
dosage and arousal. Third, the assigned function was defined as y =
230 - U - 50)2/12, differing from that of Experiment I by a
constant of 20 units, and training consisted of three replications of
20 unique stimulus values. Finally, nonfeedback test trials were
presented systematically during the course of training. This last
feature is not relevant for the current purposes and is not discussed
further. Experiment 2 was identical to Experiment 1 in all other respects.

6 Note that when the nonextrapolators were no longer included in
the group data, participants* predictions still overestimated the
assigned quadratic function in the extrapolation regions. Excluding
the 5 participants who did not extrapolate in the high region,
average predictions extended to 71.7 and 88.7 at the low and high
extremes of the function, respectively. Excluding these 5 partici-
pants and the 2 who did not extrapolate in the low or high region,
predictions extended to 62.6 and 81.0 at the low and high extremes
of the function, respectively.
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Figure 5. The transfer predictions of 2 individual participants in the quadratic function condition
who did not extrapolate in the high-extrapolation region.
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The average deviation from the assigned function for the ment 2 are shown in Figure 7. As before, interpolation
last 10 trials of training (Af = 4.95) was very similar to that predictions closely approximated the quadratic ftinction.
obtained in Experiment 1 after the same number of trials More important* extrapolation performance was nearly
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Figure 6. The transfer predictions of individual participants in the quadratic function condition who
did not extrapolate in either extrapolation region.
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Figure 7. The mean of participants' predictions across transfer
trials in Experiment 2.

identical to that observed in Experiment 1: Participants
extrapolated well beyond learned responses, yet their extrapo-
lations overestimated the assigned function in both extrapo-
lation regions. Moreover, the extent of overestimation was
comparable to that observed previously. Therefore, the
pattern of transfer performance obtained in the first experi-
ment did not require instructions that encouraged the
induction of functional relations and was not particular to
the stimulus-response interpretation used in Experiment 1.

Evaluation of Learning Models

In this section, the four different models of function
learning mentioned previously are evaluated with respect to
the data from Experiment 1. First, we describe the general
method used to estimate parameters and test the competing
models, and then we give a detailed description and
evaluation of each model.

General Model-Testing Procedure

Each of the four models has two or three unknown
parameters that must be estimated from the data. We
estimated these model parameters separately for each func-
tion condition (linear, exponential, and quadratic) by search-
ing for values that produced accurate fits to the Last 50 trials
of training. The last 50 trials of training were used because

(a) the parameters were used to generate predictions on
subsequent transfer tests and (b) these trials were less
affected by the particular stimulus sequence used to train
each participant, which was randomized to enhance the
generality of the empirical results. The conclusions dis-
cussed in this section did not change, however, when
parameter estimation was based on all 200 training trials or
when the parameters were fit directly to the interpolation
data.

For function condition k (k = linear, exponential, or
quadratic), we chose model parameters that minimized the
mean absolute error {MAE),

MAEk = (50),

where /?#(*) represents the mean response (averaged across
12 participants) to the stimulus presented on trial t
(t = 151 200) for density condition y (./ = 8,20, or 50)
and function condition k, and Y)k represents the model
prediction for density condition j and function condition k.
Each model was required to produce a fit within 1.2 units of
MAE, which approximated the mean deviation of Rk from
the programmed function at the end of training. The
estimated parameters were then used to generate model
predictions for the transfer trials. Note that with this method,
no new model parameters were estimated from the transfer
data, and this provides the critical test of the competing
models.

Polynomial Hypothesis-Testing Model

If it is assumed that a single rule is learned to map
stimulus magnitudes (X) to response magnitudes (Y), then
this rule must be sufficiently general or flexible to accommo-
date a wide variety of mappings. The following polynomial
regression model satisfies this property:

Y = bQ + bx -X -X3
(1)

For large p, a wide variety of mappings can be closely
approximated by this polynomial.

According to the polynomial hypothesis-testing model,
Equation 1 is used to generate responses, and the coefficients
(bo, bu ..., bp) of this equation are learned during training.
Prior hypotheses about the form of the mapping can be
incorporated by assuming that the learning process begins
with a particular set of coefficients. For instance, the
learning process may begin with a linear hypothesis by
initially setting b2 = b3 = . . . = bp = 0.

A trial-by-trial learning algorithm for learning the coeffi-
cients was also needed. The previous developers of the
polynomial hypothesis-testing model (Brehmer, 1974; Car-
roll, 1963) did not propose any specific algorithm; therefore,
we borrowed a standard learning algorithm for sequential
estimation of regression coefficients that has been used in
engineering (Ljung & Soderstrom, 1983). The 1 X (/? + 1)
row vector, b ' = [&o» ̂ i» b2,.. -, bp], represents the set of
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coefficients that are to be learned; the 1 X (p + 1) row
vector, X' = [X°, X1, X2,..., XP], represents the values of
the polynomial terms in Equation 1; the symbol Y(t) denotes
the model prediction produced on trial t\ and Z(t) denotes
the feedback signal on trial t. The learning algorithm is given
in the following set of equations, where I is a (p + 1)
dimensional identity matrix, and P(l) = I:

b(0 = b(r - 1) + a • D(f)

D(t) = p(o/[i +

PC + l)

= P(o • [I - X(r)X(O'P(i)]/[l + X(O'P(OX(O]. (2)

This learning rule is very similar to the delta learning
algorithm (Rumelhart & McClelland, 1985). The only
difference is the inclusion of the term, P(*)/[l + X(f)'P(O
X(0]« If this term is replaced with I, the identity matrix, then
Equation 2 is identical to the delta rule. The new term is
essential for polynomial models because of differences in
the scales of the polynomial terms and large correlations
among these terms. It also increases the rate of learning, and
theorems have been proven to show that the algorithm
converges with training on the set of coefficients that
minimizes the mean squared prediction error (Ljung &
Soderstrom, 1983).

The polynomial hypothesis-testing model has two param-
eters, the power of the polynomial (p) and the learning rate
(a). These parameters were estimated separately for each
function condition k by searching for the lowest power and
the smallest learning rate that would produce a MAEk less
than 1.2. Note that lower powers are preferred because
high-order polynomials produce undesirable nonmonotonic
oscillations in the extrapolation region. Table 1 shows the
results of fitting this model to the learning data. The three
rows labeled "polynomial" give the estimated parameters
and MAE values of the polynomial model for the three
function conditions. As expected, for the linear condition, a
linear model {p = 1) was sufficient to fit the asymptotic
learning data within a MAE of 1.2; for the quadratic
condition, a quadratic model (p = 2) was sufficient. For the
exponential condition, a cubic model (p = 3) was needed.

Panels A of Figures 8, 9, and 10 show the predictions of
the polynomial hypothesis-testing model for each function
condition across the 45 transfer trials by using the param-
eters estimated from the training data. Note that the model
reproduced the assigned functions in the interpolation re-
gion, which matched the accurate responses of the partici-
pants in this region. The polynomial model also reproduced
the assigned function in the extrapolation regions for the
linear and quadratic conditions, failing to match the over-
and underestimation pattern of responses produced by
participants. In the case of the exponential function, the
polynomial model overestimated the function in the high-
extrapolation region but reproduced the function in the
low-extrapolation region, unlike participants who overesti-

Tablel
Mean Absolute Error (MAE) and Estimated Parameter
Values for Each Model and Function Condition

Model and
function

Polynomial
Linear
Exponential
Quadratic

Log polynomial
Linear
Exponential
Quadratic

ALM
Linear
Exponential
Quadratic

EXAM
Linear
Exponential
Quadratic

MAE

0.95
0.75
1.12

0.95
0.86
1.14

1.07
0.76
1.07

1.07
0.76
1.07

a

5.0
1.1
1.1

1.0
3.0
1.2

0.8
0.9
0.9

0.8
0.9
0.9

Parameter values

P

1
3
2

5
2
8

y

2
3
3

2
3
3

Note, a = learning rate; p ~ power of the polynomial; 7
scaling parameter; ALM - associative-learning model; EXAM
extrapolation-association model.

mated the function in both extrapolation regions. We exam-
ined values of the polynomial parameter fromp = 1 top =
10, and no value of p yielded the observed pattern of over-
and underestimation. In addition, the fit of the model was
insensitive to changes in the learning rate for a > 1. Thus,
the polynomial model generally failed to explain the extrapo-
lation results.

Log-Polynomial Adaptive-Regression Model

The polynomial model discussed above is just one
possible implementation of a general and flexible rule. Koh
and Meyer (1991) proposed the following alternative:

V=ln(Y)

(3)

One justification for this model is that the physical stimulus
(Xor Y) has a nonlinear relation to its subjective image (S or
V), and that it is most appropriate to base the learning rule
on subjective images.

According to Koh and Meyer's (1991) model, responses
are generated using Equation 3, and the coefficients (b^
bh ... ,bp) of the polynomial are learned during training so
as to minimize the following loss function:

L = X. • L{ + (1 — X) • L2, where

• (7 - br (4)
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Figure 8. Model predictions and observed data for the linear function. Poly = polynomial
hypothesis-testing model; LnPoly = log-polynomial adaptive-regression model; ALM = associative-
learning model; EXAM = extrapolation-association model.
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and In Z(t) is the log of the feedback signal on trial /. The
first component {L\) is a measure of accuracy (sum of
squared prediction error), and the second component (Li) is
a measure of parsimony (a curvature index). The curvature
index is only effective at the beginning of training (small N)
and forces the model to begin with a simple function form.
Later in training, the accuracy component dominates.

Koh and Meyer (1991) did not propose a specific trial-
by-trial learning algorithm; therefore, we used the following:

b(f) = b(f - 1) + a • [X • D(t) + (1 - X) (5)

where D{t) is the same as in Equation 2, except that X, K, and
Zare replaced with lnX, inK, and lnZ, respectively, and A is
the gradient of Z .̂ The first component D(t) changes the

coefficients in the direction of minimizing the sum of
squared prediction error. The second component is the
negative gradient of the parsimony index, which changes the
coefficients in the direction of a simpler model.

This model has three parameters: the highest power of the
polynomial (/?), the learning rate (a), and the weight given
to accuracy versus parsimony (X). These parameters were
estimated separately for each function condition k by
searching for the lowest power and the smallest learning rate
that would produce a MAEk less than 1.2. The three rows
labeled "log polynomial" in Table 1 show the estimated
parameters and MAE values of the log-polynomial adaptive-
regression model for the three function conditions. Note that
in every case the best fitting value of X was approximately
zero, so this parameter is not shown in the table. For the
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Figure 9. Model predictions and observed data for the exponential function. Poly = polynomial
hypothesis-testing model; LnPoly = log-polynomial adaptive-regression model; ALM - associative-
learning model; EXAM = extrapolation-association model.

linear condition, a fifth-order (p = 5) model was needed,
because a simple line in (X,Z) coordinates is a nonlinear
curve in (lnX, lnZ) coordinates. For the quadratic condi-
tion, a quadratic model (p — 2) was sufficient to fit the
asymptotic learning data, and for the exponential condition,
an eighth-order (p = 8) model was needed.

Panels B of Figures 8, 9, and 10 show the predictions of
the log-polynomial adaptive-regression model for each
function condition across the 45 transfer trials, using the
parameters estimated from the training data. The model
reproduced the assigned function in the interpolation region,
which matched the accurate responses of participants in this
region. The log-polynomial model did not reproduce the
assigned functions in the extrapolation regions, however,
and of course neither did participants. But the over- and
underestimation pattern predicted by the model did not

correspond to the observed pattern. No value of the power
parameter from/? = 1 throughp = 1 0 duplicated the over-
and underestimation pattern of participants, and the fit of the
model was insensitive to the changes in the learning rate for
a > 1. Thus, the log-polynomial adaptive-regression model
also failed to explain the extrapolation results.

Associative-Learning Model (ALM)

According to ALM, the mapping between a set of stimuli
and a set of responses is learned by associating M input
nodes [X|, X 2 , . . . ,X ( , . . . ,XM) to L output nodes fa,
Y2,..., Yh ..., YL\. Each input node X, corresponds to a
position on the real number line that is proportional to one of
the possible stimulus magnitudes. In the present experi-
ments, the inputs ranged from 0 to 100 units in half-unit
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Figure 10. Model predictions and observed data for the quadratic function. Poly = polynomial
hypothesis-testing model; LnPoly = log-polynomial adaptive-regression model; ALM = associative-
learning model; EXAM = extrapolation-association model.

steps; therefore, we used M = 201 input nodes, {Xo — 0,
Xi = 0.5, X2 = 1, X3 = 1.5,. . . , XJOO = 100), with one input
node corresponding to each possible stimulus magnitude.
Likewise, each output node Yj corresponded to a position on
the real number line that was proportional to one of the
possible response magnitudes. The outputs in the current
experiments ranged from 0 to 250 units in single-unit steps;
therefore, we used 251 output nodes, [Yo = 0, Yy = 1,
Y2 = 2 , . . . , F2SQ = 250}, with one output node correspond-
ing to each possible response magnitude. Note that these
nodes covered the entire range of stimulus and response
magnitudes, thereby allowing new interpolation or extrapo-
lation responses to be produced on transfer tests.

When a particular stimulus X is presented, it activates the
entire set of M input nodes, and each node is activated
according to its similarity to the presented stimulus. The

symbol at(X) represents the activation of input node X, when
stimulus magnitude X is presented. A Gaussian activation
function is assumed:

(6)

where 7 is a scaling parameter that determines the steepness
of the generalization gradient.

Activation passes from the input nodes to output nodes as
given by the following equation, where the activation of
output node Yj is denoted 0,, and the strength of association
between each input node (Xt) and each output node (V,) is
symbolized w/.

(7)
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The last term in this equation, the Gaussian activation
function, yields response generalization. The probability
that response Y] is chosen from a set of L possible responses
is given by the ratio rule:

(8)

Thus, the response is chosen simply on the basis of the
strength of its output activation. Finally, the mean output to
stimulus X is the weighted average,

(9)

The mean output given by this equation is used to predict
participants' mean response to stimulus X.

The connection weight wjt that associates input node (Xt)
to output node {Yj) is learned as follows: During feedback,
the feedback signal Z activates each output node Y. accord-
ing to the Gaussian similarity function,

(10)

where fj{Z) is the activation of output node Yj by the
feedback signal Z. The connection weights are updated
according to the delta learning rule:

Wjiit + 1)

= Wji(t) + a • [fj[Z{t)} - Oj[X(t)]\ • (11)

Knapp and Anderson (1984) used a Hebbian learning rule,
whereas Kruschke (1992) used a delta learning rule; we
adopted the latter because it is better supported.

The associative-learning model has two parameters: the
scaling parameter (y) and the learning rate (a). These
parameters were estimated separately for each function
condition k by searching for the lowest scale and smallest
learning rate that would produce an MAEk less than 1.2. The
three rows labeled "ALM" in Table 1 show the estimated
parameters and MAE values of ALM for the three function
conditions. The scaling parameter and learning rate required
to produce a sufficient fit (MAEk less than 1.2) to asymptotic
learning performance were smaller for the linear condition
than for exponential and quadratic conditions. Note, how-
ever, that the best-fitting scaling parameters were too large
(i.e., the generalization gradients were too narrow) to
produce extrapolation. To examine the limits of extrapola-
tion by ALM, we plotted the predictions by using a much
smaller scaling parameter {y = .03), which yielded a gener-
alization gradient that covered the entire response con-
tinuum (but also produced an MAE that exceeded the data).

Panels C of Figures 8, 9, and 10 show the predictions of
ALM for each function condition across the 45 transfer
trials, using the small scaling parameter (instead of the
parameter estimated from the training data). ALM roughly
reproduced the assigned function in the interpolation region
and also approximated the responses of participants in this
region. In addition, ALM generated responses outside the
range of trained responses when given extrapolation trials.

Extrapolation was quite limited, however, and did not
approach the extensive extrapolation observed in partici-
pants. We also examined model predictions across a wide
range of learning rates and scaling parameter values. The fit
of the model was insensitive to changes in the learning rate
for a. > 0.5, and no value of the scaling parameter from y =
0.003 to y ~ 3.0 yielded substantial extrapolation. By failing
to generate extreme extrapolation responses, ALM could not
account for the data observed in the present study. This
finding was not surprising given that ALM is based on
ALCOVE (Kruschke, 1992), which was originally designed
for category learning rather than function learning.

Extrapolation-Association Model (EXAM)

EXAM learns according to the same process assumed in
ALM, but the response is constructed from a rule-based
mechanism in accordance with Waganaar and Sagaria's
(1975) observation that extrapolation is approximately lin-
ear. EXAM assumes that each input node corresponds to one
of the training stimulus magnitudes and that each response
node corresponds to one of the training response magni-
tudes. For the low-density training condition, for instance,
there were eight stimulus-response pairs presented during
training; therefore, M = 8 input nodes and L — 8 output
nodes. Likewise, 20 and 50 input and output nodes were
used for the medium- and high-density conditions, respec-
tively. This assumption of EXAM is identical to that used in
the association learning exemplar (ALEX) model proposed
by Nosofsky and Kruschke (1992).7

The activation of input nodes and output nodes follows
the same assumptions used in ALM, formalized in Equations
6 and 7. In addition, learning proceeds according to the same
delta learning algorithm used by ALM (see Equation 11).
The primary difference between EXAM and ALM is the
mechanism used to generate responses. The first step in the
response process is to match a presented stimulus to an input
node corresponding to one of the training stimuli. The
probability of matching stimulus X to input node X, is

(12)

7 Busemeyer, Byun, et al. (in press) developed a generalized
version of EXAM that uses the same input-output coding assump-
tions as ALM (i.e., the same number of nodes as ALM). This
generalized version of EXAM yields the same pattern of results as
the version of EXAM presented herein. However, the generalized
version of EXAM requires additional assumptions about the
retrieval of previously trained stimuli, which complicates the
model. We chose to present the simpler model here. Of course, it is
also possible to use an alternate coding assumption with the ALM
model so that it includes the same number of nodes as training
values. This alternate version of ALM differs from EXAM only in
terms of the mechanism for generating the response; therefore, the
predictions of this alternative model can be obtained by using
Equation 14 without the second term (which is responsible for
linear extrapolation). However, this alternate version of ALM does
not produce more extensive extrapolation than the original ALM
model; thus, it is not considered in the present study.
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Given that X is matched to Xiy three output values are
retrieved: Output Y{Xd *s retrieved by using a lower cue
value Xj-i as the cue; output Y(Xl+l) is retrieved by using a
higher cue value Xi+l as the cue; and output Y(Xt) is
retrieved by using the matching cue value Xt as the cue. The
probability of retrieving each of the three outputs is given by
Equation 8.

The next step is to select the response. Unlike ALM,
which simply retrieves the strongest activated output, re-
sponses are generated using a cross-dimensional matching
rule. The magnitude of the response is selected so that the
proportion of change in output magnitudes matches the
proportion of change in input magnitudes. For example, if
the distance between transfer stimulus X and the matched
cue Xt is only half of the total distance between the upper,
X i+l, and lower, X,_i, cues, then the response is selected such
that the distance between the response output Y and the
matched-cue output Y(Xt) is half of the total distance
between the upper-cue output, Y(Xl+l), and the lower-cue
output, Y(Xi). This cross-modality matching process is
mathematically formalized as follows:

[Y

which is algebraically equivalent to

+ [[Y(Xi+l) - rOQ.,)]/[Xi+l - X,.,]} - [X - X,-]. (13)

Note that the response generated by Equation 13 is based on
two parts. The first component is the retrieved output value,
which is the response value associated with the training
stimulus most similar to the transfer cue. This is the
component on which ALM is based. The second, new
component is responsible for linear interpolation and extrapo-
lation using a slope value computed from retrieved in-
stances.

On the basis of these assumptions, the mean response to
transfer stimulus X is given by

= 2i=UMPr[Xi\X]-E[Y\Xi]

+ , " X,_,] • [X - X,-], (14)

J = m(X,)

where m(X) is defined by Equation 9. If X[ (the smallest
input node) is most activated, then input node X,-i in
Equations 13 and 14 is replaced with input node Xt. If XM

(the largest input node) is most activated, then input node
Xi+i is replaced with input node X;. The mean rule-
constructed output £iy|X] is used to predict participants*
mean responses to stimulus X.

As with the associative-learning model, EXAM has two
parameters to be estimated: the scaling parameter (7) and the
learning rate (a). We estimated these parameters separately
for each function condition k by searching for the lowest

scale and the smallest learning rate that would yield a MAEk

less than 1.2. The three rows labeled EXAM in Table 1 show
the results of fitting this model to the learning data. The only
significant difference between EXAM and ALM during the
learning phase was the number of input and output nodes
used to form associations; therefore, these two models made
essentially the same learning predictions.

Panels D of Figures 8,9, and 10 display the predictions of
EXAM for each function condition across the 45 transfer
trials, using the parameters estimated from the training data.
EXAM accurately approximated the assigned functions in
the interpolation region but extrapolated in a manner that did
not reproduce the assigned functions in the extrapolation
regions, as was observed empirically. Most important,
EXAM's extrapolations corresponded very well with the
pattern of over- and underestimation produced by partici-
pants (although EXAM performed less well for the lower
extrapolation region of the linear function). Although it is
not shown graphically, it is also noteworthy that EXAM
produced very similar extrapolation patterns across the
range of density conditions examined herein, as was found
empirically.

We also examined the predictions of EXAM by using a
common scale value (3) and learning rate (0.9) for the three
function conditions. In this case, the model produced the
appropriate over- and underestimation predictions for the
exponential and quadratic functions but yielded a straight
line for the linear function, contrary to participants' pattern
of underestimation.

EXAM produced underestimation of the linear function
when small learning rates and scale values were used for the
following reason: Intermediate training stimuli (i.e., training
stimuli that do not lie at the boundaries of the training
domain) are learned more quickly than stimuli at the end
points of the training domain because of generalized feed-
back from adjacent stimuli on both sides of the intermediate
stimuli. When the learning rate is low and the generalization
gradient is wide, the end stimuli are not learned as well as
intermediate stimuli at the conclusion of training. The result
of learning in EXAM is that responses gradually move from
zero (the initial values) toward the feedback value. Thus, if
the stimuli at the boundaries of the training domain are
learned less well than intermediate stimuli, their associated
responses will be underestimated. This pulls the slope down
at the boundaries of the training domain, and because
extrapolation in EXAM is based primarily on the slopes at
the endpoints, the extrapolation rule underestimates the
programmed function. This underestimation can be elimi-
nated by increasing the learning rate, such that responses are
highly accurate at the endpoints by the end of training.

In sum, of the four models we considered, EXAM was
most accurate in accounting for the set of results obtained in
the present study. By combining associative learning with
rule-based responding, EXAM better explained the extrapo-
lation of function-based concepts than either a pure associa-
tive-learning model or a pure rule-learning model.
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General Discussion

Many natural concepts are best described as and repre-
sented by functions. The association between population
magnitude and amount of pollution, for instance, is naturally
thought of in terms of a function. One salient and important
characteristic of a function-based concept is that it can be
used to generate appropriate new responses in the presence
of novel stimuli. If the population were to suddenly increase,
for example, the function could be used to anticipate the
amount and direction of change in pollution. Despite the
predictive value of extrapolation, very little systematic
research has explored extrapolation behavior in human
learners or has examined the processes by which extrapola-
tion occurs. This study represents the most comprehensive
empirical and theoretical investigation of extrapolation with
function-based concepts to date.

Empirical Findings

An important empirical issue concerning extrapolation is
the extent to which humans are willing to extrapolate
following restricted exposure to a small number of function-
ally related input-output pairs. The data reported herein
show that learners extrapolated much beyond the range of
learned responses, and they did so in the direction of the
assigned function. This extrapolation behavior was observed
for different types of functions (linear, exponential, and
quadratic), training conditions (stimulus sets of 8,20, and 50
unique stimuli), task instructions, and stimulus-response
interpretations.

Although participants generally extrapolated in the direc-
tion defined by the assigned functions, systematic deviations
were observed, and these deviations varied depending on the
function form. In the linear condition, participants underesti-
mated the assigned function in both extrapolation regions.
This pattern has been replicated in a subsequent study using
a negative linear function (DeLosh, 1995). In the quadratic
condition, participants overestimated the assigned function
in both extrapolation regions, and this pattern has been
replicated as well (Byun, 1995; DeLosh, 1995). For the
exponential function, participants also overestimated the
function in both extrapolation regions.

The fact that systematic over- and underestimation were
obtained only on extrapolation tests and not during training
or on interpolation tests underscores the importance of
examining extrapolation behavior. Moreover, these devia-
tions indicate that extrapolation is more complex than
inducing and applying a global rule. The underestimation
obtained with the linear function condition was particularly
telling. In this case, a simple linear rule was available and
appropriate, but apparently many participants did not ab-
stract or apply this rule. Had they done so, their transfer
responses would have followed a straight line through the
interpolation and extrapolation regions, but in fact, the
observed curves for the linear training function were consis-
tently nonlinear.

A second empirical issue concerns the number of unique

stimulus inputs presented during training (i.e., density).
From the perspective of verbal learning paradigms, the
density manipulation was analogous to a manipulation of list
length. On the basis of findings in the verbal learning
domain, we would expect that the low-density condition
would yield faster and more accurate learning than the
higher density conditions (cf. Giilund & Shiffrin, 1984;
Murdock, 1962; Roberts, 1972; Waugh, 1972). We were
somewhat surprised, however, to find that density did not
affect the rate of learning. One possibility is that the greater
similarity of items in higher density conditions counteracted
the disadvantages produced by longer lists (because list
length was confounded with similarity in our density
manipulation). Another possibility is that the higher density
conditions were more likely to reveal the systematic relation
among stimulus-response pairs (cf. Engelkamp, Biegel-
mann, & McDaniel, in press; Hunt & Seta, 1984), thereby
facilitating Learning. By this account, the disadvantage of
learning more items in a longer list may have been balanced
by the advantage of the salience in the relationship between
items. Yet density did not affect either interpolation or
extrapolation performance, a result that urges caution in
accepting the idea that the higher density conditions facili-
tated abstraction of the stimulus-response relationship.

A third empirical issue concerns individual differences in
what learners acquire when exposed to stimulus-response
pairs generated from a function. On training and interpola-
tion test trials, response accuracy was relatively high and
individual differences were not apparent. Examining just
these data might have led one to believe that all learners
acquire the function very accurately. On extrapolation test
trials, however, substantial differences among individuals
were revealed. Some learners almost perfectly reproduced
the training function across extrapolation tests, yet two
others showed virtually no extrapolation outside the range of
trained responses. Once again, this finding underscores the
importance of using extrapolation tests to obtain a complete
picture of what is acquired during function learning.

Theoretical Findings

In our theoretical consideration of the extrapolation
results, we first evaluated three extant models of conceptual
behavior: two prominent rule-based accounts of function
learning and a prominent associative account of category
learning. These models contrast two venerable theoretical
approaches to concept learning. The associative-learning
approach is exemplified by ALCOVE (Kruschke, 1992).
Although ALCOVE was originally designed for category
learning tasks, its success in the category-learning domain
compels testing its usefulness in the function-learning
domain. Moreover, ALCOVE includes stimulus generaliza-
tion and can be modified to include response generalization
as well (as is most appropriate when both stimuli and
responses vary on continuous dimensions). With both stimu-
lus and response generalization, the model can produce a
limited amount of extrapolation. This extension of ALCOVE
for function learning has been designated ALM.
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Our application of ALM to function learning yielded two
related findings. First, the extrapolation capabilities of ALM
were very limited across the wide range of generalization
gradients that we examined. Second, because ALM can
extrapolate very little beyond the stimulus domain with
which it is trained, it was unable to account for the extensive
extrapolation produced by humans. Thus, associative mod-
els of the type evaluated herein do not provide an adequate
account of extrapolation in function learning. This finding is
not surprising, given that the class of associative models we
tested was originally developed to explain category learning.
Nonetheless, this finding is important because it underscores
a salient limitation of nonabstractionist learning models and
urges the incorporation of rule- or abstraction-based mecha-
nisms in order to account for the entire range of human
conceptual behavior (see Anderson & Fincham, 1996, for a
related point).

The two rule-learning models that we evaluated were
specifically designed to account for performance in function-
learning tasks, and these models support extensive extrapo-
lation. The polynomial hypothesis-testing model (Brehmer,
1974; Carroll, 1963) yielded extrapolation performance that
perfectly matched (linear and quadratic conditions) or nearly
perfectly matched (exponential condition) the assigned
functions. Accordingly, this model failed to capture the
pattern of extrapolation behavior of participants in this
study, who systematically over- and underestimated the
assigned functions when generating their extrapolation re-
sponses. It is interesting that the log-polynomial adaptive-
regression model (Koh & Meyer, 1991) does produce
extrapolation responses that deviate from the assigned
functions. These deviations, however, were not uniformly
consistent with those produced by human learners. For
instance, in the high-extrapolation region of the linear
function, the model overestimated the linear function,
whereas participants underestimated the function; in the
low-extrapolation region of the quadratic function, the
model underestimated the function, whereas participants
overestimated the function. Therefore, existing rule-based
models of function learning do not reproduce the observed
pattern of extrapolation performance.

Because neither associative-learning nor rule-based mod-
els of function learning successfully accounted for the
empirical results observed in the present study, it appears
that a new theoretical approach is necessary for understand-
ing the processes by which humans learn and apply function-
based concepts. A major contribution of this article is the
development and testing of a new model of function learning
(EXAM) that combines the associative learning of stimulus-
response pairs with a response generation process that is
based on linear interpolation and extrapolation. This hybrid
model produced extrapolations much beyond the range of
learned responses. Moreover, the extrapolations deviated
from the assigned functions in a manner that corresponded
to the pattern observed in human learners.

Recall that the response mechanism used by EXAM can
be broken down into two parts (see Equation 13). One
component is simply the retrieved output (similar to that
used in ALM), and the second component produces linear

extrapolation from retrieved outputs. Individual differences
can be captured in this model by including the additional
assumption that the second component is applied probabilis-
tically, such that the linear-extrapolation rule is not used on
every trial. Each participant would then have some probabil-
ity of applying the second (linear extrapolation) part of the
rule. A participant who consistently applies both parts will
produce substantial extrapolation of a linear form, but a
participant who only occasionally applies the second part
will, on average, extrapolate to a lesser extent. In this
manner, EXAM can account for the large individual differ-
ences observed in the present study.8

As a final point, it is important to note that although
EXAM is currently limited in its applicability to function-
learning tasks, we propose that the basic idea captured by the
model represents a viable new approach to generalizing
associative models of concept learning. The EXAM model is
not simply a mixture of associative and rule-learning models,
in the sense that EXAM does not generate extrapolation
responses separately through associative and rule-learning
mechanisms and then average the values or select the best
value of the two for simulating human performance. Rather,
the model incorporates (a) an associative-learning process
like that used in connectionist implementations of exemplar-
based models of categorization and (b) a response process
that is guided by a rule operating on retrieved associations.
As such, EXAM is an instantiation of our general view that a
synthesis of associative and rule-based mechanisms is
necessary for any general theory of conceptual behavior.

8 The current version of the model assumes that information
about the slope of a function at a training point is determined at the
time of output retrieval. One could alternatively propose a model
that learns and stores relational information (local slope values)
during training. This model yields predictions that are essentially
identical to those produced by EXAM. Note that a slope-learning
model can account for individual differences if it assumed that
there are different learning parameters for slope values and output
values and that the learning rate parameter for slopes can vary
across individuals or groups, depending on the extent to which they
rely on relational information. For instance, a positive linear bias in
the weight structure of the model combined with a slow learning
rate for slope values yields no extrapolation in the upper region,
similar to the pattern shown in Figure 5. Because our data did not
delineate between slope-retrieval and slope-learning approaches,
we adopted the simpler model.
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Appendix A

Training Stimulus Magnitudes for the Low-, Medium-,
and High-Density Conditions

Training stimuli

Low 30.5,36.0,41.0,46.5,53.5,59.0,64.0,69.5

Medium 30.0,31.5, 33.0, 34.5,36.5,38.5,41.0,43.5,46.0,48.5,51.5,54.0,56.5,59.0,
61.5, 63.5, 65.5,67.0,68.5,70.0

High 30.0, 30.5, 31.0, 32.0,33.0,33.5,34.5,35.5,36.5,37.0,38.0,38.5, 39.5,40.5,
41.5,42.0,43.0,43.5,44.5,45.5,46.5,47.0,48.0,48.5,49.0,51.0,51.5,
52.0,53.0,53.5,54.5,55.5,56.5,57.0,58.0,58.5,59.5,60.5,61.5,62.0,
63.0,63.5,64.5,65.5.66.5,67.0,68.0,69.0.69.5,70.0

Appendix B

Transfer Stimulus Magnitudes for Experiment 1
TVansfer
region Transfer stimuli

Interpolation

Low extrapolation

High extrapolation

32.5, 35.0, 37.5,40.0,42.5,45.0,47.5, 50.0, 52.5,55.0, 57.5, 60.0,
62.5,65.0,67.5

1.0,3.0,5.0,7.0,9.0,11.0,13.0,15.0,17.0,19.0,21.0, 23.0,25.0,
27.0,29.0

71.0,73.0,75.0,77.0,79.0.81.0,83.0, 85.0, 87.0, 89.0,91.0,93.0,
95.0,97.0,99.0
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