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I. DECISIONS, PREDICTIONS, AND ABSTRACT CONCEPTS

Before making any serious decision, we normally try to anticipate how
the effects of our action will vary depending on the action taken. For
example, before an anaesthetist can decide the amount of anaesthetic
to administer to a patient, she needs to predict how the analgesic effect
will vary as a function of the amount injected. Before a father can decide
the amount of money to invest in his son's college education, he needs
to predict how the return will vary as a function of the size of the
investment. The point is that prediction is essential to decision making.

Predictions are thought to be based on knowledge of the functional
relation between the strength of a cause and the magnitude of an effect.
For this reason, there is a large body of empirical research by decision
scientists investigating how people learn functional relations (Slovic&
Lichtenstein 1971, Klayman 1988).Much of this research, however, has
been not been synthesized and integrated into coherent theory, and so
this literature remains disconnected from mainstream cognitive
psychology.

From a cognitive perspective, functions can be viewed as abstract
concepts that summarize cause-effect relationships. Cognitive
psychologists have made great progress developing theories of how
people learn abstract concepts (see Estes 1994). However, most of this
theoretical effort has been restricted to one simple type of concept
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learning task called categorization. It is unclear whether or not theories

of category learning can beextended for application to function leerning.
The purpose of this chapter is to develop a concept learning model

that can account for results from both categorization and function
learning tasks. The remainder of the chapter is organized as follows:
Section II discusses similarities and differences between category- and
function-learning tasks, Section III synthesizes some basic findings on
function-learning, Section IV describes an artificial neural network
model of category learning and extends this model to function learning,
and Section V shows how the extended model reproduces the basic
findings from function learning.
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II.CATEGORYVERSUSFUNCTIONLEARNINGPARADIGMS
FIG.11.1. Illustrationofa displayofstimulus,response,andcriteriafeedbackforatypical
functionlearningtask.Firstthestimulusbarontheleftisdisplayed,secondtheresponsebarin the
middleisdrawnbythesubject.andthirdthecriterionbarontherightisdisplayedforfeedback.

There is considerable overlap in the basic experimental paradigms used
to investigate category and function learning. In both cases, subjects
are presented several hundred training trials, each of which consists of
(a) the presentation of a stimulus called the cue (denoted x(t) on trial t),
(b) a response by the subject called the prediction (denoted y(t) on trial
t) and (c) feedback indicating the correct response called the criterion
(denoted z(t) on trial t).

For example, Koh & Meyer (1991) trained subjects to learn how to
map a tone duration (cue) into a movement magnitude (criterion). On
each trial, a tone duration was presented, the subject made a motor
movement, and then the subject was shown the correct motor movement.
This example involves mapping one physical continuum (x = tone
duration) into a different physical continuum (z = movement
magnitude). It is not necessary to employ different physical continua
for stimuli and responses. For example, Delosh et al. (1996) trained
subjects to map one line length cue into another line length criterion,
thus employing a common physical continuum for stimuli and responses.
(See Figure 11.1). Other researchers (e.g. Naylor & Clark 1968) used
numbers to display the cue and criterion magnitudes.

After subjects learn the cue-criterion mapping for a set of training
pairs, they are tested during a transfer phase on new stimuli never seen
during training. The transfer test ascertains whether or not subjects
can use the newly-learned concepts to interpolate or extrapolate.

For both category and function learning tasks, the mapping from cues
to criteria may be probabilistic. In category learning, for example,
disease A could occur on 60 per cent of the trials and disease B could
occur on 40 per cent of the trials on which the same exact symptom
pattern appeared (e.g. Gluck & Bower 1988). In function learning, for

example, infection severity may be proportional to body temperature
plus sum random error.

The cue patterns used in category-learning tasks are usually
constructed from a small set ofbinary-valued features (e.g.fever,present
or absent; cough, present or absent). The cues used in function learning
tasks are constructed from a small set ofcontinuously valued dimensions
(e.g. body temperature in centigrade; white blood cell frequency).
However, dimensional stimuli have been used in categorization
experiments (e.g. Homa 1984, Nosofsky 1986, Ashby & Gott 1988), so
this is not the critical property for distinguishing between category- and
function-learning tasks.

The responses used in category-learning tasks are usually limited to
a small number of nominal categories (e.g. heart disease present or
absent). The responses used in function-learning tasks are usually an
equally spaced subset of a continuum of criterion magnitudes (e.g.
percentage of arterial blockage). However, numbers could be used as
category labels (e.g. disease severity levels 1,2, and 3), and so this is
not sufficient for distinguishing between category- and function-learning
tasks.

The crucial property for distinguishing category- from function-
learning tasks is the nature of the cue-criterion mapping. In category
learning, a discontinuous mapping is made from stimuli to categories.
In function learning, a continuous function is used to map cues to
criteria (i.e. z(t) =F[x(t) ] where F is a continuous function). For example,
a discontinuous map jumps up or down at some point in an abrupt
manner, whereas a continuous map changes gradually at each point in
a smooth manner.
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Another important difference between category- and function-
learning tasks is the way that performance is measured. In category
learning, performance is based on the percentage of correct responses.
But this would not work in function learning, because responses may
be technically incorrect but highly accurate. For example, if the
prediction is 78 per cent arterial blockage and the criterion is 79 per
cent, then the response is technically incorrect but highly accurate. So
in function learning, performance is based on the mean absolute error
(MAE)between the subject's prediction and the criterion. (Another
measure, called the achievement index, is the correlation between the
subject's prediction and the criterion).

Principle2: Increasingfunctionsarelearnedfasterthandecreasing
functions
SeeBrehmer 1971,1973,1974,Brehmer et al. 1974,Naylor & Clark
1968, Naylor & Domine 1981. A function is increasing if its slope
(derivative) is alwayspositive,andit is decreasingifits slopeis always
negative. More specifically, researchers have compared performance for
positive and negative linear functions, and they have found that positive
linear functions are learned much faster. This finding, however, may
not be restricted to linear functions.

III.SUMMARYOFBASICFINDINGSONSINGLE-CUE
FUNCTIONLEARNING

Principle3:Monotonicfunctionsarelearnedfasterthannon-monotonic
functions
See Carrol 1963, Brehmer 1974, Brehmer et al. 1985, Brehmer et al.
1974, Byun 1995, Deane et al. 1972, Delosh 1995, Sheets & Miller 1974,
Sniezek & Naylor 1978. Monotonic functions always increase, or always
decrease, but never do both. Non-monotonic functions increase and
decrease at different cue values and are generally more difficult to learn.
For example, Delosh (1995) has shown that both linearly decreasing
functions and exponentially increasing functions are learned more
quickly than non-monotonic quadratic functions.

Although function-learning tasks may involve multidimensional
stimulus cues (e.g. predict a student's grade point average based on both
verbal and math Scholastic Aptitude Test scores), the majority of
theoretical work (Carrol 1963, Brehmer 1974, Koh & Meyer 1991) has
been limited to single cue tasks (e.g. predict a student's grade point
average based on the total SAT score). Accordingly, this chapter is
limited to a review of single cue experiments (see Klayman 1988, Slovic
& Lichtenstein 1971, for more comprehensive reviews).

The ten basic principles summarized below provide a partial ordering
of the difficulty of learning various types of functions from experience.
These ten principles are generalizations of well-established
experimental results that have been replicated across a variety of
conditions.

Principle4: Cyclicfunctionsaremoredifficult to learnthannon-cyclic
functions
See Byun 1995. A cyclic function, such as a sine or cosine function,
periodically changes directions producing a repeating increasing-
decreasing pattern. Non-cyclic functions, such as a quadratic function,
do not produce a repeating up-down pattern. 'Ib distinguish cyclic from
non-cyclic functions within a finite range of cue values, cyclic functions
are defined as functions that contain at least two repetitions of an
up-down pattern (or two repetitions ofa down-up pattern). At this point,
only one experiment has been conducted comparing a sine function and
a quadratic function, but the results demonstrated such a highly robust
difference, that we believe it is safe to conclude that cyclic functions are
much more difficult to learn that non-cyclic functions.

Principle1:Continuousfunctionalrelationsarelearnedfasterthan
arbitrarycategoricalrelations
See Carrol 1963, Sniezek & Naylor 1978. The mapping from a stimulus
set to a criterion set can be formed in two different ways: One is to use
a continuous function to form the stimulus-criterion pairs (e.g. using a
quadratic function); the second is to use a jagged function (produced by
erratic pairings) of the same stimuli and criteria. Thus the stimulus set
is identical in both mappings and so is the response set. The only
difference is the continuity of the mapping. In this comparison,
continuous mappings are learned faster than erratic mappings of the
same stimuli and criteria. So far, this result has been obtained with
positive linear, negative linear, and quadratic functions, but the results
may hold for other continuous functions.

Principle5: LinearlyIncreasingfunctionsarelearnedfasterthan
nonlinearlyincreasingfunctions
See Byun 1995, Delosh et al. 1996. Increasing non-linear functions such
as power, exponential, logarithmic, or logistic, always increase, but the
rate of increase changes as a function of the cue value. Generally, these
non-linear increasing functions are more difficult to learn than linearly-
increasing functions. It is important to note that this conclusion depends
on the psycho-physical scales used to measure the stimuli and criteria.
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For example, Koh & Meyer (1991) found superiority for linear functions
only after using a logarithmic scale to measure the continua. Thus the
scales used to measure the continua is a key factor for determining the
order of difficulty of learning linear versus power functions.

that lie inside the range of training values are called interpolation test
stimuli. On interpolation trials, subjects tend to choose new responses
that fall in between the trained criterion values. Previous research with

linear, power, exponential, and quadratic functions indicate that
predictions on interpolation tests are almost as accurate as the training
stimuli.Principle6: Predictionsmadeatthebeginningof trainingcorrelatewitha

linearfunction

See Sawyer 1991, Summers et al. 1969. When subjects are given a
"neutral" cover story, and then they are trained to learn a ~on-linear
function, their responses at the beginning of training correlate most
highly with those expected from a linear function. As training
progresses, the correlation with the non-linear function steadily grows
and exceeds the linear function. This result has been observed with S-
shaped logistic functions, but it is likely to hold for a wider class.

Principle10:Subjectscanextrapolate,butnotasaccuratelyas
theyinterpolate
See Carrol 1963, Surber 1987, Delosh et al. 1996, Wagenaar & Sagaria
1975. An extrapolation test stimulus is a cue value that lies outside the
range ofthe training values. Previous research with linear, exponential,
and quadratic functions indicate that subjects generate extrapolation
responses, that is responses outside the range of the training criteria
values. Their extrapolations are in the appropriate direction with
respect to the training function, however, these extrapolations do not
come as close to the programmed function as interpolations.

Principle7: CongruentcuelabelsImproveperformance
See Byun 1995, Koele 1980, Miller 1971, Muchinsky & Dudycha 1974,
1975, Sniezek 1986, Adelman 1981. The description of the cues elicits
prior knowledge about the functional relation that is either congruent,
incongruent, or uninformative. For example, suppose subjects are asked
to learn a relationship between x =price andy =quality ofmerchandise
(suggesting a positive relation), but then they are trained with a negative
linear function. In this case, the cue labels would be incongruent with
the training function. Generally, performance is best with congruent
labels, and worst with incongruent labels. However, even with
incongruent labels, subjects gradually adjust and learn the appropriate
cue-criterion relationship.

Summary
The first five principles suggest the following tentative order for the
difficulty oflearning a functional relation from experience: cyclic> non-
monotonic > monotonic decreasing > monotonic increasing > linear.
Previous researchers have generally explained these findings in terms
of prior knowledge or hypotheses about rules used to make predictions
(Brehmer 1974, Sniezek 1986, Sawyer 1991). When standard
instructions and cue labels are employed, subjects initially expect the
cue-criterion relationship to follow a positive linear rule (Principle 6).
However, these prior expectations can be modified by changes in prior
instructions or by cue labels (Principle 7). The facilitation of learning
by systematic as opposed to random stimulus sequences presumably
results from the facilitation of hypothesis testing by using systematic
sequences (Klayman 1988). Principle 10 has been used to argue th.at
subjects learn abstract rules rather than simple stimulus-response
associations (Brehmer 1974, Carrol 1963).

Principle8:Systematictrainingsequencesfacilitatelearningof difficult
functions

Byun (1995) and Delosh (1995) trained subjects on a function using
either a systematically-increasing sequence of stimulus magnitudes
during training, or a randomly-organized sequence of the same
magnitudes. Training sequence had no effect on positive linear functions,
but it facilitated learning of non-monotonic quadratic functions and
cyclic functions, with systematic sequences producing slightly superior
performance. IV.COGNITIVEMODELSOFFUNCTIONLEARNING

Principle9: Performanceon interpolationteststimuli Isalmostasaccurate
as performanceon trainingstimuli
See Carrol 1963, Koh & Meyer 1991, Delosh et al. 1996. During the
transfer test phase no feedback is provided, and new cue values are
presented that never appeared during training. New transfer cue values

Theoreticalrequirements
The ten principles summarized earlier provide guidelines for
constructing a model of function learning. However, additional general
theoretical constraints must be met as well. First, the model must have
the same learning power as humans. For example, a model that
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approximates all functions by a 3rd degree polynomial is insufficient,
becauseit cannot approximate a cyclic function, which humans can learn
(Byun 1995). Secondly, the model must have the same learning speed
as humans. For example, a powerful non-linear hidden unit con-
nectionistic network model that requires several thousand feedback
trials to learn a simple linear relation is unreasonable because humans
can learn this in much less than a hundred trials. Third, we wish to
formulate a model of function learning that is consistent with category-
learning theory. In other words, we seek a common theoretical
explanation for category- and function-learning. Presumably, humans
rely on a single common learning process to learn stimulus-t<esponse
mappings, whether or not the mapping is continuous. There are two
quite different approaches to the construction of a model of function
learning: one is a rule-based approach, and the other is an associative-
learning approach.

Delosh et al. (1996) examined the extrapolations produced by
polynomial and log polynomial models for linear, quadratic, and
exponential training functions, and found that these models failed to
reproduce the same pattern of extrapolations as humans. For
example, when trained with a negatively-accelerated increasing
exponential function, these models generate non-monotonic relations
at the upper end of the extrapolation region, contrary to the humans
who continued to produce monotonic increasing relations in this
region. A third problem is that they are not built from assumptions
consistent with current research on category learning. These rule-
based models were developed independent of research on category
learning, and so they fail to explain category and function learning
within a common theoretical framework.

In view of these limitations of rule-based models, the remainder of
this chapter will focus on associative-learning models (ALMs). This is
not to claim that rule-based models can be completely eliminated. We
simply leave the question concerning the construction of a successful
learning algorithm for them open for future research.

Rule-basedLearningApproach
According to this approach (Brehmer 1974, Carrol 1963, Koh & Meyer
1991), the rules that subjects use to make predictions are represented
by a linear combination of a basis set of functions:

yet) =bofrf(t)] + blfzfx(t)] + b2f:lx(t)] + ... + b,j"x(t)] (11.1)

Associative-learningapproach
Thefollowing associative-learningmodelis anextensionofthe artificial
neural network modelof Knapp & Anderson (1984)and the exemplar-
based connectionistic model of Kruschke (1992). The latter model is
currently a highly successful model of category learning (see Nosofsky
& Kruschke 1992, for a rigorous evaluation). The main advantage of this
model is that it is built from assumptions that are consistent with the
major findings on category learning. Another advantage of this model
is that it employs a simple yet powerful learning algorithm. ALMmakes
the following assumptions (see Figure 11.2).

The most common choice for the basis set of functions is the
polynomialbasis,f"x] = xk,but other basesare possible such as log
polynomial, Fourier, Gaussian, or wavelet. The basis set must be
sufficiently powerful to closely approximate all smooth continuous
functions.

According to the rule-based approach, learning is represented by a
search for the appropriate choice of coefficients (bo,b1, ..., bk) to fit the
training function F[x]. For example, Brehmer (1974) assumed a cubic
polynomial basis, and he assumed that subjects test a linear hypothesis
first, followedbya quadratic hypothesis,followedbya cubichypothesis.
Alternatively, Koh and Meyer (1991) assumed a log polynomial basis,
and they assumed that subjects gradually adjust all of the coefficients
(bo,bI, ..., bk)in a trial by trial manner in the direction of minimizing a
loss function.

One problem with these rule-based models is the lack of specifica-
tion of the trial-by-trial search process. For example, Brehmer (1974)
never specified exactly how hypotheses were rejected, nor how the
parameters for testing a hypothesis were chosen. A similar short-
comingapplies to the Koh & Meyer (1991) model. A secondproblem
is that they do not extrapolate in the same manner as humans.

Assumption 1. The physical stimulus, x(t), produces a perceptual
image represented by a distribution of activation across a set ofn input
nodes:

(XI, X2, ..., Xi>..., xol, XI < X2<... < Xi <... < Xn (11.2)

Each input node, Xi, corresponds to a real number representing a
potential stimulus value, and the index i represents the rank order of
the node value. When a cue value, x(t), is presented, it activates input
node Xifrom the set ofn input nodesaccordingto a Gaussian similarity
function:

a{x(t)] =1/ exp{ (Xi- 'lj/x[x (t)]) / adz (11.3)
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z In Figure 11.2, the perceptionof the criterion value z(t) =110 is
represented by a Gaussian distribution on the right centred at IjIz(ll0)
= (0.01) x 110 = 1.10 with a standard deviation equal to az= 0.05.
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Assumption 3. The subjective image of the response, r(t), is
represented by a distribution of activation across a set ofm output n()des:

(rI, r2, ..., rj, ..., r"J, rl < r2<... < rj <... < rm(11.6)

The activation of output node, rj, represents the subject's belief that
category j is the correct response .category. In Figure 11.2, the
distribution of output activation in the middle is centred at a response
node corresponding to a magnitude of 1.20.

Assumption 4. Each input node Xiis connected to each output node
rjby a weight wi/t) representing the association between the pair ofinput
and output nodes after t trials of training. The activation pattern
distributed across the n input nodes is mapped by the (m . n) connection
weights into an activation pattern distributed across the m resp()nse
nodes. The response node rj from the set ofm response nodes is activated
accordingto the linear associativemap: .

FIG. 11.2. \ IlIIustrationof ALM.The perception of the stimulus is represented by the distribution of

activationon the far left.Thisis mapped onto the output nodes by associations indicated by the
arrows (only a few of the many are shown). The subjective response is represented by the distri-
bution of activation shown in the middle. Finally,the perceptionof the criterion feedback is repre-
sented by the distribution of activation on the far right.

The psycho-physical function IjIx[x(t)) represents a subjective scaling
of the physical stimulus (e.g. IjI is often approximated by a power
function, ljI(x)= IjIxJ3,see Stevens 1961). The parameter ax is used to
determine the generalization gradient around each input node. For
example, in Figure 11.2, the perception of the cue value x(t) =40 is
represented by a Gaussian distribution on the left centred at IjIx(40) =
(0.01) x 40 = 0.40, with a standard deviation equal to O'x= 0.05.

efx(t)) = wI/t)a!x(t)) + w2J{t)ayfx(t)) +... + wl\i(t)a,,[x(t)) (11.7)

In Figure 11.2, the arrows indicate a few of the many associations
from the inputs to the outputs.

Assumption 5. The distribution of activation across the m criterion
nodes provides the feedback for updating the connection weights. The
weight, wv{t), connecting input node Xi to output node rj is updated on
trial t according to the following delta learning rule:

Assumption 2. The perceptual image of the criterion value, z(t), is
represented by a distribution of activation across a set of m criterion
nodes,

(ZI, Z2, ..., Zj, ..., z"J, ZI < Z2< ... < Zj< ...< Zm(11.4)

wv{t) = wv{t -1) + a. alx(t)) . (cfz(t)) - efx(t))J (11.8)

Assumption 6. Prior knowledge is represented by the initial
connection weights existing before training and evoked by task
instructions, cue labels, and cover stories (cf. Choi et al. 1993). The
initial connection weight between input node Xiand output node rj, is
symbolized wi/OJ. Two different assumptions concerning the initial
weights are examined in the simulations that follow.The first is called
the no-prior-knowledge-assumption, which is obtained by setting Wi/CO)
equal to a value randomly sampled from a normal distribution with zero
mean. The second is called the positive-linear-prior-knowledge-

Each criterion node, Zj,is a real number, corresponding to a potential
response category. When the criterion value, z(t), is presented on trial
t, it activates criterion node Zj according to a Gaussian similarity
function:

cfz(t)) =1/ exp{ (Zj- 1jI.[z(t)))/ azl (11.5)
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assumption, which is obtained by teaching the network a positive linear
relation prior to experience with the training function. For example, if
the initial weights are set to wi/D) =1 for i =j,and zero otherwise, then
the network reproduces the identity function, y = x.

These six assumptions complete the description of the associative
learning process. However, the assumptions concerning response
selection have not been made explicit. At this point two different sets
of assumptions are introduced: the first set describes a simple ratio rule
for selecting responses, and the second set describes a more sophisticated
linear interpolation extrapolation response rule.

Q)
"C
;:,...
'2
C>
<0
E
Q).,
c:
oc..,
£1- e/

Ratioresponserule
According to previous category learning theories (e.g. Kruschke 1992),
the response category is selected probabilistically according to a ratio
rule. The probability of choosing output node rj is assumed to be equal
to:

Pr[rjIx(t)J =efx(t)J / Lk=l,mekfx(t)J. (11.9)

The output node rj is a subjective scale value that needs to be located
on the physical criterion scale to produce the observed response, y(t),
on trial t. Presumably the subject does this by choosing the physical
response value that gives rise to the subjective image, rj.Mathematically,
this is equivalent to taking the inverse of the psycho-physical scaling
function to produce the observed response:

x

FIG.11.3. Illustrationof thelinearinterpolation-extrapolationrule.Inthisexample,thetraining
stimuliontherightareusedtoforma linethatextrapolatesdownto thelefttoproducethe
predictionfortheteststimulusindicatedbythe"i' onthehorizontalaxis.

y(t) ='l'z-l(r). (11.10) the subject's prediction, y(t), for the transfer test cue x(t), is con-
structed by linear interpolation:

This implies that the mean prediction to cue value x(t) =Xi equals:
y(t) =Y(Xi-J + [[y(xJ -Y(Xi-JJ / (Xi- Xi-J)' [Xi- x(t)J. (11.12a)

Jl (xJ = ~.I.m Pr[rj IxJ . "'z-l (r). (11.11) ~~.~ If x(t) < Xi,and there is no other training stimulus below Xi,then the
prediction is linearly extrapolated:Linearinterpolation-extrapolationresponserule

Delosh et al. (1996) recently proposed a new model for response selection
in function-learning tasks. The essential idea is that predictions are
constructed from a linear interpolation--extrapolation rule (see, e.g.
Figure 11.3).

First, the transfer test cue, x(t), is matched to one of the previous-
ly experienced training values. For example, suppose that the new
test cue, x(t), is matched to the previous training value Xi. Consider
the case where x(t) < Xi, and there is another training value Xi-I
immediately below Xi. Then these two training values, Xi-I < Xi, are
used to retrieve two outputs, Y(Xi-J and y(xJ, respectively. Finally,

y(t) = y(xJ + [[Y(Xi+J- (xJJ / (Xi+1- xJ). [x(t)-xJ. (11.12b)

If x(t) > Xi, and there is another training stimulus Xi+1above Xi, then
the prediction is linearly interpolated:

y(t) =y(xJ + [[Y(Xi+J - (xJJ / (Xi+1- xJ). [x(t)-xJ. (11.12c)

If x(t) > Xi,and there is no other training stimulus above Xi,then the
prediction is linearly extrapolated:
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y(t) =y(xJ + {[y(xJ - Y(Xi-J]I (Xi- Xi-J)'[X(t)-xJ (11.12d). used to display the criteria (az in Equation 11.7);and the learning rate
(exin Equation 11.8). The same learning rate (ex=0.07) and the same
two generalization gradients (a. = az = 0.05) were used in all of the
simulations reported below. These parameter values were selected to
reproduce all of the qualitative aspects of the basic findings, except for
the results involving interpolation and extrapolation. The linear
interpolation-extrapolation response rule requires an additional
generalization gradient parameter (a. in Equation 11.14), which was
set equal to a. = 0.10.

Several other specifications were necessary for the computer
simulations. First, it was necessary to specify the psycho-physical
functions, 'fI.(x), 'fIz(x).The simulations reported below were based on
experiments that employed line lengths to physically display the stimuli
and criteria. Past research has shown that the psycho-physical function
for line lengths is approximately a linear function (at least within the
limited range of magnitudes used in the experiments that were
simulated). The following psycho-physical functions were used for all
of the simulations:

The probability of retrieving the output node 'V[y(xJ] =rj using Xi as
the retrieval cue is given by Equation 11.9, after substituting Xifor x(t).
The mean of y(t) conditioned on matching x(t) to Xi, denoted )(xJ, is
obtained from Equation 11.12 by substituting f.l(xJ for y(xJ in the
equation, where f.l(xJis defined in Equation 11.11.

The new cue x(t) is matched to an old training value Xiaccording to
the following process. Training stimuli are identified by the learner as
input nodes that produce a strong familiarity response. The familiarity
of input node Xi is assumed to be determined by the maximum output
activation produced by the input value x(t)=x:

f;(t) = max[el(x), e2(x), ..., em(x)] (11.13)

(Note: Equation 11.13 is computed with wilO) = 0 so that prior
knowledge is not confused with training experience.) The strength of
match of the new cue x(t) to input node Xi,is determined by the product
of familiarity and similarity:

s[x(t)] =flt) I exP{(Xi - 'VJx(t)]) I aJ2 (11.14)
'fI.(x) = xl [max(x) - min(x)]

'fib) =z I[max(x) - min(x)]

where the similarity parameter, a., is an unknown parameter. Finally,
the probability of matching input cue x(t) to input node Xiis determined
by the ratio rule:

:.,'

where max(x) represents the maximum cue value, and min(x) represents
the minumum cue value used in an experiment. This normali7;es
stimulus magnitudes so that 'fI.(x)ranges from 0.0 to 1.0.

Next the input nodes were chosen to range from 0.0 to 1.0 in 0.01
step units {O.OO,0.01, 0.02, 0.03, . . ., 0.99, 1.0J, providing a dense
coverage of the entire range of stimuli. 1b cover the criteria nodes, a
wider range of nodes was employed: (O,0.01, 0.02, 0.03,. . .,2.99, 3.0J.

All of the simulations employed the same stimulus magnitudes and
number of training trials as were used in the actual experiments. This
was essential for reproducing the observed results. Most of the
experiments employed randomly ordered stimulus sequences. Unless
noted otherwise, the stimulus sequence used in the simulated training
was also randomly ordered. The results were robust across different
random orders.

p[x(t)] = S[X(t))ILk=l.n sklx(t)] (11.15)

This implies that the mean prediction to cue x(t) is:

E[y(t) Ix(t)] = Li=l.np[x(t)] . r(xJ (11.16)

In sum, the ratio-response rule uses Equations 11.9 and 11.11 to
determine the mean prediction, while the linear interpolation-
extrapolation response rule uses Equations 11.12, 11.13, 11.14, 11.15
and 11.16to determine the mean prediction. The ALMin conjunction with
the linear interpolation-extrapolation rule is called by Delosh et al.
(1996) the EXtrapolation Association Model (EXAM).

Simulationprocedure
ALMinvolves only three unknown parameters: the generalization
gradient for the physical continuum used to display the stimuli (a. in
Equation 11.6); the generalization gradient for the physical continuum

V. REPRODUCING THE BASIC FINDINGS OF

FUNCTlON.LEARNING RESEARCH

The following presentation provides a constructive approach to model
building. We begin with the simplest possible version of the ALM,and
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only introduce complexities as they are demanded by the data. This
constructive approach is useful for identifying the importance of each
new additional assumption of the model (see also Lamberts, this
volume).

As can be seen in Table 11.1,ALMreproduces the correct ordering of
MAEacross the four conditions. In particular, ALMreproduces the
difference between the continuous and erratic functions. This results
from the use of an adequate generalization gradient (e.g. <1%= 0.05). If
the generalization gradient is too narrow (e.g. <1%= 0.01), then the ALM
no longer produces any difference between the continuous and erratic
conditions, just as Carrol (1963) claimed. Thus, the ALMwith no prior
knowledge, a ratio-response rule, and an adequate generalization
gradient is sufficient for explaining Principle 1.

Principle1
Carrol (1963) argued that associative learning models of function
learning (such as ALMdescribed earlier) can be ruled out because they
fail to explain why continuous functional relations are easier to learn
than arbitrary categorical relations. Carrol (1963) did not actually
describe any specific associative-learning model, so this claim remains
just a conjecture. It is elementary to prove that this conjecture is true
for ALMwhen there is no generalization (<1%~ 0). Thus it is interesting
to see to what extent this criticism holds when generalization occurs
across stimuli (e.g. <1%= 0.05).

Carrol (1963) compared two groups of subjects: one trained with a
continuous linear function, and another trained with an erratic function
of the same stimuli and criteria as the linear function. Carrol (1963)
also trained another two groups: one trained with a continuous non-
monotonic quadratic function, and another trained with an erratic
function of the same stimuli and criteria as the quadratic function.

ALMwas trained on the same stimulus-criterion pairs and using the
same number of training trials as used by Carrol (1963). The simplest
possible version of ALMwas employed. In particular, the ratio response
rule was used to generate the model predictions and no prior knowledge
was assumed. Table 11.1 shows the MAE, averaged across training,
obtained from the human learners by Carrol (1963) in comparison with
the computer simulation results obtained by ALM.The last two columns
present a comparison ofthe continuous condition with the erratic control
for linear and quadratic functions.

TABLE11.1
Meanabsoluteerror for eachconditionof Carrol(1963)

Function Continuous Condition Erratic Control

Human Data
Linear 0.03 0.94
Quadratic 0.58 1.29
Simulated Data
Linear 0.03 0.21
Quadratic 0.13 0.29

The human data was obtained by first computing the absolute error between each subject's prediction and the

correction criterion value, and then averaging across subjects. The simulated data was obtained by first

computing the average, and then computing the absolute error between the mean prediction and the criterion.

The latter procedure produces smaller absolute errors by eliminating Individual subject response variability.

Principle2
The first simulation did not employ any prior knowledge. However, this
assumption fails to account for the fact that decreasing functions are
more difficult to learn than increasing functions. If there is no prior
knowledge, it is elementary to prove that ALMpredicts no difference in
rate oflearning for decreasing as compared to increasing linear functions
(when the same stimulus and criterion sets are used). Thus it is
interesting to see to what extent that this problem can be eliminated
by incorporating positive linear prior knowledge into the initial
connection weights.

Naylor & Clark (1968) compared two groups of subjects: one trained
with a positive linear regression equation: z =40 + 0.80'x + error; and
another trained with a negative linear regression equation: z =90 -0.80'x
+error. The univariate distributions for the stimuli and the criteria were
identical across the two conditions. The ALMwas trained with the same
stimuli and criteria using the ratio-response rule. The initial weights
were set to reproduce the identity relation, y = x, before experiencing
the training function.

Figure 11.4 shows the human results obtained from Naylor & Clark
(1968) and Figure 11.5shows the simulation results from ALMwith prior
knowledge. Each figure shows the achievement index (the correlation
between the prediction and the criterion) plotted as a function oftraining
block. The top curve in each figure represents the positive linear
condition, and the bottom curve represents the negative linear condition.
Thus, the ALMwith adequate generalization, ratio-response rule, and
positive linear prior knowledge is sufficient for explaining Principles 1
and 2.

Principles3and4
Recall from the first simulation that even when there is no prior
knowledge, the ALMpredicts faster learning for linear as compared to
quadratic functions (see Table 11.1). It is fairly obvious that the use of
positive linear prior knowledge can only facilitate this advantage of



positive linear functions over quadratic functions. However, it is not
clear that this prior knowledge will produce any advantage for quadratic
functions over cyclicfunctions. Thus it is ofinterest to see to what eJctent
the ALMcan reproduce the differences between quadratic and cyclic
functions.

BYun(1995) examined positive linear, non-monotonic quadratic, and
cyclic functions as shown in Figure 11.6.The figure shows the criterion
plotted as a function of the stimulus magnitude, with a separate curve
for each training function. The ALMwas trained on the same stimulus
-criterion pairs for the same amount oftraining using the ratio-response
rule. The initial weights were set to reproduce the identity relation, y
= x, as in the previous simulation. The empirical results from Byun
(1995) are shown in Figure 11.7, and the simulation results are shown
in Figure 11.8. Each figure shows the MAEplotted as a function of
training block. As can be seen by comparing Figures 11.7 and 11.8, the
ALMreproduces the difficulty ordering: cyclic> non-monotonic> positive
linear.
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FIG. 11.4. Achievementindex(correlationbetweenpredictionandcriterion)plottedasa function
of training for the positive and negative linear functions. Data from Naylor & Clark (1968).

Principle5
So far, the ALMhas succeeded in reproducing the order of learning
difficulty for functions that are categorically different in form (e.g.
increasing versus decreasing, monotonic versus non-monotonic). A
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FIG.11.5. Achievementindex(correlationbetweenpredictionandcriterion)plottedasa function
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1968).

FIG.11.6. Criterionplottedasafunctionofstimulusmagnitudeforthepositivelinear,quadratic,
andcyclicfunctionsexaminedbyByun(1995).
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60
greater challenge is to see whether or not ALMcan reproduce the order
oflearning difficulty for functions that differ in more subtle quantitative
forms. Byun (1995) compared five different monotonically increasing
functions as shown in Figure 11.9:positive linear, negatively accelerated
power, positively accelerated power, logarithmic, and logistic. The
criterion is plotted as a function of the stimulus magnitude, with a
separate curve for each of the five functions. The order of learning
difficulty obtained from these five functions is shown in Figure 11.lOa:
logistic > logarithmic > positively accelerated power > negatively
accelerated power> positive linear.

When the version of ALMdescribed.in the previous two simulations
was applied to this data set, the model failed to reproduce the observed
order. The main reason was the choice of prior knowledge. In the
previous two simulations, the initial weights were set to reproduce the
simple positive linear relation, y = x. This is a rather crude
approximation, but it worked well enough for the categorically different
functions that were examined in the previous simulations. However, to
capture the subtle differences among the functions shown in Figure 11.9,
it is necessary to select the initial weights more carefully. A better
selection for the initial weights is to use a proportional prior-knowledge
assumption, i.e. the minimum cue value is initially mapped ontO the
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FIG. 11.7. Mean absolute error plotted as a function of training block separately for the positive

linear, quadratic, and cyclic functions. Data from Byun (1995).
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FIG.11.9. Criterionplottedasafunctionofstimulusmagnitudefortheposnivelinear(PL),
negativelyacceleratedpower(NP),positivelyacceleratedpower(PP),logarithmic(LN),and
logistic(LG)functionsexaminedby Byun(1995).
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- overestimating concave and underestimating convex. This is because
ofthe fact that the generalization gradient of the ALMcauses the model
to produce an interpolated prediction.

Principles 6 and 7
As illustrated in the three previous simulations, prior knowledge is
directly built into the model by the selection of the initial weights. Many
so called "neutral" cover stories and cue labels tend to evoke initial
weights that conform to the positive linear prior-knowledge assumption.
However, cover stories and cuelabels can beconstructed that evokequite
different initial expectations or initial weights. For example, if subjects
are asked to learn a relation between x =sedative amount and z = patient
activity, then this would tend to evoke a negative linear set of initial
weights, such as for example, wiD) = 1 if i = oj, and zero otherwise. In

...

FIG.11.10. Meanabsoluteerrorproducedbyeachtypeof function.Panela onleftis datafrom
Byun(1995).Panelb onrightisdatafromALMsimulation.PL= positivelinear,NP= negatively
acceleratedpower,PP= positivelyacceleratedpower,LN= logarithmic,LG= logistic.

minimum criterion value, the maximum cue value is initially mapped
onto the maximum criterion value, and intermediate stimuli are initially
mapped proportionally as follows:
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[y - min (z))I[max (z) -min (z) ) = [x-min(x)) I[max(x) - min(x)) (11.17)

The ALMwith this proportional prior knowledge assumption
reproduces the observed order as shown in Figure 11.10b.

It is informative to examine the reasons why the logarithmic and
logistic functions are so difficult to learn compared to the other functions.
Figure 11.11 shows the mean predictions (averaged across subjects) as
a function of stimulus magnitude produced by the human learners in
comparison with the training function, as reported in Byun (1995). As
can be seen in the figure, the logarithmic and logistic functions contain
more curvature. The human learners underestimate concave (negatively
accelerated) sections of these functions, and overestimate convex
(positively accelerated) sections of the function. Figures 11.12a and
11.12b shows the predictions produced by ALMin comparison with the
training function, for the logarithmic and logistic functions. As can be
seen in Figures 11.12a and b, ALMproduces the same pattern of errors
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FIG.11.11. Meanofsubjects'predictionsplottedas afunctionofstimulusmagnitudeforthe
logarithmic(topleft), negativelyacceleratedpower(topright),positivelyacceleratedpower
(bottomleft),andforthelogisticfunction(bottomright).Thetrainingfunctioncriterionvaluesare
alsoplottedineachfigure.
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mechanism in the model designed to produce such effects. Thus it is
quite interesting to see whether or not the ALMcan account for the
improvement in learning produced by systematic sequences.

Delosh (1995) investigated the order of learning difficulty produced
by negative linear as compared to non-monotonic quadratic functions.
In addition, he examined the effects of training with systematic versus
random stimulus training sequences. The basic results were that
negative linear functions were easier to learn than quadratic functions,
and furthermore systematic sequences produced better performance
than random sequences. The ALMwas trained on the same stimulus
magnitudes and training sequences as.used by Delosh (1995), using the
response-ratio rule and the positive linear prior-knowledge assumption.
The MAEfor each type of function and training sequence produced by
the simulation are shown in Table 11.2.As can be seen in the table, the
ALMyields better performance with negative linear as compared to
quadratic functions, and also there is an advantage produced bytraining
ALMwith systematic as compared to random sequences.

The systematic training advantage for ALMis a generally important
demonstration. One might not expect that artificial neural networks
would be influenced by the organization of the training sequence.
Indeed, the advantage of systematic over random training sequences
has heretofore been assumed to implicate a hypothesis testing process
of function learning. It is now clear that training sequence effects can
emerge as well from associative learning processes.
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FIG. 11.12a Predictionsof AlMplotted as a function of stimulus magnitude for the logarithmic
functions.

FIG. 11.12b PredictionsofAlMplottedasa functionofstimulusmagnnudeforthelogisticfunction.

Principles9and10
A number of theorists (Carrol 1963, Brehmer 1974) have argued that
the strongest evidence favo:uring rule-based models over associative-
learning models is obtained by examining extrapolation performance.
Abstract rules provide systematic guidelines for extrapolating beyond
experience, whereas simple associations between stimuli and criteria
experienced during training provide no mechanism for extrapolation
outside the range of experience (Delosh et al. 1996). This criticism may
not apply to ALMbecause it allows for generalization on both the stimulus
and criteria continua, thus it is of interest to see the extent to which
ALMcan account for interpolation and extrapolation performance.

this case, the learning curves shown in Figure 11.5would be produced,
except that the top curve would now represent the negative linear
training condition (congruent with the prior knowledge). TABLE11.2

Meanabsoluteerror producedby ALMfor eachconditionof Delosh(1995)

Principle8
The effect of systematic as compared to random training sequences
provides a very strong challenge to the ALMbecause there is no specific

Function Form

Negative Linear
Quadratic

Random Sequence

0.033

0.044

Systematic Sequence

0.028

0.031
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Deloet al. (1996) trained subjects on the middle range of stimulus
magnites for linear, exponential, and non-monotonic quadratic
functioJFollowing this training, they later tested subjects on new
interpoion test stimuli (new values inside the training range), and
new ex\>olationtest stimuli (new values outside the training range).
The ALt'as trained on the same stimulus magnitudes and training
trials ased by Delosh et al. (1996), using the ratio response rule, and
using hal weights that reproduced the simple identity relation (y =
x). Figu11.13 shows MAEplotted as a function of training produced
by the han subjects, and Figure 11.14 shows the corresponding plot
producey the ALM. Once again, the ALM reproduced the observed order
oflearru difficulty (quadratic> exponential> positive linear).

Figur11.15 and 11.16 illustrate the predictions of the ALMfor the
positive ear training condition. Note that at this point, the predictions
are basen the ratio-response rule. Figure 11.15 shows what happens
when theneralization gradient is too tight (e.g. (1= 0.01),and Figure
11.16 iltrates the results for a wider generalization gradient
e.g. (1=6). The top straight line in both figures represents the linear
:rainingClction(z =.3 + 2.2'x, using the normalized stimulus scale).
['he bott.straight line in both figures represents the prior knowledge
dentityation (y =x). The jagged line in Figure 11.15 represents the
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FIG. 11.15. Predictions produced by ALMplotted as a function of stimulus magn~ude for the linear

function using a tight generalization gradient.
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2.8

CONCLUSIONS
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The purpose of this chapter was to begin building a bridge between
theoretical work on category learning and function learning. Category
learning and function learning appear to be closely related, and it seems
useful to determine the extent to which it is possible to formulate a
common theoretical explanation for both domains of research. 'lbwards
this aim, an artificial neural network model originally developed for
category learning was extended to make it applicable to function
learning. The most important extension was the addition of a linear
interpolation-extrapolation response Tule. With this extension, the
model represents a hybrid or integrated approach to associative and
rule-based models. Prior knowledge and learning are represented by
simple associations, but rules are evoked during test to construct a
sophisticated response from simple associations.

Several important ideas were discovered from this theoretical
endeavour. First, artificial neural network models need to carefully
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FIG. 11.16. Predictionsproduced by ALMplotted as a function of stimulus magnitude for the lin-
ear function using a wider generalizationgradient.

Human Y$. Function (8xp)
,..

predictions generated by ALM with no generalization. The training
stimulus values produce the predictions by ALMthat peak and intersect
with the training function criterion values. The sudden drops above and
below each peak indicate a failure of the ALMto interpolate when there
is no generalization. The smooth curve in Figure 11.16 represents the
predictions of ALMwith generalization. Now ALMproduces appropriate
interpolation responses, but it still fails to extrapolate appropriately in
the extreme lower and upper transfer test regions - here the predictions
of ALMfall back toward the prior knowledge identity function.

In summary, if a ratio-response rule is employed along with a
sufficiently wide generalization gradient, then ALMcan interpolate but
it cannot extrapolate. Thus the criticism of associative learning models
by rule-based theorists appears to be partly right. But not entirely,
because ALM can be salvaged by adding the linear interpolation-
extrapolation response rule. Figure 11.17 illustrates the extrapolation
performance by humans in the left panel, and by EXAMin the rig4t panel
for the exponential function condition. Figure 11.18 shows the
corresponding results produced by a polynomial rule-based model
(Equation 11.1). As can be seen in these figures, the extended version
of ALM(called EXAM)provides a better account of the pattern of human
extrapolation than the rule-based models (see Delosh et al. 1996, for
more details).
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Model vs. Funchon (exp)

common set of model parameters that reproduced all ten principles.
(This does not imply that the predictions are insensitive to parameters;
on the contrary, the predictions vary dramatically as a function of the
generalization gradients.) We conclude that the model provides an
excellent starting point for generating simple and parsimonious
reproductions ofthe basic facts from both category and function learning.
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faster learning than a model trained with randomly-ordered stimulus
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