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The purpose of this article is to investigate the learning and memory processes
involved in decision making under uncertainty. In two different experiments,
subjects were given a choice between a certain alternative that produced a single
known payoff and an uncertain alternative that produced a normal distribution
of payoffs. Initially this distribution was unknown, and in the first experiment it
was learned through feedback from past decisions, whereas in the second
experiment it was learned by observing sample outcomes. In the first experiment,
a response deadline was used to limit the amount of time available for making a
decision. In the second experiment, an observation cost was used to limit the
number of samples that could be purchased. The mean and variance of the
uncertain alternative and the value of the certain alternative were factorially
manipulated to study their joint effects on choice probability, choice response
time (Experiment 1), and number of observations purchased (Experiment 2).
Algebraic-deterministic theories developed for decision making with simple gambles
fail to explain the present results. Two new models are developed and tested—
fixed- and sequential-sampling models—that attempt to describe the learning and
memory processes involved in decision making under uncertainty.

Decision theorists often find it useful to
distinguish three classes of situations—deci-
sions made under conditions of certainty,
risk, or uncertainty (cf. Luce & Raiffa, 1957,
p. 13). Under certainty, each action produces
a single (perhaps multidimensional) known
outcome. For example, deciding which pair
of jeans to buy is a decision under certainty
because you can see what you are buying.
Under risk, each action produces a set of
possible outcomes, and the probability of
each outcome is known. State lotteries or
gambling games are classic examples of risky
decisions, because the probabilities of the
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outcomes can be calculated. Under conditions
of uncertainty, each action again produces a
set of possible outcomes, but the probability
of each outcome is unknown. For example,
deciding to talk with a stranger is an uncertain
decision because you have no way to predict
how the person will react.

More generally, different decision situations
can be ordered in terms of degree of uncer-
tainty (see Luce & Raiffa, 1957, p. 299). One
can only speculate about the frequency of
real-life situations along this ordering, but
one guess is that most decisions are made
under partial uncertainty, that is, a decision
situation somewhere between risk and com-
plete uncertainty. For example, the decision
to build a nuclear energy plant will not be
made under complete ignorance, but neither
will it be made with perfect knowledge of the
probabilities of all outcomes.

One way to make decisions under uncer-
tainty is to base it on past experience with
similar situations. For example, suppose that
a particular patient has a long history of
adverse reactions to different treatments for
a serious medical problem. The patient's
family physician would have to rely on this
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past history to decide how to treat a new
emergency call.

Another way to make decisions under un-
certainty is to collect new information about
the outcomes produced by an action before
making a commitment. For example, before
a new drug is introduced on the market, a
sequence of tests are performed to determine
its effectiveness.

Early in the history of behavioral decision
theory (see Lee, 1971), researchers actively
investigated decision making under both risk
and uncertainty. Investigations of risky deci-
sion making typically used simple gambles
of the form "win 10 dollars with probability
.3 or nothing." Investigations of decision
making under uncertainty typically used a
probability learning task in which the prob-
ability of each payoff was initially unknown
and had to be learned through trial by trial
feedback.

Different theories were developed by re-
searchers studying decisions under risk and
uncertainty. Deterministic-algebraic theories
such as Edwards's (1962) subjective expected
utility theory were developed to describe de-
cision making under risk. Stimulus sampling
theories such as Myers and Atkinson's (1964)
weak-strong conditioning model were devel-
oped to describe decision making under un-
certainty.

Recently, Lopes (1983, p. 138) has argued
that "after 30 years or more of research on
risk, we know a lot about how people make
decisions about simple lotteries, but we know
remarkably little about decision under uncer-
tainty, possibly because we have not had a
good laboratory model of uncertainty." Ap-
parently, this opinion reflects a disenchant-
ment with stimulus-response conditioning
theories and a lack of development of cogni-
tive theories of decision making under uncer-
tainty.

The purpose of this article is to investigate
the cognitive processes involved in decision
making under partial uncertainty. Two ex-
periments are reported. In the first experi-
ment, a probability learning task was used to
investigate how memory of past outcomes
influences new decisions. In the second ex-
periment, an information purchasing task
was used to investigate how new information
influences decisions.

Experiment 1

On each trial of Experiment 1, subjects
were given a choice between a certain alter-
native and an uncertain alternative. If the
certain alternative was chosen, then a known
monetary payoff was delivered. If the uncer-
tain alternative was chosen, then the monetary
payoff was randomly selected from a normal
distribution with a mean equal to zero. The
uncertain alternative was labeled X on some
trials and Y on the remaining trials. When
the X cue was presented, the payoff was
sampled from a distribution with a small
standard deviation. When the Y cue was
presented, the payoff was sampled from a
distribution with a large standard deviation.
Initially, subjects did not know the distribu-
tion of outcomes produced by the cues X
and Y. However, following each choice sub-
jects were given feedback indicating the payoff
that would have been received if the uncertain
alternative was chosen. Choice responses had
to be made within a deadline time limit in
order to avoid a severe penalty. A factorial
design was constructed by manipulating the
variance of the uncertain payoffs (denoted
ff2), the value of the certain payoff (denoted
k\ and the deadline time limit (denoted L).

In the next section, two decision-making
models are developed. The first is a probabi-
listic extension of the algebraic-deterministic
models developed within the risky decision-
making paradigm. The second is a probabi-
listic model based on the idea of memory
retrieval.

Simple Scalability Models

Suppose subjects kept track of the long
run average utility produced by the cues X
and Y. Then after several hundred trials their
estimates would converge on the mean or
expected utility. If they simply compared the
expected utility of the uncertain alternative
with the utility of the certain alternative, then
the choice process would be deterministic;
for a given condition the same alternative
would always be chosen. In order to introduce
random variation into the choice process,
one could hypothesize that the comparison
of alternatives is perturbed by factors ran-
domly varying across trials such as the indi-
vidual's fluctuating state of wealth, randomly
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occurring patterns of wins and losses, or
lapses of attention. Given these random dis-
turbances, this model asserts that the proba-
bility of choosing the uncertain alternative is
an increasing function of the difference be-
tween the expected utility of the uncertain
alternative and the utility of the certain alter-
native. Becker, Degroot, and Marschak
(1963a) proposed this model of choice.

The model just mentioned is one example
of a general class called "simple scalability
models," which were originally developed as
probabilistic extensions of deterministic-al-
gebraic models. (See section 7.1 of Luce &
Suppes, 1965). According to simple scalability
models, each alternative produces an inde-
pendent utility scale value symbolized as
M(UA) for the uncertain alternative, and u{k)
for the certain alternative. In general, u(VA)
is determined by the probability distribution
associated with the cue X or Y, and u(k) is
determined solely by the utility of k. Simple
scalability models state that the probability
of choosing the uncertain alternative is given
by />(UA) = F[u(VA), u(k)], where F is a
strictly increasing function of w(UA) and a
strictly decreasing function of u{k).

The Becker et al. (1963a) model is a special
case that states that ^(UA) = F[u(VA) -
u(k)], where w(UA) was denned as the mean
utility of the uncertain alternative. Other
versions are possible by assuming that M(UA)
is also determined by the variance, or various
percentiles of the distribution for the uncer-
tain alternative.

Predictions, There is one general property
that all special cases of simple scalability
obey: independence between alternatives (cf.
Tversky & Russo, 1969). The direction of the
effect of manipulating the distribution for the
uncertain alternative should be the same for
all values of the certain alternative. For ex-
ample, the pattern of results illustrated in
both Figures la and lb conform to the
independence between alternatives property.
In both figures, the *probability of choosing
the uncertain alternative is plotted as a func-
tion of the certain value, denoted k. (k is
plotted from positive to negative so that the
curves increase from left to right.) Each line
represents a different distribution for the
uncertain alternative, one with low variance
and another with high variance. Figure la

represents an uncertainty seeking type of
individual—increasing the variance increases
the tendency to choose the uncertain alter-
native for all k. Figure lb represents an
uncertainty averse type of individual—in-
creasing the variance decreases the tendency
to choose the uncertain alternative for all k.

The a X k crossover interaction shown in
Figure lc violates the independence between
alternatives property (see Busemeyer, 1982,
Appendix A). Contrary to independence, in-
creasing the variance either increases or de-
creases P(UA) depending on the certain value,
k. However, caution is needed because an
unambiguous test of the independence prop-
erty requires an analysis of individual perfor-
mance. To see why, suppose we average across
the uncertainty seekers illustrated in Figure
la and the uncertainty avoiders illustrated in
Figure lb. Although neither type of individual
produces a crossover pattern, the average
shown in Figure lc artificially produces the
crossover. The present study provides a test
of independence at the individual level of
analysis.

Fixed-Sample Model

According to the fixed-sample model, the
decision process for each choice trial begins
by retrieving a fixed number of recent traces
from memory. Each memory trace is a record
of the numeric value of a past outcome
associated with the cue X or Y presented on
the current trial. The number of traces re-
trieved from memory is limited by the dead-
line time limit. The utilities of the retrieved
outcomes are averaged, and this moving av-
erage is compared with the utility of the
certain alternative. Only if the sample mean
is greater will the uncertain alternative be
chosen.

Choice probability. The probability of
choosing the uncertain alternative, denoted
.P(UA), is an increasing function of the ratio
[fi(u) — u(k)]/<j(u)y where u denotes the sample
mean, fi(u) is the population mean utility of
the uncertain payoffs, u(k) is the utility of
the certain payoff, and cr̂ (w) is the variance
of the sample mean.

Figure 2 illustrates the distribution of the
sample mean under the low- and high-vari-
ance conditions. The three vertical lines in-
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dicate u(k) when the certain value is negative
(k < 0), zero (k = 0), and positive (k > 0).
.P(UA) is represented as the area above each
vertical line.

Figure 2 illustrates the effect that variance
has on choice probability. When k is positive,
the area above the vertical line is greater
under the high variance curve. When A: is
negative, the area above the vertical line is

o*= low
— - a = high

0
1

0
1

1b

— 1C

K>0 K<0
Figure 1. Fictitious results indicating different possible
patterns of the uncertain alternative variance (a2) by
certain value (k) interaction. [/'(UA) equals the probability
of choosing the uncertain alternative.]

greater under the low variance curve. In sum,
the direction of the eifect of variance on
P(\JA) depends on the sign of the certain
value, producing a crossover interaction sim-
ilar to that shown in Figure 1c. Thus the
fixed-sample model asserts that the indepen-
dence between alternatives property should
be violated for individual subjects.

This crossover interaction can be derived
mathematically as follows. Define n as the
number of recalled outcomes (i.e., the sample
size of u), and let <r2(w) be the variance of
the utility of the uncertain payoifs. Then the
variance of the sample mean equals ^(u) =
a*(u)fn. In the present study, the mean of the
uncertain payoffs was always zero so that the
mean difference [M(W) - u(k)] was determined
by -u(k). Given these assumptions, P(\JA)
is an increasing function of the product
iri[-u{k)fu{u)]. Note that P(UA) increases as
k decreases from positive to negative values,
and that the slope is determined by the
variance. Low variance produces sharp dis-
crimination of the mean difference, yielding
a steep slope. High variance produces poor
discrimination yielding a flatter slope.

Now consider the effect of increasing the
time limit, L. This allows an increase in the
number of recalled outcomes, «, which then
magnifies all of the slopes shown in Figure
lc. When k is positive, then increasing the
time limit increases the probability of cor-
rectly1 choosing the certain alternative. When
k is negative, then increasing the time limit
increases the probability of correctly choosing
the uncertain alternative. More concisely, ac-
curacy always increases as the deadline time
limit increases.

Choice response time. According to the
fixed-sample model, increasing the number
of outcomes recalled, n, increases the number
of operations required to compute the sample
mean. As a consequence, the time required
to estimate the sample mean and ultimately
make a choice response is an increasing func-
tion of the sample size. However, increasing
the sample size also increases the probability
of choosing the correct alternative. In sum, a

1 For this binary choice task, the term correct alternative
is a label for the alternative producing the larger expected
utility. The term accuracy is equivalent to the probability
of choosing the correct alternative.
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basic property of the fixed-sample model is
the speed-accuracy trade-off, that is, faster
responses to the short deadline time limit
yield lower accuracy (cf. Swensson & Thomas,
1974).

Method

Subjects. Six psychology students (4 seniors and 2
graduate students, 2 males and 4 females) from the
University of Illinois-Champaign volunteered to partic-
ipate for 15 1-hr daily sessions. Subjects were paid
according to their performance, and they earned an
average of $3.25 per session.

Apparatus. Each subject was tested individually in a
quiet room. The experiment was computer controlled,
stimuli were presented on a video terminal driven by an
Apple microcomputer, and response times were recorded
in milliseconds using a Mountain Hardware clock.

Design and procedure. Monetary payoffs for the
uncertain alternative were generated according to a normal
distribution with a mean of zero, and a standard deviation
of 5 or 50 units (in units of $.01) depending on the
stimulus condition. The payoff for the certain alternative
equaled either - 3 , 0, or +3 units, and the deadline time
limit was either 1, 2, or 3 s. The variance of the uncertain
alternative, the payoff values for the certain alternative,
and the time limit conditions were combined according
to a 2 X 3 X 3 factorial design. Failure to beat the
deadline on any trial produced a loss equal to 25 units.
Pilot research indicated that a simple reaction time
required .25 s.

The protocol for a typical trial is illustrated as follows:

Deadline = 1 s

(.5-s delay)

Ready

(,5-s delay, then screen clears)

Choose X or - 3

(response timing begins)
(subject types a response and selects the certain alternative)
(response timing ends)

X = -45 on this trial
Your pay equals - 3 on this trial

(subject initiates new trial by typing the return key)
(screen clears)

As the display illustrates, each trial started with a message
indicating the deadline requirement, after a delay the
screen cleared, and then the choice stimulus was presented.
In the display, X is the cue for the uncertain alternative
and the certain value equals —3. The low- or high-
variance condition was indicated by the cues X or Y,
where X signaled the high variance and Y the low
variance for half the subjects, and the reverse pairing was
used for the other half. Feedback followed each response,
which indicated both the payoff that would have been
received if uncertain alternative was chosen (e.g., X =
-45), and the actual payoff received based on the selected
alternative (e.g., —3, because the certain alternative was
chosen in the example).

The actual distributions associated with the cues X
and Y were strictly stationary and independently distrib-
uted across trials. However, subjects were given no prior
information about the payoffs produced by each cue.
After the experiment, many subjects remarked that the
means seemed to vary across sessions in an unsystematic
fashion. In fact, the sample means did vary across
sessions, even though the population means were always
zero.

Each subject received six blocks per session. The
deadline requirement was constant within a block of 60
trials, and varied across blocks in a counterbalanced
order. The values of a and k were selected at random
with equal probabilities for any given trial. The spatial
position of the alternatives remained constant within a
given session, but alternated from left to right across
sessions.

Initially, subjects were told that their final pay would
be determined by their accumulated wins and losses
across all sessions. Because it was possible under the
high-variance condition to win or lose a dollar on each

f(U)

k=o loo
Figure 2. Illustration of the effect of uncertain alternative variance (a2) on the probability of choosing the
uncertain alternative, according to the fixed-sample model.
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trial, there was considerable incentive to perform well.
They were not told their accumulated wins until the end
of the experiment. However, after the experiment was
concluded, they were paid their cumulative wins and
losses, and they were also given a bonus for completing
the experiment.

After completing the experiment, subjects were asked
to provide preference j udgments for each of the six choice
pairs produced by combining the two uncertainty cues,
X and Y, with the three certain values, k. The preference
scale was a 10 cm line anchored at the teft, center, and
right with the labels "uncertain alternative is 10 units
better," "equal," or "certain alternative is 10 units better."
Subjects placed a tick mark anywhere along the scale to
indicate the direction and strength of preference. Subjects
were also asked to construct separate relative frequency
histograms for each of the uncertainty cues X and Y
using five categories of their own choosing.

Results

Choice probability.2 The proportion of
trials that the uncertain alternative was cho-
sen, denoted />(UA), was estimated for each
subject by pooling across Sessions 3 to 15.
The first two sessions were treated as practice,
and there were no significant training effects
following the first two sessions.

Figure 3 is a plot of P(XJA) averaged across
subjects, as a function of the certain value,
/c, with a separate curve for each level of
variance, cr2, and a separate panel for each
time limit, L. The expected total number of
choice responses per data point in Figure 3
equals 1,560.

First consider the a X k interaction which
is illustrated within each panel of Figure 3.
This is precisely the interaction predicted by
the fixed-sample model, and it directly con-
tradicts the independence between alternatives
property implied by the simple scalability
models. All 6 subjects produced this crossover
pattern, and so the crossover shown in Figure
3 is not the result of averaging across different
types of subjects. A repeated measures anal-
ysis of variance (ANOVA) indicated that the
a X k interaction was significant, F(2, 10) =
14.98, p < .001.

Next consider the effect of the time limit,
L, on the a X k interaction. This three-way
interaction can be seen by comparing the
slopes across panels in Figure 3. Recall that
the fixed-sample model asserts that increasing
the time limit should increase all slopes.
Contrary to this prediction, increasing the
time limit actually decreased the slope for

the high-variance condition, although the
slope for the low-variance condition increased
as predicted. The three-way interaction pat-
tern shown in Figure 3 was statistically sig-
nificant, F(4, 20) - 8.3, p < .001, and this
pattern was consistent across all 6 subjects.

Table 1 illustrates the effects of the deadline
time limit and variance on accuracy. The
observed proportion correct within each cell
of Table 1 was calculated by averaging P(VA)
when k was negative, with 1 - P(UA) when
k was positive. The table shows that under
the low-variance condition, accuracy consis-
tently increased as the time limit increased.
But under the high-variance condition, ac-
curacy consistently decreased as the time
limit increased.

Judged preference. Figure 4 is a plot of
the mean preference as a function of the
certain value, k, with a different curve for
each level of variance, a2. Negative scale
values indicate increasingly stronger prefer-
ences favoring the certain alternative, whereas
positive scale values indicate increasingly
stronger preferences favoring the uncertain
alternative. Figure 4 is a replication of the
a X k interaction shown in Figure 3, but
based on a single judged preference from
each subject rather than a proportion pooled
across several hundred choice trials. All 6
subjects produced the crossover interaction
indicated by Figure 4, and the <r X k inter-
action effect was statistically significant, F{2,
10) = 10.72, MSe = 22.35, p < .01.

Mean choice response time.3 Mean choice
response times (CRT) for each subject were
obtained by averaging the latencies across
Sessions 3 to 15. Figure 5 is a plot of these
latencies in seconds averaged across subjects,
as a function of the sure thing value, k, with
a separate curve for each level of variance,
<r2, and a separate panel for each deadline
time limit, L. Note that CRT represents the
latencies pooled across both responses.

Recall that the fixed-sample model asserts
that mean choice response time is an increas-

2 The analysis of variance was computed on the arcsine
transformed proportions in order to achieve homogeneous
variance.

3 The analysis of variance was computed on choice
speed (the reciprocal of the latencies) in order to achieve
homogeneous variance.
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1 i . Probability of choosing the uncertain alternative, [#(UA)] plotted as a function of the certain
value (k), with a different curve for each level of variance (<^) and a different panel for each level of
deadline time limit (L).

ing function of sample size, n, and sample
size increases with the time limit, L. Figure
5 clearly supports this expectation, and the
effect is statistically significant, F{2, 10) =
44.9, p < .001.

The fixed-sample model also asserts that a
speed-accuracy trade-off relation should al-
ways occur when the deadline time limit is
increased, i.e., faster responses to the short
deadlines should produce lower accuracy.
Note that this speed-accuracy trade off rela-
tion failed to occur under the high-variance
condition—faster responses produced greater
accuracy when performance to the short and
long time limits are compared. The predicted
speed-accuracy trade-off relation was con-
firmed for the low-variance condition.

Table i
Proportion Correct* for Each Combination of
Deadline Time Limit and Variance Condition

Variance condition

a = 5
a= 50

1

.885

.676

Deadline time limit

2

.920

.633

3

.937

.593

* Proportion correct for each cell was calculated by av-
eraging P(UA) when k = - 3 , with 1 - f{VA) when
k = +3. Each cell is based on approximately 3,120 ob-
servations.

Another interesting finding in Figure 5 is
that mean choice time increased as the certain
value, k, decreased from positive to negative.
Both the main effect of the certain value and
the Certain Value X Time Limit interaction
effect were statistically significant, F\2, 10) =
9 3 1 , p < ,01; F(4, 20) - 5.19, p < .05. None
of the effects due to the variance manipulation
produced statistically significant effects on
mean choice response time.

+3 0 - 3
K

Figure 4. Mean preference rating plotted as a function
of certain value with a different curve for each level of
variance. (Negative ratings indicate preference for the
certain alternative, and positive ratings indicate preference
for the uncertain alternative.)
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Figure 5. Mean choice response time (CRT) in seconds plotted as a function of the certain value (fe), with
a different curve for each level of variance {(P) and a different panel for each level of deadline time
limit (L).

Judged cumulative probabilities. The are shown in Figure 6, and they are compared
judged cumulative probabilities averaged with the cumulative normal distribution. If
across subjects for each variance condition the judged distributions were perfectly accu-

normal
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Figure 6. Mean judged cumulative distributions for the iow- and. high-variance conditions, as compared
with the normal distribution.
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rate, then all three curves would coincide.
The means of the judged distributions equal
.185 and —3.36 for the low- and high-variance
conditions, which in standard units equals
.037 and -.067, respectively. The standard
deviations of the judged distributions equal
7.36 and 67.58 for the low- and high-variance
conditions, respectively.

Discussion

Summary of major results. Probability of
choosing the uncertain alternative increased
as the certain value decreased, and the mag-
nitude of this effect was inversely related to
the variance, producing a a X k crossover
interaction (see Figure 3). This effect was
replicated with judged preference (see Figure
4). Increasing the time limit increased accu-
racy under the low-variance condition, but it
decreased accuracy under the high-variance
condition (see Table 1).

Mean choice response time also increased
as the certain value decreased (see Figure 5).
Increasing the deadline time limit produced
a large increase in mean response time. Vari-
ance did not have a reliable effect on mean
response time.

The finding that accuracy decreased as the
time limit increased under the high-variance
condition may have important practical im-
plications. Sensitivity to the safe alternative
seems higher under short deadlines. Appar-
ently, when discrimination is very poor, ad-
ditional time to think about the choice de-
creases sensitivity to the sure thing, and ac-
curacy suffers.

Relation to prior research. An earlier study
by Myers, Suydam, and Gambino (1965)
reported a a X f c interaction similar to that
shown in Figure lc. However, they used a
between subjects design, and only reported
averages across subjects. Thus their results
could have been artificially produced by av-
eraging across uncertainty seekers and uncer-
tainty avoiders, as shown in Figures la and
1 b. The present study resolved this difficulty
by demonstrating that the choice proportions
and single preference judgments of individuals
produced the crossover interaction pattern.

The decrease in accuracy with increased
time limit for the high-variance condition
was a surprising result. However, it is inter-
esting to note that a similar finding occurred

in an earlier study by Irwin, Smith, and
Mayfield (1956), although they did not em-
phasize this result in their report. Subjects in
that study were asked to decide whether the
mean of a deck of cards was less than or
greater than zero, based on sample sizes of
10 or 20 cards. Their results indicated that
when discriminability was low (because of a
small mean difference and a large variance
as in the present study), accuracy in detecting
positive mean differences decreased with in-
creased sample size. Together the results of
the present study and Irwin et al. suggest that
this finding is reliable and robust across tasks.

A possible difference between decision
making under risk versus partial uncertainty
is illustrated by comparing the present results
with an earlier study by Ben Zur and Breznitz
(1981). Subjects in the latter study were re-
quired to choose between two gambles within
a deadline time limit. Each gamble produced
one of two possible outcomes, and the prob-
ability of each outcome was displayed upon
a request from the subject. The two gambles
within a pair had equal expected values, but
the variance differed. Ben Zur and Breznitz
reported a decrease in the probability of
choosing the high variance gamble within a
pair as the time limit decreased from 32
to 8 s.

The present study did not replicate this
effect. In order to compare the present results
with those reported by Ben Zur and Breznitz
(1981), the expected value of the alternatives
must be equated, which is true only for the
condition with k = 0. As can be seen in
Figure 3 for k = 0, P(UA) remained at .5
across all deadline conditions.

Ben Zur and Breznitz (1981) concluded
that their results were caused by increased
attention to the displayed loss probability
under the short time limit. In the present
study, outcome probabilities were not dis-
played, and subjects had to rely on recall of
past outcomes. Apparently, the tendency to
recall negative or positive outcomes was not
differentially influenced by the deadline time
limit.

Simple scalability models. Deterministic-
algebraic models of risky decision making
(e.g., subjective expected utility theory) cannot
be used to describe the quantitative aspects
of choice probability without making addi-
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tional assumptions. The most natural way to
extend these models is the class of probabi-
listic models called simple scalability models.
Simple scalability models continue to be pop-
ular among applied researchers (business,
marketing, and consumer behavior) because
each choice alternative can be assigned a
single scale value independent of other alter-
natives, which can easily be estimated by
commonly available scaling programs.

Despite the popularity of these models,
there are strong reasons for rejecting this
entire class as a representation of decision
making under certainty, risk, or uncertainty.
Tversky (1972) has shown that this class is
inadequate for describing decision under cer-
tainty because the similarity between the
outcomes produced by each alternative
strongly influences choice. Becker, DeGroot,
and Marschak (1963b) have shown that this
class is inadequate for describing choice under
risk because the known correlation among
outcomes produced by each alternative influ-
ences choice. Finally, the present study has
shown that this class is inadequate for de-
scribing choice under uncertainty because the
variance of the difference among outcomes
produced by each alternative influences
choice. In all three cases, independence be-
tween alternatives was violated, which is a
fundamental property of simple scalability
models.

Fixed-sample model. Violations of the
independence property are evidenced by the
crossover interactions within each panel of
Figure 3. This crossover interaction can easily
be explained by a memory retrieval model.
Presumably, subjects base their decision on a
sample of recalled outcomes, and compare
this sample mean (rather than a population
mean) with the certain value. The variability
of this difference influences discriminability
similar to a signal detection task. Formally,
the variance of the sample mean difference
divides the mean utility of both alternatives,
which causes them to be interlocked rather
than independent.

Of course there are other possible expla-
nations for the Uncertain Variance X Certain
Value crossover interaction. The expected
loss ratio model (Fishburn, 1976; Myers et
al., 1965) and the weak-strong conditioning
model (Myers & Atkinson, 1964) are possi-

bilities. However, both of these models are
inadequate for different reasons. The expected
loss ratio model provides no explanation for
the dynamics of the underlying decision pro-
cess, and cannot explain the systematic effects
of deadline and sure thing value on choice
response time. Although the weak-strong
conditioning model does provide a mecha-
nism for describing mean choice response
time, it does not provide any mechanism for
explaining the effects of information process-
ing variables such as the deadline time limit.
The fixed-sample model generates predictions
for choice probability and response time as a
function of deadline time limit, but it occa-
sionally makes incorrect predictions.

A basic property of the fixed-sample model
is the predicted speed-accuracy trade-off re-
lation—increasing the time limit increases
the number of recalled outcomes (i.e., the
sample size), which then causes an increase
in mean response time and accuracy. Al-
though the predicted speed-accuracy trade-
off was obtained under the low-variance con-
dition, it was violated under the high-variance
condition.

One could argue that sample size does not
necessarily increase with the time limit, in-
stead the time limit simply increases the
mean time to execute each of the operations
involved in computing the sample mean and
the comparison with the sure thing value.
However, this explanation does not save the
fixed-sample model. In order to explain the
speed-accuracy trade-off effect obtained under
the low variance, it would be necessary to
assume that slower mean execution times
produce fewer computational errors. But the
reduction of computational errors should also
occur for the high-variance condition.

Another problem for the fixed-sample
model is the fact that mean choice time was
slower for negative than for positive certain
values. This could be explained by assuming
that subjects waited for the choice stimulus
to appear, and then selected a larger sample
size (i.e., recalled more past outcomes) when
the certain value was negative. This implies
that the factors influencing the choice of
sample size are more complicated than orig-
inally assumed.

Correlated bias. One way to revise the
fixed-sample model is to assume that subjects
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choose the uncertain alternative only if the
sample mean difference, « — u(k), is greater
than some bias factor, b. This bias factor may
be positively correlated with the certain value
so that b > 0 when h > 0, and b < 0 when
k < 0. Without any further assumptions the
predictions remain unchanged, but if the bias
is assumed to decrease in magnitude towards
zero as the deadline time limit increases,
then the fixed-sample model can explain the
pattern of results in Table 1.

Briefly, the accuracy obtained under the
high-variance condition may be entirely due
to the correlated bias because discriminability
is so very poor. As the deadline increases and
the bias decreases in magnitude, then accuracy
would decrease for the high-variance condi-
tion. This does not happen under the low-
variance condition because discriminability
is very high, and the increase in discrimina-
bility produced by the increased sample size
dominates the effect of the decrease in bias.

One problem with this explanation is the
ad hoc assumption that the bias decreases in
magnitude with increasing time limit. During
the introduction to Experiment 2, a sequen-
tial-sampling model is proposed which pro-
vides an explanation for the decreasing mag-
nitude of the bias.

Conclusion. The results of Experiment
1 indicate that the deterministic-algebraic
models used to describe decision making
under risk with known outcome probabilities
cannot be directly applied to decision making
under uncertainty with outcomes learned
from past experience. The reason is that
when individuals rely on past experience,
they do not assign a utility scale value inde-
pendently to each alternative and compare
these values. Instead, it seems that they com-
pare the estimated value of each alternative,
and these estimates are based on a small
number of outcomes retrieved from memory.
Because of the probabilistic nature of the
memory retrieval process, the estimated value
of each alternative fluctuates from one deci-
sion to the next. This variability influences
discriminability which in turn influences
choice behavior.

Experiment 2

The second experiment used an informa-
tion purchasing task to investigate decision

making under uncertainty. Subjects were
asked to choose between an uncertain alter-
native and a certain alternative. The payoff
for the uncertain alternative was generated
by randomly selecting a lottery ticket from a
fictitious urn, and the values of the tickets in
the urn were normally distributed. Prior to
each choice trial, a new urn was randomly
selected, so the population mean and variance
of the urn was initially unknown. Information
about this distribution was learned by a
sequence of requests for sample observations.
On each request, the computer sampled a
ticket from the urn, displayed the value of
the ticket, and then returned the ticket to the
urn. Although an unlimited number of ob-
servations could be requested, each one cost
a fixed amount. In sum, a single choice trial
consisted of a sequence of sample observa-
tions, followed by a terminal choice of either
the certain or the uncertain alternative.

One can think of the present task as a
discrimination problem—the subject has to
determine on the basis of sample observations
whether the mean of the uncertain alternative
is greater or less than the certain value. From
this perspective, the present task is similar to
the "expanded judgment" task investigated
by Irwin and Smith (1956; 1957).

The second experiment was designed to
determine whether or not the decreased ac-
curacy with increased sample size found in
Experiment 1 (see Table 1) could be replicated
by manipulating observation cost rather than
a deadline time limit. A four-way factorial
design was constructed by manipulating the
mean of the uncertain alternative, denoted
n(x)> the variance of the uncertain alternative,
denoted (^(x), the certain value, denoted /c,
and the cost of purchasing observations, de-
noted C.

Two decision-making models are described
next—a fixed-sample model similar to that
described in Experiment 1, and a sequential-
sampling model. The sequential-sampling
model is worth considering for three reasons.
One is that under certain ideal conditions, it
is the optimal strategy for minimizing ex-
pected losses (see Edwards, 1965). The second
is that sequential-sampling models are useful
for describing psychophysical discrimination
(see Laming, 1968; Link & Heath, 1975;
Stone, 1960; Vickers, 1979). The third is that
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sequential-sampling models have been applied
to decision making under certainty by As-
chenbrenner, Albert, and Schmalhofer (1984),
to decision making under risk by Petrusic
and Jamieson (1978), and to decision making
under uncertainty by Busemeyer (1982). The
model developed by Busemeyer (1982) was
restricted to binary outcomes, whereas the
present development can be applied to either
discrete or continuous outcome distributions.

Fixed-Sample Model

One possible decision strategy is to first
decide how many observations to buy, and
then choose the uncertain alternative only if
the average of the sample is greater than the
certain value. This is an inefficient strategy
for the information purchasing task. Unlike,
Experiment 1, there is no limit on the number
of observations that can be purchased, and
the number purchased can vary depending
on the informativeness of the sample. For
example, suppose the subject decides to pur-
chase only a small number of observations,
and the difference between the sample mean
and the certain value is very small. In this
case, the sample is uninformative, and it may
be worthwhile to continue sampling. Now
suppose the subject decides to purchase a
large number of observations, but discovers
after the first few observations that the sample
mean is much larger than the certain value.
In this case, the small sample is very infor-
mative, and it may not be worthwhile to
continue sampling costly observations.

There is a simple way to test whether or
not subjects are using a fixed-sample strategy.
If the sample size is selected before any
observations are purchased, then the actual
number purchased should be independent of
the mean and the variance of the uncertain
alternative distribution. This is because the
distribution properties of the uncertain alter-
native will not be known when the sample
size is selected.

Sequential-Sampling Model

According to the sequential-sampling model,
each observation produces an increment in
preference. This increment is denned as the
difference between the utility of the observed
value sampled from the uncertain alternative

and the utility of the certain value. Positive
increments increase preference for the uncer-
tain alternative, and negative increments in-
crease preference for the certain alternative.
If the first increment is insufficient to evoke
a choice response, then another observation
is purchased, and a new increment is pro-
duced. The new increment is added to the
previous increment to produce a new cu-
mulative preference. This accumulation of
increments continues until a positive criterion
is exceeded, evoking the choice of the uncer-
tain alternative, or until a negative criterion
is exceeded, evoking the choice of the certain
alternative.

The criterion are selected by the subject
prior to sampling. Three factors are assumed
to influence the selection of criterion bounds.
The first factor is an individuals attitude
toward uncertainty. If the subject tends to
avoid uncertainty, then the magnitude of the
certain alternative bound will be smaller than
the uncertain alternative bound. The opposite
relation holds if the subject tends to approach
uncertainty. The second factor is information
available before sampling begins. For example,
knowledge of the certain value may influence
the magnitudes of each bound. The third
factor is the observation cost. Under high
cost, the bounds must be close to zero so
that very few observations are purchased; but
under the low cost, the boundaries can be
farther apart, allowing a stronger preference
to accumulate before making a final decision.

A mathematical model of this process is
illustrated in Figure 7. Sequential sampling
produces a sequence of utilities where w(l) is
the utility of the first sample, u(j) is the
utility of the / h sample, and u(N) is the
utility of the last sample before making a
final decision. A comparison of the/h sample
with the utility of the certain alternative
produces an increment, d(j) = [u(j) - u(k)].
The cumulative preference after the first sam-
ple is d{\\ and the cumulative preference
after j + 1 samples equals D(j + 1) = D(j)
+ d(j + 1). For example, in Figure 7, d{i) is
the increment and £>(3) - D(2) + d(3) is the
cumulative preference following the third
sample. The solid line in Figure 7 is a sample
path of the cumulative preference for a single
choice trial. The dotted line in Figure 7
represents the mean of the cumulative pref-
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Figure 7. The sample path of the cumulative preference
for the sequential-sampling model.

erence averaged across trials under identical
stimulus conditions.

The mean of the increments, symbolized
as ii{d), equals [ti(u) - u{k)], where M(W) is
the mean utility of the uncertain alternative.
In Figure 7, the mean increment is repre-
sented by the negative slope of the dotted
line, indicating that for this example the
mean of the uncertain alternative is less than
the certain value. As can be seen in the
figure, the mean increment determines the
direction and rate of the sample path. The
variance of the increments is simply equal to
the variance of the utility of the uncertain
alternative, c*{u\ because u(k) is a constant.

The criterion for choosing the uncertain
alternative is symbolized as a and the criterion
for choosing the certain alternative is sym-
bolized as —/3. The bounds are drawn as the
upper- and lower-horizontal lines in Figure
7. For example, Figure 7 indicates that the
cumulative preference eventually exceeded
the criterion for the certain alternative after
observing iV = 12 samples.

Choice probability. Probability of choosing
the uncertain alternative, P(UA), is deter-
mined by the probability that the cumulative
preference exceeds the uncertain criterion
before the certain criterion. Although the
hypothesized decision process is very simple,
the behavioral properties that it produces are
quite complex. The derivation of /*(UA) is
given in Appendix A, and only the qualitative
properties are described here.

Choice probability is a function of three
parameters—a measure of discriminability

(0), a measure of response bias (5), and a
measure of the distance between the bounds
{A). More specifically, the distance between
bounds is the sum of the criterion magnitudes,
A = (a + /?). Increasing the distance between
bounds increases the average strength of pref-
erence required to reach a decision.

The discriminability parameter 0 is deter-
mined by the distribution of the increments
d(j). If the increments are normally distrib-
uted, then 8 = 2fi(d)/a2(u\ that is, 0 is pro-
portional to the mean increment divided by
the variance of the increments.

The parameter 5 is called the relative bias,
and it is defined by the ratio 8 = (0 — a)/A.
In other words, it reflects the difference be-
tween the magnitude of the certain bound
and the magnitude of the uncertain bound,
relative to the total distance between the
bounds. When 8 = +1 , the uncertain alter-
native is always chosen; when 6 = 0, then the
initial preference is midway between the
bounds; and when b = —1, the certain alter-
native is always chosen. It is important to
note that a constant absolute bias, (/? - a),
will have a smaller effect on the relative bias
if the total distance between the bounds, A,
is increased.

First consider the predictions when the
bias is assumed to equal zero. Under these
conditions, P(UA) is an increasing function
of the product A[n(d)/a2(u)]. Thus, P(\JA)
increases as the mean increment increases
from negative to positive. The slope of this
function decreases as the variance increases.
Finally, all slopes increase as the observation
cost decreases due to the increase in in the
total distance, A. In sum, accuracy (see Foot-
note 1) always increases as the observation
cost decreases. Note that these predictions
are similar to those generated by the fixed-
sample model (with no bias) described in
Experiment 1.

Now relax the assumption that the bias is
fixed at zero. Suppose that subjects adjust
the certain criterion magnitude, & depending
on the certain value, fc, producing a correlated
bias. More specifically, assume that the certain
bound equals (/? - bk) where bk is positive
when k > 0, bk is zero when k = 0, and bk

is negative when k < 0. In other words,
subjects have an initial tendency to favor the
certain alternative when the certain value is
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positive, and they have an initial tendency to
disfavor the certain alternative when the cer-
tain value is negative.

In this case, accuracy may decrease as the
observation cost decreases for the following
reason. When the variance is very high, then
discriminability is near zero, and the cumu-
lative preference wanders without any sys-
tematic direction. Despite the fact that dis-
criminability is low, accuracy may be high
due to the correlated bias. Under the high-
cost condition, the correct criterion bound is
close to the starting point, and the cumulative
preference is very likely to hit the correct
bound before wandering off in a random
direction. However, under the low-cost con-
dition, the criterion bounds are far apart, and
the correlated bias has very little effect. The
cumulative preference has ample opportunity
to wander off randomly before hitting either
the correct or the incorrect criterion bound.

Note that these predictions are similar to
the fixed-sample model with correlated bias
described in the discussion of Experiment 1.
However, the sequential-sampling model pro-
vides a simple explanation for the decreasing
effectiveness of the correlated bias as the
sample size increases. The decreased effec-
tiveness is due to the property that choice
probability is a function of the relative bias,
&k = UP ~ h) -a]/[a + (fi - bk)l It is as-
sumed that a and fi increase as the observa-
tion cost decreases, but bk remains constant.
As a and $ increase, the average sample size
increases, and 5* converges towards a single
value independent of bk.

If the correlated bias hypothesis is the
correct explanation for the decreased accuracy
with increased sample size observed in Ex-
periment 1 (see Table 1), then this result
should only occur when the certain value is
manipulated. It should not occur if the certain
value is fixed at zero. This suggests that two
different patterns of results should occur in
Experiment 2, depending on whether the
mean of the uncertain alternative or the
certain value is manipulated. If the uncertain
alternative mean is fixed at zero as in Exper-
iment 1, then the same pattern of results
shown in Table I should occur in Experiment
2, with the time limit variable replaced by
observation cost. However, if the certain value
is fixed at zero, then a different pattern

should occur. Decreasing the observation cost
should always increase accuracy under both
variance conditions.

Number of samples purchased. The pre-
dictions for the mean number of samples
purchased, denoted E{N), are derived in Ap-
pendix A, and only the qualitative properties
are discussed here. Intuitively, E(N) is deter-
mined by the average value of the final
cumulative preference divided by the mean
increment. (This is analogous to a measure
of the distance traveled divided by rate of
travel.)

If the relative bias is zero, and discrimi-
nability is held constant, then E(N) is an
increasing function of the total distance, A,
When the relative bias is zero, and all factors
other than the mean increment are held
constant, then E(N) is a decreasing function
of the magnitude of the mean increment.
When the mean increment is zero, and all
factors other than the relative bias are held
constant, then E(N) is a decreasing function
of the magnitude of the relative bias. Finally,
a large increase in the variance reduces E(N)
if the total distance, relative bias, and mean
increment are held constant. Note that these
predictions contrast sharply with those of the
fixed-sample model.

Method

Subjects, Six psychology students (5 graduate and I
senior, I male and 5 females) from Indiana University-
Purdue University at Indianapolis volunteered to partic-
ipate for 1 practice and 10 experimental 1-hr daily
sessions. Subjects were paid according to their perfor-
mance, and they earned an average of $3.75 per session.
Five students verbally expressed interest throughout the
experiment. One subject (S4) became a little discouraged
midway due to initially low performance, but she com-
pleted the entire experiment.

Apparatus, Same as Experiment 1.
Design and procedure. The uncertain alternative gen-

erated monetary payoffs (in units of $.02) according to
a normal distribution with a mean of +10, 0, or - 1 0
and a standard deviation of 10 or 20 depending on the
condition. The certain alternative was set equal to - 5 , 0,
or +5, and the cost of sampling each observation from
the computer equaled 0 or 2 units depending on the
condition. Factorial combination of the uncertain alter-
native mean, uncertain alternative variance, certain value,
and observation cost produced 3 X 2 X 3 X 2 = 36
conditions, and all 36 conditions were presented in a
new random order within each block of 36 trials. Each
session consisted of three such blocks.
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The protocol for a typical trial is illustrated below:

1. Stimulus:

Lottery Batch #2176
Observation Cost = 2 Certain Value = 5

Make Your Choice

2. Subject requests a sample observation by typing
a " I . "

3. Screen clears.
4. Stimulus:

Lottery Ticket #51328 Was Worth
Value = 23

5. Delay .5 s
6. Screen clears
7. Program returns to line 1

(This cycle continues until a final choice is made.)
8. Subject requests a terminal choice by typing a "2"

or "3 ."
9. Screen clears

10. Subject initiates a new trial by pushing the return
key.

As the display illustrates, each trial began with the
random selection of an urn or batch of lottery tickets,
indicated by a new random number (e.g., #2176). The
observation cost (e.g., C = 2) and the certain value (e.g.,
k = 5) were also indicated at the start of each trial. If
the subject requested an observation from the computer
(by typing the number 1), then the computer randomly
selected a new lottery ticket (e.g., # 51328) and printed
the value of the ticket (e.g., Value = 23). After a .5-s
delay, the screen cleared, and the subject was again faced
with the original choice problem, but now having more
information about the uncertain alternative. This infor-
mation request cycle continued until the subject eventually
selected a terminal choice, the certain alternative (typing
the number 2), or the uncertain alternative (typing the
number 3). Following a terminal choice, a new trial was
initiated.4

Subjects were told that their pay would equal the
accumulated wins and losses produced by their terminal
choices minus the cost of sampling observations. Subjects
were never shown the payoffs produced by the terminal
choice on each trial. Instead they were shown the total
accumulated pay after each block of trials. This procedure
was used to prevent trial by trial sequential effects due
to runs of large wins or losses.

At the beginning of the experiment, subjects were
informed (using a graphical display) that the distribution
of lottery tickets was normal, but the mean and standard
deviation of the distribution would be randomly selected
for each choice trial from independent uniform distri-
butions. They were told that the mean could range from
-100 to 100, and the standard deviation could range
from 1 to 50. This instruction was used to introduce a
great deal of uncertainty. During a postexperimental
interview, subjects indicated that the mean did appear to
follow a uniform distribution. Also during this interview,
subjects were asked to construct a relative frequency
histogram based on their overall experience across all 10
sessions, using the same method as described in Experi-
ment 1. In general the subjective histograms closely
approximated the shape of the normal distribution.

Results

After the first practice session, there were
no interactions with training, and the respon-
ses were averaged across the 10 experimental
sessions. Although there were individual dif-
ferences (noted later), averages across individ-
uals provided an accurate representation of
the qualitative pattern produced by the ma-
jority of subjects. Figures 8a and 9a (described
in detail later) provide a graphical illustration
of the pattern of results for the two perfor-
mance measures—proportion of trials that
the uncertain alternative was chosen (denoted
Z^UA) in Figure 8a), average number of
observations purchased on each trial (denoted
N in Figure 9a). Each mean is based on 180
observations. Figures 8b and 9b illustrate the
predictions generated by the sequential-sam-
pling model. A detailed theoretical analysis
of the results is presented in the discussion
section.

Choice probability.5 Figure 8a (top) pre-
sents the observed P(UA) as a function of
the programmed mean difference [/*(*) - k],
produced by each of nine combinations of
uncertain alternative mean, fi(x)> and certain

4 Subjects were also asked to provide confidence ratings
following each terminal decision, but these results will
not be reported in detail. In general, confidence ratings
decreased as the observation cost increased. Holding cost
constant, confidence ratings decreased as the number
purchased increased. However, the rate of decrease in
confidence with increased number purchased was smaller
for the high-cost condition.

5 The analysis of variance was computed on the arcsine
transformed proportions. Il should be noted that the
ideal method for evaluating the sequential-sampling model
would be to consider the response probability conditioned
on the cumulative preference. However, there are two
problems with this approach. First, this method requires
estimating the sample path of the cumulative preference,
D(j), (see the solid line in Figure 7). Although the exact
sequence of numeric values which determine the sample
path can be recorded, the sample path underlying the
decision process is unobservable. The second problem is
that it would be impractical to estimate the probabilities
conditioned on each possible sequence of numeric values.
This method would be feasable if the outcomes were
generated by a discrete (e.g., binary) rather than contin-
uous (e.g., normal) distribution because this would reduce
the number of outcome sequences to a small number.
Because the purpose of Experiment 2 was to replicate
and extend Experiment 1, the normal distribution was
used.
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Table 2
Probability of Choosing the Uncertain Alternative for Conditions With a Programmed
Mean Difference of+5 or - 5

C = 2

M*) - A]

c = o

Observed

.22

.16

.60

.37

Predicted

.26

.18

.61

.44

Observed

.11

.17

.65

.79

Predicted

.11

.20

.64

.79

- 1 0
0

0
+ 10

c
+5

-5
+5

—5
- 5

+5
+5

Note. Each choice proportion was obtained by averaging .F(UA) across the low- and high-variance conditions. Predictions
were derived from the sequential-sampling model.

value, k. The panels on the left and right
display the responses under the high- (C =
2) and low- (C = 0) observation cost condi-
tions, respectively. The solid and open dots
indicate the choice proportions for the low-
and high-variance conditions, respectively.
Three major patterns are apparent in Fig-
ure 8a:

1. The most obvious feature of Figure 8a
is the jagged sawtooth pattern obtained under
the high-cost condition (C = 2), and the
smooth ogival pattern, obtained under the
low-cost condition (C = 0). Under the high-
cost condition, a decrease in P(UA) occurred
whenever the certain value changed from k -
-5 to k = +5 (see the dashed lines for C =
2). Under the low-cost condition, an increase
in P(UA) occurred whenever the certain value
changed from k = - 5 to k = +5 (see the
dashed lines for C = 0).

Four of the 6 subjects produced the saw-
tooth pattern under the high cost and the
ogival pattern under the low cost. Of the 2
that failed to show this pattern, 1 subject (S2)
produced sawtooth patterns, and the other
subject (S4) produced ogival patterns under
both cost conditions. A repeated measures
ANOVA indicated a statistically significant Un-
certain Alternative Mean X Certain Value X
Observation Cost interaction, F(4, 20) =
4.05, p < .05.

Table 2 analyzes this interaction effect in
more detail. It presents P(UA) for four dif-
ferent combinations of v(x) and k, averaged
across variance conditions. The first two
combinations result in a constant mean dif-
ference equal to [n(x) - k] = -5, and the
last two combinations result in a constant

mean difference equal to [tt(x) — k] = +5.
The first pair of columns indicate the exper-
imental conditions, the next pair of columns
indicate the probabilities obtained under the
high-cost condition, and the last pair of col-
umns indicate the probabilities obtained un-
der the low-cost condition. Note that changing
from k = —5 to k = +5 decreased P(UA)
under the high cost, but this same manipu-
lation increased P(UA) under the low cost.
The results in Table 2 suggest that the certain
value is more effective under the high cost,
and the uncertain alternative mean is more
effective under the low-cost condition.

2. A Variance X Mean Difference interac-
tion occurred under both cost conditions.
This can be seen by comparing the curve
under the low-variance condition (solid dots)
with the curve under the high-variance con-
dition (open dots) within each panel of Figure
8a. Note that for both cost conditions, the
high-variance curve ties above when the mean
difference is negative, but the low-variance
curve lies above when the mean difference is
positive. This interaction is similar to the a X
k crossover interaction observed in Experi-
ment 1. Theoretically, this interaction was
due to a reduction in discriminability under
the high-variance condition. All 6 subjects
produced this crossover pattern, and the effect
was statistically significant.

3. Table 3 provides a detailed analysis of
the effects that observation cost had on ac-
curacy. First consider the top part of Table
3, which only involves conditions with the
uncertain alternative mean equal to zero, as
in Experiment 1. Each of the four Variance X
Observation Cost cells contain the proportion
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of correct responses calculated by averaging
P(UA) when k = - 5 , with 1 - P(UA) when
k = +5.

The results presented in the top half of
Table 3 replicate the pattern of results from
Experiment 1. Accuracy increased as the
observation cost decreased under the low-
variance condition (.75 vs. .82). Accuracy
decreased as the observation cost decreased
under the high-variance condition (.69 vs. .66).

Next consider the bottom half of Table 3,
which only involves conditions with the cer-
tain value equal to zero. The proportion
correct within each cell was obtained by
averaging the ^(UA) when n(x) = +10, with
1 - P(UA) when n(x) = - 10 . As can be seen
in the bottom half of Table 3, accuracy
increased as the observation cost decreased
for both the low- and the high-variance con-
ditions.

The results shown in Table 3 agree with
the predictions of the correlated bias hypoth-
esis proposed in the discussion of Experiment
1 and the introduction to Experiment 2. A
more detailed analysis is given in the discus-
sion.

Table 3
Proportion of Correct Responses for Each
Combination of Variance and Observation
Cost Condition

Variance
condition

a = 10
observed
predicted

a - 2 0
observed
predicted

a = 10
observed
predicted

a = 20
observed
predicted

C = 2

n{x) = 0

.75

.75

.69

.67

k = 0

.80

.79

.71

.71

C = 0

.82

.80

.66

.63

.98

.98

.85

.84

Note. The proportion within each cell of the top table was
calculated by averaging ^UA) given n(x) - 0 and k = - 3
with [1 - .F(UA)] given /i(*) = 0 and fc = +3. The pro-
portion with each cell of the bottom table was calculated
by averaging P(\JA) given k = 0 and p(x) - +10 with
[1 - f(UA)] given k - 0 and p(x) = -10 . Predictions
were derived from the sequential-sampling model.

Four subjects produced the same pattern
of results as shown in top half of Table 3,
and all 6 produced the pattern shown in the
bottom half of Table 3. Two subjects (S2 and
S4 again) failed to produce the pattern in top
half of Table 3. For both of these subjects,
accuracy consistently increased as observation
cost decreased under both variance condi-
tions.

Number of samples purchased. Figure 9a
(top) presents the observed TV as a function
of the programmed mean difference, \jx(x) —
k]. The pair of curves located on the top half
of the figure represent the results for the low-
cost condition, and the pair of curves located
on the bottom half of the figure represent the
results for the high-cost condition. The lines
connected by the solid and open dots repre-
sent the low- and high-variance conditions,
respectively. Two major patterns are apparent
in Figure 9a:

1. The most salient feature of Figure 9a is
the difference in the functions relating N to
the mean difference for the low- and high-
cost conditions. When the cost was high, N
was primarily determined by the certain
value, and N increased as certain value de-
creased from +5 to —5. Five of the 6 subjects
produced this pattern of results for the high-
cost condition (S4 produced an inverted U).
A repeated measures ANOVA performed on
the high cost data produced a significant
main effect due to the certain value, F(2,
10) = 4.6, MSe= 1.951, p< . 01.

The effect of the certain value on N under
the high-cost condition is similar to the mean
choice time results from Experiment 1 under
the short (L = 1) deadline. This result suggests
that the criterion bounds were more extended
when the certain value was negative.

2. Under the low-cost condition, N gener-
ally followed an inverted U-shape function of
the mean difference as predicted by the se-
quential-sampling model. The inverted U
shape was much flatter under the high vari-
ance as compared to low-variance condition.
All 6 subjects produced the inverted U-shape
pattern shown in Figure 9a. A repeated mea-
sures ANOVA performed on the low cost data
produced a significant Uncertain Alternative
Mean X Uncertain Alternative Variance X
Certain Value interaction effect, F(4, 20) =
5.26, MSe - 1.4125, p < 01.
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Recall that the fixed-sample model pre-
dicted no effect of the uncertain alternative
mean and variance on the number sampled.
Contrary to this prediction, the mean and
variance had an effect on the number pur-
chased for all 6 subjects.

Discussion

Summary of major results. Probability of
choosing the uncertain alternative was an
increasing function of the difference between
the uncertain alternative mean and the certain
value (see Figure 8). Under the high-obser-
vation cost condition the shape of this func-
tion was sawtooth, suggesting that the certain
value had a much stronger effect on choice
than the uncertain alternative mean when
sampling was severely restricted. Under the
low-cost condition, the shape of this function
was smooth and ogival, suggesting that the
uncertain alternative mean had a much
stronger eifect on choice than the certain
value when sampling was unrestricted.

The slope of the function relating the mean
difference to choice probability was much
steeper under the low- as compared with the
high-variance condition. This produced a
Variance X Mean Difference interaction, ex-
tending the a X k interaction reported in
Experiment 1. Theoretically, discriminability
was reduced by increasing the variance.

On the one hand, when the uncertain
alternative mean was fixed at zero, then de-
creasing the observation cost increased ac-
curacy under the low variance, but decreased
accuracy under the high variance, replicating
the pattern obtained in Experiment 1 (com-
pare Table 1 and the top half of Table 3). On
the other hand, when the certain value was
fixed at zero, then decreasing the observation
cost always increased accuracy under both
low- and high-variance conditions (see the
bottom half of Table 3). Both patterns (Table
3) were exactly in accord with the predictions
of the correlated bias hypothesis.

Under the high-cost condition, the mean
number of observations purchased increased
as the certain value decreased, similar to the
choice, response time results of Experiment
1. Under the low-cost condition, the number
purchased was an inverted U-shape function
of the mean difference. The inverted U-shape

function was flatter under the high- as com-
pared with the low-variance condition (see
Figure 9). The strong influence of the uncer-
tain alternative mean and variance on the
number purchased rules out the fixed-sample
model.

Relation to prior research. Irwin and
Smith (1956, 1957) investigated the effects of
mean and variance on number of observations
required to determine whether the mean of
a deck of cards was positive or negative.
Similar to the present results, they found that
the number of observations requested was an
inverted U-shape function of the card deck
mean. Unlike the present results, they found
that increasing the variance always increased
the number of observations required to reach
a decision independent of the mean of the
deck.

There are several differences between the
present study and those of Irwin and Smith
(1956, 1957). This includes the form of the
stimulus distribution, selection of mean and
variance parameters, amount of training,
payoff procedure, task instructions, and sub-
ject populations. Further research is needed
to isolate the particular cause for the different
results.

Theoretical analysis. One may question
whether or not the sequential-sampling model
can explain the complicated pattern of results
observed in Experiment 2. To answer this
question, it was necessary to obtain quanti-
tative fits. The major assumptions used to fit
the model are described in the next few
paragraphs, and the details are given in Ap-
pendix A. In brief, eight parameters were
required to fit the 36 observed choice pro-
portions in Figure 8. These same eight pa-
rameters were then used to generate predic-
tions for the number of observations pur-
chased shown in Figure 9. The predictions
for number purchased were adjusted by fitting
a slope and intercept parameter separately
for each observation cost condition. The fitted
results are shown in Tables 4 and 5 and
Figures 8b and 9b. The first four columns of
Tables 4 and 5 indicate the experimental
condition, the next two columns indicate the
derived parameters,6 and the last two pairs

6 Only eight parameters were fit to the data. The
derived parameters were calculated from these eight. The
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Table 4
Observed P(UA) and Predicted P(UA) Probabilities of Choosing the Uncertain Alternative,
Observed N and Predicted N Number of Observations Purchased

c
0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

Experimental condition

•W

10
10
10

10
10
10

10
10
10

20
20
20

20
20
20

20
20
20

*W

- 1 0
- 1 0
- 1 0

0
0
0

+ 10
+ 10
+ 10

- 1 0
- 1 0
- 1 0

0
0
0

+ 10
+ 10
+ 10

1

k

+5
0

- 5

+5
0

- 5

+5
0

- 5

+5
0

—5

+5
0
«

+5
0

- 5

Derived
parameters

AB

-9 .6
-7.2
-4.8

-2.4
0
2.4

4.8
7.2
9.6

-3.02
-2.26
-1.52

-.76
0

.76

1.52
2.26
3.02

b

-.3
-.3
-.3

-.3
-.3
-.3

-.3
-.3
-.3

.3
-.3
-.3

-.3
-.3
-.3

.3
-.3
-.3

f(UA)

.02

.01

.05

.11

.39

.74

.87

.96

.98

.06

.09

.17

.23

.40

.56

.71

.79

.86

Observed and

f\UA)

.001

.004

.02

.11

.38

.72

.90

.97

.99

.06

.11

.19

.29

.42

.56

.69

.79

.86

predicted values

N

8.3
10.0
12.5

12.9
14.3
16.3

14.6
11.6
11.5

9.2
10.8
12.1

12.9
13.8
12.8

13.5
12.4
13.1

N

9.9
10.6
11.9

14.1
16.1
15.7

13.8
12.3
11.2

10.8
11.3
11.8

12.2
12.5
12.5

12.3
11.9
11.5

Note. Predictions were derived from the sequential-sampling model. Global fit index R2 = .996 for P0JA) and .708
for N; Global fit index RMS = .022 for P(VA) and 1.02 for N.

of columns present the observed and predicted
values. Included in the note for Table 4 are
the two global fit indices for each performance
measure—R2 is the percentage of variance
predicted by the model, and RMS is the root
mean square error.

The first question is how does the model
explain the interaction shown in Table 2?
According to the correlated bias hypothesis,
subjects select a larger or smaller certain
criterion magnitude depending on the certain
value. This bias has a very strong effect oh
choice probability under the high-cost con-
ditions, because the criterion bounds are
close to the starting point of the cumulative
preference. Thus the results shown under the

derived parameter AS represents the discriminability
times the total distance between the bounds, and 5 is the
relative bias. The measures A and 8 are not presented
separately because they are not uniquely identified, but
the product is uniquely identified. See Appendix A for
more details.

C = 2 column of Table 2 were due to the
strong influence of the correlated bias.

Under the low-cost condition, subjects
maintain a correlated bias, but they also
increase the total distance between the bounds
to allow stronger preferences to accumulate
before reaching a decision. As noted earlier,
a large increase in the total distance practically
eliminates the effect of the correlated bias.
This analysis implies that the cell differences
under column C = 0 in Table 2 should have
been in the same direction as those found
under column C = 2, but reduced nearly to
zero in magnitude. On the contrary, the
observed differences in each cell under the
column C = 0 are in the opposite direction.

The results in Table 2 suggest that the
certain value was less effective than the un-
certain alternative mean for determining
choice under the low observation cost con-
dition. One reason may be that subjects oc-
casionally forget to subtract the utility of
certain value during preference accumulation,
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particularly after a large number of observa-
tions. Define p as the probability that the
subject forgets to subtract the utility of the
certain value when computing the increment
d(j). Then the mean increment equals ft(d) =
[fi(u) — (1 — p)u(k)]. For simplicity, assume
that the utility function is linear, so that the
mean increment can be expressed as fi(d) =
Mx)-(\~p)k], where pt(x) is the pro-
grammed mean for the uncertain alternative,
and k is the certain value. Setting p = 0 for
the high observation cost and setting p = (1/
3) for the low observation cost produces the
mean increments shown on the abcissa of
Figure 8b. Note that the mean increments,
fi(d), are in perfect rank order agreement
with the observed choice probabilities for the
low observation cost condition in Figure 8.

The second question is how does the model
explain the crossover interaction between the
mean difference and the variance shown in
Figure 8? This is easily explained as the result
of a reduction in the discriminability param-

eter, 6, which is the ratio of the mean incre-
ment divided by the variance of the incre-
ment. In other words, preferences bounce up
and down haphazardly under large variances,
but they cumulate systematically in the cor-
rect direction under small variances.

The third question is how does the model
explain the interaction shown in Table 3.
First consider the top half of Table 3 with
the uncertain alternative mean equal to zero.
In this case, the correct decision depends on
the sign of the certain value. By adjusting the
certain criterion magnitude according to the
certain value, accuracy can be improved.
However, this improvement is largely elimi-
nated when the total distance between bounds
is large. Thus, decreasing the observation cost
has two opposing effects. On the one hand,
it reduces the effect of the correlated bias
which reduces accuracy and, on the other
hand, it increases the average sample size
which increases accuracy. When the variance
is large and discrimination is very poor, the

Table 5
Observed P(UA) and Predicted f*(UA) Probabilities of Choosing the Uncertain Alternative,
Observed N and Predicted N Number of Observations Purchased

c
2
2
2

2
2
2

2
2
2

2
2
2

2
2
2

2
2
2

Experimental condition

•w
10
10
10

10
10
10

10
10
10

20
20
20

20
20
20

20
20
20

MW

-10
-10
-10

0
0
0

+ 10
+ 10
+ 10

-10
-10
-10

0
0
0

+ 10
+ 10
+ 10

k

+5
0

-5

+5
0

—5

+5
0

- 5

+5
0

-5

+5
0

-5

+5
0

-5

Derived
parameters

Ad

-2.66
-2.0
-1.32

-.88
0
1.32

.88
2.0
4.0

-1.42
-1.06

-.70

-.46
0

.70

.46
1.06
2.14

5

.94

.72

.3

.94

.72

.3

.94

.72

.3

.94

.72

.3

.94

.72

.3

.94

.72

.3

AUA

.02

.05

.16

.13

.32

.63

.42

.64

.89

.10

.16

.27

.19

.37

.57

.32

.57

.72

Observed and predicted values

) W A )

.03

.07

.21

.14

.31

.64

.44

.66

.91

.09

.16

.30

.22

.35

.57

.43

.58

.80

N

1.1
1.5
2.2 :

1.3
1.8
2.4 ;

1.4
1.9
2.3 ;

1.0
1.5
2.0

1.2
1.6
2.2

1.2
1.6
2.1

N

.1

.4

.5

.8
1.6

.7

.9
1.0

.2

.3

.9

.3

.5

.9

.2

.3

.9

Note. Predictions were derived from the sequential-sampling model. Global fit index R2 = .977 for P(UA) and .808
for N\ Global fit index RMS = .0375 for P(UA) and .188 for N,
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correlated bias has a larger effect on accuracy
than does the increased sample size. The
opposite is true when the variance is small.
This explains the crossover interaction in the
top half of Table 3.

Next consider the bottom half of Table 3,
with the certain value fixed at zero. In this
case the bias does not vary, and only the
distance between bounds changes as the ob-
servation cost decreases. Increasing the total
distance increases the average number of
samples purchased, and accuracy improves
for both variance conditions.

The last question is how does the model
explain the different pattern of results ob-
tained for the mean number purchased under
the low- and high-observation cost conditions
(see Figure 9)? Under the high cost, the
criterion magnitudes are very small and the
number purchased is largely determined by
the adjustment of the certain criterion mag-
nitude correlated with the certain value. Un-
der the low-cost conditions, the criterion
magnitudes are very large, and the mean
number purchased is largely determined by
the mean increment or average rate of move-
ment towards each criterion bound.

In sum, by comparing the predicted with
the observed patterns in Figures 8 and 9, and
Tables 2 and 3, it is clear that the model
provides a fairly complete description of the
qualitative pattern of results. Although there
are some minor quantitative deviations, these
do not appear severe enough to warrant
rejecting the model.

Individual differences. Four subjects pro-
duced the pattern of results illustrated in
Figure 8a. However, 2 subjects produced in-
consistent patterns—subject S2 produced saw
tooth patterns, whereas subject S4 produced
ogival patterns in both observation cost con-
ditions. The behavior of subject S4 can be
explained by assuming that this subject was
unbiased across all conditions. The behavior
of subject S2 is more difficult to explain.
Previously, it was assumed that the adjustment
of the certain criterion bound was constant,
whereas the relative bias, 6, varied across
observation cost conditions. One explanation
for the pattern produced by subject S2 is that
this subject maintained a constant relative
bias, 5, by allowing the adjustment of the
certain criterion magnitude to vary across

observation cost conditions. If the relative
bias remains constant across observation cost
conditions (as assumed for both S2 and S4),
then the model asserts that accuracy always
increases as the observation cost increases
because of the increased total distance. This
was exactly the pattern of results obtained
from subjects S2 and S4.

Conclusion. When individuals are given
the opportunity to learn the outcomes pro-
duced by an uncertain action, and the number
of observations are limited only by the cost
of sampling, then they tend to use a sequen-
tial- rather than a fixed-sample decision pro-
cess. According to the sequential-sampling
model, individuals continue sampling obser-
vations until their cumulative preference ex-
ceeds a criterion bound for one of the alter-
natives. The criterion boundaries are deter-
mined by individual attitudes towards
uncertainty, by prior information such as the
value of the certain alternative, and by the
observation cost. This model provided a fairly
complete explanation for the complex pattern
of results observed in the second experiment.

Several assumptions were required to ex-
plain the results. Most of the assumptions
are not new, but are similar to those com-
monly made by all sequential-sampling the-
ories of decision making (e.g., the effects of
mean and variance on discriminability, and
the effects of observation costs on the criterion
magnitudes). Two assumptions were new—
the correlated bias hypothesis was needed to
explain the fact that the certain value had a
stronger effect than the uncertain alternative
mean when sampling was severely limited,
and the forgetting hypothesis was needed to
explain the fact that the uncertain alternative
mean had a stronger effect than the certain
value when sampling was unlimited. A sim-
pler set of assumptions may be able to explain
part of the results, but it appears that both
the correlated bias and the forgetting hypoth-
esis are needed to explain the entire pattern
for both choice probability and number of
observations purchased.

General Discussion

This article began by making a distinction
between decision making under risk (perfect
knowledge of outcome probabilities) and de-
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cision making under uncertainty (outcomes
probabilities initially unknown and learned
through experience). Although the latter
problem seems more realistic, the majority
of past research has been concerned with
decision making under risk. Two experiments
were reported which investigated the cognitive
processes involved in decision making under
uncertainty—the first used a probability
learning task, and the second used an infor-
mation purchasing task. What has been
learned from these experiments? Three con-
clusions are discussed as follows:

First, two new empirical findings were
discovered. One finding was the crossover
interaction shown in Tables 1 and 3. Intu-
itively, one would expect that if a decision
maker has more time to decide, or observes
more sample outcomes, then the likelihood
of choosing the correct alternative (see Foot-
note 1) should increase. However, if the choice
is between a nonzero sure thing alternative,
and an alternative that produces a wide dis-
persion of outcomes centered at zero, then
the opposite tends to occur—the likelihood
of choosing the correct alternative decreases.

Another finding was the crossover interac-
tion shown in Table 2. If a decision must be
based on a small number of observations
sampled from an uncertain alternative, then
the value of a certain alternative is more
effective than the mean of the uncertain
outcomes for determining choice. The oppo-
site tends to be true when the decision is
based on a large number of observations.

The second conclusion is that many of
the algebraic-deterministic models developed
within the risky decision-making paradigm
cannot be applied to decision making under
uncertainty in any simple manner.7 These
theories typically assume that each alternative
is assigned a single scale value, such as a
subjective expected utility. Simple scalability
models are probabilistic versions of these
algebraic-deterministic models. In both of the
reported experiments, a fundamental property
of simple scalability, the independence be-
tween alternatives property, was violated by
all subjects.

The third conclusion is that decision mak-
ing under uncertainty involves learning and
memory processes when the outcome prob-
abilities are learned through experience. There

are two ways that an individual can decide
under uncertainty: one is to recall outcomes
of previous decisions under similar circum-
stances, and another is to observe new out-
comes sampled from the unknown distribu-
tion before making a final decision. In either
case, a fixed- or sequential-sampling strategy
could be used. If a fixed-sample strategy is
used, the number of past outcomes recalled
or the number of new outcomes observed is
determined first. Then a decision is made by
selecting the alternative producing the larger
average utility. If a sequential-sampling strat-
egy is used, the decision maker continues
recalling past outcomes or continues observing
new sample outcomes until a cumulative
preference exceeds a critical bound for one
of the alternatives. The cumulative preference
is formed by comparing the utilities of the
outcomes produced by each alternative, and
summing these individual comparisons.

What determines whether a fixed- or se-
quential-sampling strategy will be selected?
In the first experiment, the use of a deadline
time limit was likely to encourage a fixed-
sample strategy for the following reason. Pre-
sumably, subjects believe that the probability
of making the correct decision is increased
by recalling more past outcomes. Although
the number retrieved is limited by the dead-
line, no loss is produced by recalling as many
past outcomes as possible within this limit.
Thus the maximum number possible is re-
called. In the second experiment, the number
of observations that could be purchased was
unlimited, but each one cost a fixed amount.
This procedure would tend to encourage a
sequential-sampling strategy because the sub-
ject must simultaneously maximize accuracy
and minimize the number purchased. Thus
subjects will continue sampling if the cumu-
lative preference is weak in order to increase
accuracy, but they will stop sampling if the
cumulative preference is strong in order to
minimize the observation cost.

The results of Experiment 2 clearly indicate
that all subjects adopted a sequential-sampling
strategy. The results of Experiment 1 do not
provide a clear cut way to determine whether

7 One exception is the additive difference model (Tver-
sky, 1969) which is similar to the sequential-sampling
model.
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a fixed- or sequential-strategy was used. Both
models are capable of accounting for the
observed pattern of results if a correlated bias
is assumed.

In summary, the present research suggests
that more attention should be given to theories
of decision making that emphasize learning
and memory retrieval (e.g., the fixed- and
sequential-sampling models) rather than con-
centrating exclusively on deterministic-alge-
braic theories (e.g., subjective expected utility
models). There are a number of questions
about the nature of the decision processes
that remain to be answered. First, how are
preferences accumulated when a sequential-
sampling strategy is assumed? The present
analysis proposed one idea, but others are
possible such as the "accumulator" model
described by Vickers (1979). Second, what
factors influence the selection of criterion
bounds for the sequential-sampling strategy?
For example, suppose the observation costs
rapidly increased across samples rather than
remaining constant as in Experiment 2. Ac-
cording to the optimal model (Rapoport &
Burkheimer, 1971), the criterion bounds de-
crease in magnitude after each observation is
purchased as a consequence of rising obser-
vation costs. Finally, how could the model be
extended to more than two alternatives? Rat-
cliff (1978) has proposed one approach, but
there are several other possibilities. The an-
swer to these questions must await further
research on decision making under uncer-
tainty.
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Appendix A

The predictions generated by the sequential-
sampling model are based on the theory of random
walk stochastic processes (Cox & Miller, 1965,
chap. 2 & 3). There are two methods for deriving
these predictions, and both methods provide only
approximations. The first method requires one to
assume that the excess over the boundaries (see
the difference between D(12) and the lower bound
in Figure 7) is small relative to the criterion
magnitude, so that it can be ignored. This is not
a reasonable assumption for the present study
(because of the small mean number of samples
purchased in Experiment 2 under the high-cost
condition), so an alternative approximation method
was used. Stein & Rapoport (1978) recommended
using a finite state Markov chain to approximate
the continuous state Markov process of the random
walk D(j). This approach was realized by discre-
tizing the continuous interval [—fiy a] into m
equally spaced intervals, and constructing a tran-
sient state matrix that approximated the transition
densities f[D(j + l)\D(j)] = / K / ) ] for the normal
distribution. The theory for finite state Markov
chains with absorbing states (—oo, —0) and (a,
+oo) was then used to calculate P(UA) and E(N).

The width of each discrete state was defined as
w = (a + (3)/m. A set of m discrete preference
states was constructed from the original continuous
preference states by denning the discrete states as
D; = a — (i — .5)H>. The probability of a transition
from state D{ to state D} was set equal to Tu =
F[tt ~ j)w + -5w] — F[(i — j)w — ,5w], where F
is the cumulative normal distribution function
with mean n(d) and variance o2(u). Let T = [Ty]
represent the m X m transient state probability
matrix.

The probability of exceeding a from state Z),
equals rn = 1 - F[{i ~ .S)w\, and the probability
of exceeding p from state D{ equals ra = F[(i -
m — .5)w]. Let R = [/•» ra\ represent the m X 2
response probability matrix.

Define ir as the initial probability row vector. It
was assumed that the cumulative preference always
starts at zero so that all elements of -K were set to
zero except for the element corresponding to the

zero preference state which was set to unity. P(\JA)
can be obtained from the matrix equation

[P(UA) 1 - P(UA)] = *(I - T)' lR, C

where I is the identity matrix. The mean number
of samples purchased can be calculated from the
matrix equation

E(N) = T)"2RJ,

where J is a two-element column vector with each
element set to unity.

For both cost conditions, the mean increment
was set to ti{d) - ix{x) - (1 - p)K where fi(x) is
the programmed mean of the uncertain alternative.
For the high cost p was set to zero, and for the
low cost p was set to 1/3. The variance of the
utility of the uncertain alternative was set equal
to the programmed variance.

The criterion bounds were estimated from the
choice data using the following assumptions. For
both cost conditions, two uncertain criterion
bounds were estimated—one for each variance
condition. Note that changes in the criterion mag-
nitude with changes in variance may simply reflect
the possibility that the variance of the utilities was
not equal to the programmed variance. This is
due to the fact that the variance of the increments
and the criterion magnitudes trade off, so changes
in one parameter can be offset by changes in
another.

The treatment of the certain criterion bound
depended on the observation cost condition. For
the high-cost condition, the certain criterion mag-
nitude was set equal to the uncertain criterion
bound plus an adjustment factor, bk, which de-
pended on the certain value k. Under the low-cost
condition, it was assumed that for all practical
purposes the effect of the correlated bias was
reduced to zero. Thus the relative bias was assumed
to be constant, and this was achieved by forcing
the certain criterion magnitude to be proportional
to the uncertain criterion magnitude.

In sum, a total of three parameters were esti-
mated under the low-cost condition: one relative
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bias, and two uncertain criterion bounds. A total
of five parameters was estimated from the choice
proportions obtained under the high cost: two
uncertain criterion bounds, and three adjustments
for the certain criterion bound.

The parameters were estimated by minimizing
the sum of squared error between the model
predictions and the sample means shown in Figure
8a. A hill climbing grid search algorithm was used
with a fairly course grid. The fits could probably
be improved with a more efficient search algorithm.

The parameter estimates obtained from the
choice proportions were then used to generate
predictions for the mean number of samples pur-
chased. However, the predicted values were related
to the observed values by an arbitrary multiplicative
constant because the mean increment is only

denned up to an arbitrary constant on the basis
of the choice data. Thus a linear regression equation
was used to generate the predictions reported in
Table 4. A separate linear regression equation was
used for the low- and high-observation cost con-
ditions, because the mean increment changed
across these two conditions.

The discriminability parameter 0 can be multi-
plied by an arbitrary constant, and the criterion
bounds can be divided by this same constant to
produce identical predictions for choice probability.
Thus only the product A6 and the relative bias 5
can be unambiguously interpreted. These param-
eter values are reported in Table 4.
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