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The goal of this article is to investigate how human participants allocate their limited time
to decisions with different properties. We report the results of two behavioral experiments.
In each trial of the experiments, the participant must accumulate noisy information to
make a decision. The participants received positive and negative rewards for their correct
and incorrect decisions, respectively. The stimulus was designed such that decisions based
on more accumulated information were more accurate but took longer. Therefore, the total
outcome that a participant could achieve during the limited experiments’ time depended
on her ‘‘decision threshold”, the amount of information she needed to make a decision.
In the first experiment, two types of trials were intermixed randomly: hard and easy.
Crucially, the hard trials were associated with smaller positive and negative rewards than
the easy trials. A cue presented at the beginning of each trial would indicate the type of the
upcoming trial. The optimal strategy was to adopt a small decision threshold for hard trials.
The results showed that several of the participants did not learn this simple strategy. We
then investigated how the participants adjusted their decision threshold based on the feed-
back they received in each trial. To this end, we developed and compared 10 computational
models for adjusting the decision threshold. The models differ in their assumptions on the
shape of the decision thresholds and the way the feedback is used to adjust the decision
thresholds. The results of Bayesian model comparison showed that a model with time-
varying thresholds whose parameters are updated by a reinforcement learning algorithm
is the most likely model. In the second experiment, the cues were not presented. We
showed that the optimal strategy is to use a single time-decreasing decision threshold
for all trials. The results of the computational modeling showed that the participants did
not use this optimal strategy. Instead, they attempted to detect the difficulty of the trial
first and then set their decision threshold accordingly.

� 2017 Elsevier Inc. All rights reserved.
1. Introduction

Suppose you are taking an exam. You have one hour to answer as many questions as you can. In addition, suppose that
there are two types of questions, easy and hard. How much time should you spend on each question? For example, if the
questions are presented sequentially and the first question is hard, would you be willing to spend 10 min on that question?
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In this scenario, every moment that one spends on one question, less will remain for other questions and so fewer questions
can be answered in limited time. On the other hand, by answering the questions too fast, the accuracy drops and one may be
able to answer only a few questions correctly. This results in a trade-off between the speed and the accuracy.

This is an example of a more general problem in which a living organism has to allocate a limited resource to different
courses of actions. Some examples of a limited resource are: energy, time, memory, attention and so on. Usually, spending
more of the resource on a course of action results in more desirable outcome for those actions. However, spending more of
the resource on some actions leaves less for the other actions, and this may result in lower total outcome. Therefore, the
organism must allocate the resource ‘‘wisely” to obtain the maximum total outcome over all actions.

A situation in which this sort of trade-off arises naturally is perceptual decision making in which the animal has to make
decisions based on noisy information. Usually, by spending more time the animal can make more accurate decisions which
in turn lead to more desirable outcomes. A large amount of research has focused on explaining the relationship between the
decision time and the accuracy in perceptual decision making, both theoretically and experimentally (Brown & Heathcote,
2005; Gold & Shadlen, 2002; Jones & Dzhafarov, 2014; Kiani, Hanks, & Shadlen, 2008; Khodadadi & Townsend, 2015; Ratcliff,
1978; Ratcliff, Van Zandt, & McKoon, 1999; Smith, 2000; Townsend & Ashby, 1983; Teodorescu & Usher, 2013; Usher &
McClelland, 2001). The most popular theoretical framework for explaining the mechanism underlying this relationship is
provided by a class of models known as sequential sampling models. A common assumption between different instantiations
of these models is that the animal sequentially samples evidence favoring each of the possible decisions. Since these samples
are noisy, a decision based on one sample will be very inaccurate. Instead, the brain accumulates these samples until the
accumulated evidence favoring one of the decisions reaches a specific level called the decision threshold. Larger values of
the decision threshold lead to slower but more accurate decisions. The rate at which the information is accumulated is pro-
portional to the difficulty of the stimulus and so it is controlled by the experimenter and not the participant.

Experimental results together with computational modeling have shown that human participants adjust the value of
their decision threshold in response to the emphasis on the speed or the accuracy in the instructions of the experiment
(Forstmann et al., 2010; Luce, 1986; Ratcliff, 2002; Wagenmakers, Ratcliff, Gomez, & McKoon, 2008). This experimental para-
digm, provides evidence that human participants can adjust their decision threshold when they are asked to do so. However,
it does not show if this threshold adjustment will occur in order to maximize the outcome. Recently, some theoretical and
experimental work has investigated this question. Gold and Shadlen (2002) proposed an experimental paradigm in which
the participants had to make a sequence of decisions during a limited time. The participants received some rewards or pun-
ishments for their correct or incorrect decisions. Since time is limited, the participant should balance between her speed and
accuracy to achieve the maximum amount of reward during the experiment. Bogacz, Brown, Moehlis, Holmes, and Cohen
(2006) investigated the optimal strategies in this paradigm. Specifically, they showed the relationship between the optimal
value of the decision threshold and the parameters of the experiment including the difficulty of the stimulus and the value of
the reward and punishment. More recently, Simen et al. (2009), Bogacz, Hu, Holmes, and Cohen (2010), Balci et al. (2011) and
Evans and Brown (2016) examined experimentally if human participants can learn the optimal decision threshold in this
paradigm.

These studies have shed light on several aspects of the decision making mechanisms involved in balancing between speed
and accuracy in information accumulation paradigms. However, many questions have remained unanswered. In this paper,
we extend the previous research in several directions in order to investigate some of these questions. We outline these direc-
tions next.

1.1. A novel stimulus and decision paradigm

The speed-accuracy trade-off have been mainly investigated using perceptual decision making paradigms. These exper-
iments are appealing because it is easy to manipulate the difficulty of the task to achieve a wide range of accuracy (from
chance level to nearly perfect accuracy) and reaction time. However, using these stimuli for studying the properties of
the decision thresholds have several drawbacks. First, in the tasks which are commonly used to study perceptual decision
making, for example the random dot motion experiment (Britten, Shadlen, Newsome, & Movshon, 1992; Shadlen &
Newsome, 2001), neither the accumulated information nor the decision threshold are directly observable. The only observ-
able variables are the participants’ choice and reaction time in each trial. Therefore, to infer the properties of the decision
threshold in these experiments, one should either use the neuro-physiological data (Forstmann et al., 2010; Ivanoff,
Branning, & Marois, 2008; Kiani et al., 2008; Shadlen & Newsome, 2001; Ratcliff, Hasegawa, Hasegawa, Smith, & Segraves,
2007), or computational modeling (Ratcliff, 1978; Ratcliff & Smith, 2004; Smith, 1995; Usher & McClelland, 2001). This
makes the inference about the properties of the decision thresholds harder than if the decision threshold could be observed
directly. Second, for the same level of task difficulty, there is usually a large amount of variations in the participants’ perfor-
mance. This is due to individual differences in perceiving the same stimulus. In the language of the sequential sampling mod-
els, for the same stimulus, the participants have different rate of information accumulation. For this reason, the properties of
the optimal decision threshold will be different for different participants. Third, there is usually a large perceptual learning
effect in these tasks. With experience, the rate of information accumulation increases for a participant (see for example Fig. 8
in Balci et al. (2011)). Therefore, the properties of the optimal decision threshold changes for a participant during the exper-
iment. Fourth, the participants’ average reaction time in these experiments is usually very short. As we will argue later, this
may put some constraints on the shape of the decision thresholds.
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To address these issues, we propose a new stimulus and decision paradigm. Using this stimulus, we are able to observe
the decision threshold and the rate of information accumulation in each trial directly. Also, since the rate of information
accumulation is controlled by the experimenter, the optimal decision threshold will be the same for all participants and will
not change during the experiment.

1.2. Allocation of time to decisions with different properties

In all aforementioned studies on speed-accuracy trade-off, it is assumed that the participants adopt only one decision
threshold in all trials and they adjust it during the experiment. In particular, in each block of these experiments, all trials
had the same level of difficulty. Also, the reward and punishment associated with the correct and incorrect responses, were
the same for all trials in a block. Therefore, to be optimal, the participant needs to set only one decision threshold for all tri-
als. However, as our first example suggests, in many real life situations, one needs to allocate time between decisions with
different properties. Not only the difficulty of the decisions may differ (as in the exam example mentioned above), but also
their expected outcomes may differ. Sometimes, harder decisions are associated with higher stakes. For example, publishing
a paper in a higher-impact journal has larger outcome, but the likelihood of rejection is also higher. The reverse is also the
case in many situations. For example, for an animal seeking for food, finding a larger fruit is easier and its outcome is obvi-
ously higher. When the animal has to allocate time between decisions with different properties, it may be optimal to set dif-
ferent decision thresholds for each type of decisions. Behaving optimally in these situations is much harder because to know
how much time should be spent on one decision, one should have an estimate of the expected outcome of other decisions.

In this paper, we extend the aforementioned experimental design to situations in which the participants have to make a
sequence of decisions with different properties. Experiments A reported below consists of 40 blocks of trials. The block dura-
tion is fixed (one minute) and so the number of trials in each block depends on the participant’s speed in responding in each
trial. The participants receive positive (negative) reward1 for their correct (incorrect) decisions in each trial. Each trial could be
either an ‘‘easy” or ‘‘hard” trial. Obviously, in the easy trials, detecting the correct response is easier than the hard trials. In addi-
tion, the easy trials are associated with higher absolute values of both positive and negative reward. We will investigate the
relationship between the experiments’ parameters (including the values of the rewards, the difficulty level of the trials and
so on) and the average time that should be spent on each trial in order to achieve the maximum amount of expected total out-
come. We will show that for the values of the experiments’ parameters used in both experiments, to be optimal (i.e., to achieve
the maximum possible total outcome) the participant must adopt a much lower value of the decision threshold for the hard
trials than the easy trials. Therefore, to be optimal, the participants should be faster in the hard trials than the easy trials (actu-
ally in the hard trials they should respond as fast as possible). This behavior is in contrast to the common pattern observed in
most of the perceptual decision making task where the participants spend more time on the hard trials (see for example Ratcliff
& Rouder, 1998; Ratcliff & Smith, 2004; Ratcliff et al., 1999). A participant who is too concerned about her accuracy will spend
more than optimal time on the hard trials. Some previous results showed that participants behave sub-optimally by being too
concerned about their accuracy (Simen et al., 2009). Our goal in using the aforementioned reward structure is to investigate to
what extent these results hold. The question is if the participants can learn to become faster in the hard trials than the easy
trials.

1.3. Computational models of threshold adjustment

Previous research on rewarded perceptual decision making experiments have mainly focused on the ‘‘optimal speed-
accuracy trade-off”, specifically, quantifying the optimal behavior and examining if the participants can learn this optimal
behavior (Balci et al., 2011; Bogacz et al., 2006; Frazier & Yu, 2008; Karsilar, Simen, Papadakis, & Balc, 2014; Khodadadi,
Fakhari, & Busemeyer, 2014; Simen et al., 2009). However, little is known about how the participants adjust their decision
threshold in these experiments (see however Lepora, 2016; Simen, Cohen, & Holmes, 2006). Our main focus in this paper is
on this question. We attempt to develop computational models that can explain how the participants adjust their decision
threshold after receiving the feedback in each trial.

We will consider several computational models which differ in their assumptions on two dimensions: first, the shape of
the decision thresholds, and second, how the feedback is used to adjust the decision thresholds. We explain each of these
briefly next.

An important aspect of any computational model for information accumulation experiments is its assumption about the
form of the decision threshold. Traditional sequential sampling models assume that the decision threshold remains constant
within a trial. More recently, researchers have considered models with decision thresholds that change as a function of the
elapsed time in a trial (Churchland, Kiani, & Shadlen, 2008; Ditterich, 2006; Drugowitsch, Moreno-Bote, Churchland, Shadlen,
& Pouget, 2012; Frazier & Yu, 2008; Khodadadi & Townsend, 2015; Zhang, Lee, Vandekerckhove, Maris, & Wagenmakers,
2014). Specifically, the time-varying decision thresholds have been shown to be optimal in several experimental designs.
To investigate the form of the decision thresholds used by the participants in our experiments, we will consider two imple-
1 ‘‘Negative reward” may not make much sense. In this paper, however, we use it to be consistent with the literature on reinforcement learning (e.g., Sutton &
Barto, 1998). In this literature, ‘‘reward” is usually used to refer to the value of the outcome of a trial.
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mentations of each of the computational models: one with time-constant decision threshold and one with time-varying
decision threshold. Interestingly, our results showed that the time-varying version of each model fitted better than the
time-constant version.

To model the mechanisms for adjusting the decision thresholds, we consider four categories of models: baseline models
in which no learning occurs, models that adjust threshold only based on the rewards and ignore the time, models which
assume the participant tries to achieve desired levels of accuracy and reaction time, and the reinforcement learning models.

Perhaps the reinforcement learning (RL) theory is the most commonly used computational framework for describing the
learning mechanisms in value-based decision making studies (Daw, 2003; Dayan & Daw, 2008; Sutton & Barto, 1998). In this
framework, if the total outcome depends only on the rewards in each trial, the experiment can be modeled as a Markov deci-
sion process (MDP). This is the most common application of the RL theory in modeling the learning behavior of human par-
ticipants (Daw, Gershman, Seymour, Dayan, & Dolan, 2011; Dezfouli & Balleine, 2013; O’Doherty et al., 2004). In our
experiments, however, the total outcome depends on both the rewards and the reaction times in each trial. Therefore, the
MDP framework is not appropriate for our application. Instead, we will model our experiments as semi-Markov decision pro-
cesses (SMDP), an extension of the MDPs in which it is possible to incorporate the effect of the decision times in the total
outcome. We then develop RL algorithms for adjusting the decision thresholds in the corresponding SMDPs. The results
of comparing the models showed that, although there are individual differences, the RL models provide the best fit to the
data of most of the participants in Experiment 1.

1.4. Time at which decision thresholds are set

Another important aspect that affects the performance in the speed-accuracy trade-off paradigms is the time at which the
decision thresholds are set. Conventional sequential sampling models assume that the participants set their decision thresh-
old at the beginning of the trial and before the stimulus is presented. Therefore, in fitting these models to data from exper-
iments in which trials with different levels of difficulty are intermixed and there is no cue for the participants to know the
difficulty level of a trial before the stimulus is presented, it is assumed that the participants use the same decision threshold
for all trials (Ratcliff, 2002; Ratcliff & Smith, 2004; Ratcliff et al., 1999).

In our Experiment 1, a cue presented at the beginning of each trial would indicate the condition (easy or hard) of the
upcoming trial. Therefore, the participant could set two different decision thresholds for the trials from the two conditions.
To test the assumption that the participants set their decision threshold at the beginning of the trial, in Experiment 2 the
cues were not presented. Other parameters of this experiment were similar to Experiment 1. If this assumption is valid,
the participants may use two different thresholds for the two types of trials in Experiment 1, but they must use the same
threshold for all trials in Experiment 2. We will show that the optimal strategy is to use two different time-constant thresh-
olds for easy and hard trials in Experiment 1, and one time-decreasing threshold for all trials in Experiment 2. Another pos-
sibility, however, is that the participants in Experiment 2 use a mechanism to detect the difficulty of the trial (by observing
the stimulus for some time after the beginning of the trial) and then set the decision threshold accordingly. We will develop
computational models to capture each of these strategies and compare them to investigate which strategy can describe the
participants’ data better. The results of model comparison provided strong evidence for the assumption that the participants
try to detect the difficulty of the trials first and set the decision threshold accordingly.

2. Material and methods

2.1. Behavioral experiments

For both experiments reported below, we used a novel stimulus. This stimulus was inspired by this video: https://www.
youtube.com/watch?v=8s_4rt8-Jv8. At the beginning of each trial, a canoe is shown at the center of the screen (panel (a) in
Fig. 1). After the trial begins, the canoe moves back and forth, to the right and left. The participants were told that the canoe
will eventually reach one of the two flags on the right and left. In each trial, the participant must watch the canoe for a while
and decide which direction the canoe will eventually go. We call this task the canoe movement detection task.

The movement of the canoe was governed by a Markov chain with probability P0. To explain this, suppose that in a trial
the ‘‘correct” direction is right. After the trial starts, for Dt msec, the canoe will move to the right with probability P0 or moves
to the left with probability 1� P0. Again, during the next Dt msec the canoe moves to the right or left with the same prob-
abilities. The canoe continues moving in this manner until the participant makes her decision. The Markov chain correspond-
ing to this movement is shown in panel (b) of Fig. 1. In experiments below we set Dt ¼ 500 msec which resulted in smooth
movement of the canoe. In each trial, the participants responded by pressing the ‘‘c” or ‘‘m” keys on the keyboard if they
decided that the canoe is moving to the left or right, respectively. The stimulus was presented on 17” Dell monitors con-
trolled by Dell Optiplex 990 computers using the Psychophysics Toolbox in MATLAB (Brainard, 1997).

In contrast to the experiments which are commonly used to study perceptual decision making, in the current experiment,
both the accumulated information and the decision threshold are observable. At any moment within a trial, the only relevant
information to make a correct decision (detecting the correct direction of the canoe) is the position of the canoe at that
moment. This is because the canoe movement is governed by a Markov chain and the probability of moving to right or left

https://www.youtube.com/watch?v=8s_4rt8-Jv8
https://www.youtube.com/watch?v=8s_4rt8-Jv8


(a)

(b)

Fig. 1. Canoe movement detection task. (a) Example screen (b) Markov chain governing the canoe movement in each trial. In this figure, the correct
direction is right. At each time step, the canoe moves to right with probability P0 and to left with probability 1� P0.
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at any moment is independent of the canoe position and the elapsed time. Therefore, the canoe position at any moment is
equivalent to the accumulated information in a sequential probability ratio test. In the sequential sampling models, it is
assumed that the participant responds whenever the accumulated information exceeds a decision threshold. Similarly,
we assume that in each trial of our experiment the participant responds whenever the canoe position deviates from the cen-
ter of the screen (the initial position of the canoe) by a specific amount. Based on this assumption, in each trial, the canoe
position at the time that the participant responds is the decision threshold in that trial.

In this paper, we will consider both time-constant and time-varying decision thresholds. Fig. 2 shows a sample path of the
canoe position in a trial and an example of time-decreasing thresholds. In this figure, the horizontal axis is the elapsed time
in a trial and the vertical axis is the canoe position, in pixels, relative to the center of the screen. Positions right to the center
are considered as positive. As it can be seen, the canoe position has first reached the upper decision threshold at t0 ¼ 8:2 s
when the canoe position was at 112 pixels. Of course, we cannot observe the whole form of the decision threshold in the
trial. Instead, the position of the canoe at the time the participant made her decision in a trial, gives us the value of the deci-
sion threshold at that time. We recorded the participants’ choice (left or right), the decision time and the value of the deci-
sion threshold at the decision time for all trials. In later sections, we will show how we can use these data to infer the shape
of the decision thresholds that a participant has used.

Since the canoe position is equivalent to the accumulated information, the difficulty of a trial is determined by the value
of P0: for large values of this parameter, the canoe moves more consistently toward the correct direction and so the canoe
goes to the correct end of the screen faster. Fig. 3 shows the probability of responding correctly (accuracy) and the mean
reaction time (RT) as a function of the decision threshold for two values of P0. To generate these figures, we used time-
constant decision thresholds with the same absolute value for the left and right responses. The horizontal axis in these fig-
ures is the absolute value of the decision threshold.2 Two points should be noted in these figures: First, for all values of P0 when
the value of the decision threshold increases, both accuracy and mean RT increase. Therefore, the participants can balance
between their speed and accuracy by adjusting their decision threshold. Second, for the same value of the decision threshold,
the accuracy is higher for larger values of P0. Therefore, the level of the difficulty is determined by the value of P0.

Here, we should emphasize another advantage of using this stimulus for the purposes of the current paper: For a given
value of P0, the accuracy and the mean RT are determined only by the decision thresholds. In other words, if two participants
use exactly the same decision thresholds, their accuracy and mean RT will be the same. This is not the case in the conven-
tional stimuli used in the perceptual decision making tasks. For example, consider the random dot motion task. The difficulty
of the task is determined by the ‘‘motion coherence”, the percentage of dots that move coherently toward the correct direc-
tion. Since different participants have different perceptual ability in detecting the motion, for a fixed level of difficulty, even if
two participants use the exact same decision thresholds, their accuracy and/or mean RT may not be the same. More
importantly, it is possible that due to perceptual learning the ability of an individual participant in detecting the correct
direction of the motion increases by experience during the experiment (Law & Gold, 2009). Therefore, the participants’
performance is a function of both perceptual and decisional processes. In this paper, we are interested in investigating
the decisional processes and so it is appealing to use a stimulus which makes the performance only a function of the
decisional processes.
2 Since the canoe movement is governed by a Markov chain, the problem of finding the mean RT and accuracy for a given value of the decision threshold is
equivalent to the problem of finding the probability and time of reaching an absorbing state in a Markov chain. The probability of reaching the absorbing state a
before reaching the absorbing state 0, given that the initial state was z is ua�uz

ua�1 , where u ¼ 1�P0
P0

. Also, the mean number of steps to reach one of the absorbing
states is z

1�2P0
� a

1�2P0
� a�uz

1�ua (see Feller, 1968, chapter 14, Eqs. (2-4) and (3-4)). We used these equations to create Fig. 3.
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We used this stimulus in two experiments. The details of these experiments are given in the next two sections. All studies
reported below, were approved by the Indiana university IRB and all participants provided informed written consent before
participating in the study.

2.1.1. Experiment 1
The purpose of this experiment was to investigate how the participants adjust their decision threshold, when they have to

allocate limited time between decisions with different properties. We used the canoe movement detection task introduced
above. The experiment consisted of 40 blocks of trials. All blocks for all participants were 1 min long. The number of trials in
each block depended on the participant’s speed in responding. Each trial was drawn with probability 0.5 from one of the two
possible conditions: easy or hard. In the easy trials, the probability that the canoe would move toward the correct direction
was P0 ¼ 0:65. This probability was P0 ¼ 0:51 for the hard trials. In the easy trials, the participants would gain or lose 20
coins for a correct or incorrect response, respectively. This pay-off was �1 coin in the hard trials. In addition, after an incor-
rect response in an easy trial, the participant had to wait 3 more seconds before the next trial begins. This delay penalty did
not exist for the hard trials.
0.4

0.6

0.8

1

Pr
[c

or
re

ct
]

0 200 400
0

10

20

position (pixel)

m
ea

n 
re

ac
tio

n 
tim

e P0=.65

P0=.51

Fig. 3. Accuracy and mean RT in canoe movement detection task. Top: Accuracy, Bottom: mean RT as functions of the decision threshold for two values of
P0.



A. Khodadadi et al. / Cognitive Psychology 95 (2017) 17–49 23
The timeline of one trial is illustrated in Fig. 4. At the beginning of each trial, a cue was presented that would indicate the
condition of the upcoming trial: a red smiley face would indicate an easy trial and a green smiley face would indicate a hard
trial. Then a fixation cross-hair was presented for a random time drawn uniformly from interval ½1:25;1:75� s. The stimulus
was presented then and remained on the screen until the participant responded. After the participant responded, the feed-
back was shown for 0.5 s. After that, a gray smiley face was shown for 1 s before the next trial started. In the easy trial, if the
response was incorrect this time was extended to 4 s.

The participants were informed about this structure of the task. Specifically, they were told that since the blocks duration
is fixed, to experience more trials they should respond faster, but on the other hand being faster reduces accuracy. Also they
were informed that there are two types of trials with different pay-off structure, and that the cues indicate the condition of
the upcoming trial. Participants were motivated to collect as many coins as they could in the 40 blocks by being told that
they will receive $1 for each 1000 coins they collected in the study. A total of 29 participants (age:19–27, 14 female) par-
ticipated in this study. Three participants were excluded from all analyses because their performance was at the chance level
in both easy and hard conditions.

2.1.2. Experiment 2
This experiment is similar to Experiment 1 with one crucial difference: no cue is presented at the beginning of the trials.

Therefore, the participants could not know what condition a trial is coming from. The pay-off structure for the two condi-
tions was exactly the same as Experiment 1. This experiment consisted of 35 one-minute blocks. Also, in the easy trials
P0 ¼ 0:75.

A total of 22 participants (age:19–30, 12 female) participated in this study. These participants were different from those
participated in Experiment 1. Two participants were excluded from the analysis because their performance was at the
chance level.

2.2. Modeling experiments as semi-Markov decision processes

The main focus of this paper is on developing and comparing computational models of the participants’ threshold adjust-
ment in the above experiments. The RL theory and the accompanying algorithms have been used extensively to model the
learning behavior in rewarded decision making experiments. Similar to these experiments, in Experiments 1 and 2 the par-
ticipants should learn to make their decisions in each trial such that the total outcome achieved during the experiment is
maximized. In addition, the relationship between the decisions and the achieved outcomes is probabilistic. The RL models
have been shown to be powerful tools for explaining the behavior in these situations. It seems reasonable, therefore, to con-
jecture that the thresholds adjustment in our experiments can be explained well with the RL algorithms.

In experiments in which the total outcome depends only on the rewards achieved in each trial, the first step in construct-
ing an RL model is to describe the Experiment 1s a Markov decision process (MDP). In our experiments, however, the total
outcome depends not only on the rewards but also on the decision times in each trial. We, therefore, model the experiments
in a framework called semi-Markov decision processes (SMDP) which is a generalization of the MDPs. To make the paper
self-contained we give a brief explanation of the SMDPs next. In the next two sub-sections, we show how the components
of Experiments 1 and 2 can be mapped to the components of an SMDP. In a later section, we show how the problem of learn-
ing the decision thresholds can be modeled in this framework.

An SMDP models the interaction between an agent and the environment. Since we are using this framework to model the
learning behavior of the participants in the experiments, the agent is the participant and the environment is the experiment.
An SMDP is specified by a 5-tuple hS;A; T;R;Di. The state space S, is the set of all possible states in the experiment. Intuitively,
a state specifies a unique ‘‘situation” in the experiment, and so the state space includes all possible situations in the exper-
iment. The action space A, is the set of all possible actions in all the states. In the SMDP framework, at each step, the envi-
ronment is in one of the possible states. The agent takes one of the possible actions in that state. After taking the action, the
environment remains in the same state for some time and then transitions to a new state, and the agent receives some
rewards (positive or negative). The transition between states, the rewards and the time between transitions are all stochas-
tic. Assume that at step k, the agent is in state si;k and takes action ak. The probability of transition from si;k after taking action
ak to a new state sj;kþ1 is denoted Ta

i;j ¼ Prðsj;kþ1jsi;k; akÞ. Similarly, the probability of receiving reward rk is R
a
i ðrkÞ ¼ Prðrkjsi;k; akÞ,

and the probability of the transition time being dk is Da
i ðdkÞ ¼ Prðdkjsi;k; akÞ.3

The probabilities Ta
i;j;R

a
i ðrÞ and Da

i ðdÞ, specify the dynamic of the environment. It is usually assumed that the dynamic of
the environment is unknown to the agent. The goal of the agent is to learn the optimal policy by interacting with the envi-
ronment. A policy ps;a, is a mapping from a state s to the probability of taking each possible action a in that state, that is
ps;a ¼ PrðajsÞ. Therefore, the goal of the agent is to learn which action to take in each state to achieve the optimal perfor-
mance. Several measures of optimality have been considered in the literature for SMDP problems. We will adopt the average
reward rate defined as follows:
3 Gen
modelin
erally, both the reward and the transition time could depend on the new state. However, as we will see shortly, we do not need this assumption for
g the experiments in this paper and so we assume that they depend only on the old state and the taken action.
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qpðsÞ ¼ lim
N!1

E½
XN
s¼0

rs�

E½
XN
s¼0

ds�
ð1Þ
where rs and ds are the reward and transition time at time-step s. The numerator is the expected value of the sum of the
rewards in N steps. Similarly, the denominator is the expected value of the sum of the transition times in a N-step horizon.
In this equation, qpðsÞ is the average reward rate in state s given that the participant is following policy p in all states. In the
next section, we will explain why this is an appropriate measure of optimality of performance in our experiments.

Das, Gosavi, Mahadevan, and Marchalleck (1999) have investigated the optimality in SMDPs with this measure. It has
been shown that under some technical assumptions (which hold for our experiments), the average reward rate does not
depend on the initial state and will be the same for all states (see Das et al. (1999), the paragraph after Eq. (4) for more
details). Therefore, we drop the dependency to the state and use qp as the average reward rate in all states of the experiment
when following policy p. The optimal value of the average reward rate is q� ¼ maxpfqpg. An agent is behaving optimally if it
is following a policy p� which is yielding the maximum average reward rate, that is qp� ¼ q�. Theorem 1 in Das et al. (1999)
shows that this optimal value is unique and it satisfies the following system of equations:
V�ðsiÞ ¼ max
a

X
r

r � Ra
i ðrÞ � q� �

Z
s � Da

i ðsÞdsþ
X
sj2S

Ta
i;j � V�ðsjÞ

8<:
9=;;8si 2 S ð2Þ
where V�ðsiÞ is the optimal value of state si. The unknown variables in this system of equations are optimal state values V�ðsiÞ
and the optimal average reward rate q�. The importance of these equations, called the Bellman optimality equations, is that by
solving them we can determine the optimal policy p�: given the values of V�ðsiÞ, the optimal action in state si is
a� ¼ argmaxafQðsi; aÞg, where Qðsi; aÞ is the term in the braces in Eq. (2). When the dynamic of the environment
(Ta

i;j;R
a
i ðrÞ and Da

i ðdÞ) is known to the agent, dynamic programming methods can be used to solve these equations and find
the optimal policy (Bertsekas & Tsitsiklis, 1996; Sutton & Barto, 1998). However, when the dynamic is unknown (which is
the case for our experiments as we will see soon), the agent should learn the optimal policy only by interacting with its envi-
ronment. The class of algorithms for learning the optimal policy in stochastic environment with unknown dynamics are
known as RL algorithms.

To model Experiments 1 and 2 as SMDPs, we should specify the state and action spaces, and the corresponding distribu-
tions Ta

i;j;R
a
i ðrÞ and Da

i ðdÞ. In the subsequent sections, we specify these for each of the experiments.

2.2.1. SMDP model of Experiment 1
As it was mentioned above, the states are distinct possible situations in the environment. In a sense, in Experiment 1 there

are two distinct situations: easy trials and hard trials. Therefore, we can model this experiment with an SMDP with two
states. In each trial, the environment (experiment) is in one of these two possible states. Since in this experiment, the
two types of trials are presented randomly with equal probability, the transition probabilities are Ta

i;j ¼ 0:5 for i; j ¼ E;H
(for easy and hard) and for all actions a. In words, the transition probabilities do not depend on the actions.
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Given this state space, the specification of the reward and transition time in each state is simple. The reward is the num-
ber of coins that the participant receives in each trial. The transition time is the time between the beginning of a trial and the
next trial. This time includes the cue, fixation and reward presentation time, the participant’s reaction time, and the delay
penalty in the incorrect trials.

Finally, we must specify the set of possible actions. Since in each trial (or state) there are two possible responses, left and
right, one might consider these as the set of possible actions in each state. However, this is not an appropriate choice for
actions for the state space that we are considering. The reason is that the actions must be defined such that the probabilities
Ra
i ðrÞ and Da

i ðdÞ are well-defined. Suppose that in a hard trial the participant has chosen the left response. Given this infor-
mation, one cannot specify either the probability of the reward that the participant will receive, or the time it takes to tran-
sition to the next trial. Therefore, we propose another choice for the actions: the value of the decision thresholds. This is an
appropriate choice for the action space for two reasons. First, based on the assumption of the sequential sampling models,
the value of the decision threshold is set by the participant, and so it is reasonable to model the value of the decision thresh-
old in each trial, as the action that the agent (the participant) has taken.4 Second, given the state (hard or easy) and the value
of the decision threshold, we can determine the probability that the response will be correct, as well as the distribution of the
reaction time which determines the transition time. In other words, the probabilities Ra

i ðrÞ and Da
i ðdÞ are well-defined given the

state and the action.
In sum, after observing the cue at the beginning of each trial, the participant is in one the two states, easy or hard. She

takes the action a which means that she sets the decision thresholds for the right and left responses at the values �a.5 This
action determines the probability distribution of the reward, Ra

i ðrÞ, and transition time, Da
i ðdÞ, in that trial. The dynamic of the

environment is unknown to the participant which means that the participant does not know the relationship between the deci-
sion threshold a and the probabilities Ra

i ðrÞ and Da
i ðdÞ. Instead, in each trial, the participant observes reward r and the inter-trial

time d, which are random samples from these distributions. In the RL model, which we explain later, the participant uses these
random samples to adjust her decision threshold after each trial in order to maximize the average reward rate. The two-state
SMDP of Experiment 1 is shown in panel (a) of Fig. 5.

Finally, we should explain why the average reward rate defined in Eq. (1) is an appropriate measure of the optimality of
the performance in our experiments. An ‘‘optimal participant” in these experiments, will try to obtain the maximum possible
reward during the whole experiment. Suppose that a participant sets her decision thresholds in the two conditions such that
her overall average reward rate is q. Since the duration of the experiment is fixed, say T units of time, the participant will
receive q � T units of reward during the whole experiment. Therefore, to maximize the total amount of reward, the partici-
pant should maximize the average reward rate and so this is an appropriate measure of the optimality in our experiments.

2.2.2. SMDP model of Experiment 2
As it was explained before, in this experiment no cue is presented at the beginning of the trials. There are two possible

ways to model this experiment with an SMDP. In the first model, single-state SMDP model, we assume that since no cue is
presented and since the participant sets her decision threshold at the beginning of each trial, all trials are considered by the
participant as a single state of the environment. Therefore, the participant will set the same value of the decision threshold
for both easy and hard conditions. The corresponding one-state SMDP is shown in panel (b) of Fig. 5.

In the second model, inferred-state SMDP model, we assume that the participants use a fast mechanism to first detect the
difficulty of the trial after the presentation of the stimulus, and then set appropriate decision threshold based on the detected
state. In each trial, the environment is in one of two possible states, easy or hard. This true state is unknown (unobservable)
to the participant. However, the participant can make observations which can be used to infer, probabilistically, the true
state. In Experiment 2, these observations are the canoe positions as time elapses in a trial. In the model, it is assumed that
in each trial the participant observes the canoe movement for a while and first infers which condition this trial is coming
from, and then responds whenever the canoe reaches the threshold corresponding to the inferred state.

For state inference, we use this fact that in the hard trials, the difference between the probability that the canoe moves
toward the correct direction and the probability of moving toward the incorrect direction is smaller than in the easy trials.
Therefore, the canoe moves back and forth more and so does not get away from the center of the screen as quickly as in the
easy trials. Thus, if after some time the canoe is not ‘‘far enough” from the center, it is more likely that the trial is hard. Based
on these observations, we propose the following model: the participant observes the canoe movement from the beginning of
the trial up to an internal deadline tD. If the absolute value of the canoe position reaches a value aD at any time
sD;0 6 sD 6 tD, the participant infers that the current trial is easy and so sets her decision threshold at values �aE. Otherwise,
she infers a hard trial and sets the decision threshold at �aH . After setting the decision threshold, the participant checks if the
canoe position has reached that threshold so far. If this is the case, the participant chooses the right or the left response right
away, depending on if the canoe has reached the positive or the negative threshold first. In this case, the decision time will be
equal to sD. If the canoe position has not reached the decision threshold yet, the participant does not respond and waits until
the canoe reaches the decision threshold at some time t > sD and then makes her decision. In this case the decision time will
4 It is important to note that, since the threshold can take any positive value, the action space defined in this way is continuous.
5 Here, for simplicity, we are considering time-constant thresholds. In later sections, we will show how this notion of action can be used with time-varying

thresholds as well.



EASY HARD EASY HARD

EASY HARD

Time

0

True state
(unobservable)

Canoe position
(observable)

Detected state

Decision threshold
(action)

E/H

(b)

(a) (c)

Fig. 5. SMDPs corresponding to the experiments. (a) two-state SMDP model of Experiment 1. The states correspond to the easy and hard trials. Since these
trials are intermixed randomly, the transition probabilities are all equal to 0.5 (shown on the arrows). (b) One-state SMDP model of Experiment 2. In this
model, all trials are considered as one state and the participant sets one decision threshold for all trials. (c) Two-state SMDP model of Experiment 2. In this
model, in each trial the true state of the environment is either easy or hard. However, the participant cannot observe this state. Instead, she tries to infer the
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be t. The values tD; aD; aE and aH are free parameters of the model and are estimated from each participant’s data as we will
explain later. The corresponding SMDP is shown in panel (c) of Fig. 5.

Depending on the values of these parameters and the profile of the canoe position in a trial, several scenarios could hap-
pen. Fig. 6 shows four possible scenarios. In the top-left panel of this figure, aD < aH and the canoe position did not reach the
state detection threshold aD before the internal deadline tD and so the participant infers that this is a hard trial and sets her
decision threshold at �aH . Then, the participant waits until the canoe position reaches �aH . In this example, at time t the
canoe reaches �aH and so he participant response is left and her decision time is t. In the top-right panel, the canoe reaches
aD at sD and so the participant sets her decision threshold at �aE. In the scenarios shown in the bottom row of Fig. 6 the state
detection threshold aD is larger than the decision thresholds. In the bottom-left panel, the canoe does not reach aD before the
deadline tD and so the threshold is set at aH . However, the canoe has reached aH at time t0 < tD and so the decision time will
be equal to tD ¼ maxðt0; tDÞ. Similarly, the decision time in the bottom-left panel of the figure is sD.

During fitting this version of the model, we encountered a problem: the estimated values of the parameters aD and tD
were very sensitive to the fast reaction times (which could be outliers) in the data. For example, assume that a participant’s
reaction time in only one trial is 10 ms (due to, say, lack of attention in that trial). Since, the model assumes that the state is
inferred before the response, the estimated value of tD for that participant should be less than 10 ms. One way to remedy this
issue would be to discard the fast reaction time outliers. However, this is also problematic because still the estimated param-
eters depend on what percentage of the outliers we discard. Thus, we took another approach. During fitting, for a given value
of the parameter tD, we assumed that in all trials in which the RT is less than tD, the participant did not use the detection
mechanism and instead set her decision threshold at the beginning of the trial at aH . As we will see in Section 3, on average,
the estimated value of aH is less than aE and so the aforementioned assumption means that in some trials the participants
skip inferring the state and prefer to respond faster by setting the threshold at a lower value at the beginning of the trial.

In both models, the experiment is modeled by a partially observable SMDP. In each trial, the environment is in one of two
possible states which is unknown to the participant. However, the participant makes noisy observations which can be used
to make probabilistic inference about the true state. The models differ in the way these observations are used to make infer-
ence and set the decision thresholds. In the inferred-state SMDP model, as we explained, the participant uses these obser-
vation to make a decision about the difficulty of the trial first and then sets the corresponding decision threshold. In the
single-state SMDP model, the inference mechanism and its relationship to the shape of the decision threshold is implicit
and more complicated. This model has been investigated extensively in previous research (Busemeyer & Rapoport, 1988;
Drugowitsch et al., 2012; Rao, 2010; Tajima, Drugowitsch, & Pouget, 2016). Here, we give a brief explanation of how the sin-
gle time-varying decision threshold arises as the optimal solution. Suppose that at the beginning of each trial, the participant
has some prior belief about the difficulty level of the upcoming trial. When the trial starts, after each time step, the partic-
ipant receives a piece of noisy information. In the optimal model, the participant uses the Bayes rule after each time step to
update her belief about the difficulty of the trial based on the new information. At each time step, the participant must
decide if she wants to accumulate information for at least one more time step or she wants to stop accumulating information
and respond. The participant makes this decision at each time step based on her current belief about the difficulty of the trial.
The participant does not make a decision about the difficulty of the trial. Instead, her belief on how likely each difficulty level
is affects her decision at each time step. Intuitively, as time elapses in a trial, it becomes more likely that the trial is hard and
so the participant is more willing to stop accumulating information and respond. This results in a time-decreasing decision
threshold. In addition, since the observations the participant makes at each time step are considered to be independent, the
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participants belief at each time step depends only on the value of the accumulated information at that time step and not the
history of the observations. Since, the participant’s decision at each time step (stop or continue accumulating information)
depends only on this belief, this assumption results in a single decision threshold for all trials. In this paper, our focus is not
on the mechanisms which lead to this single time-varying threshold. Instead, we aimed at investigating if the participants
use a single threshold as is suggested by the single-state SMDP model, or they use two thresholds as is suggested by the
inferred-state SMDP model.

An interesting question that arises is if the maximum possible average reward rate that can be achieved by the inferred-
state SMDP model is equal or smaller than the single-state SMDP model. In Section 3.1, we investigate this question.

2.3. Reinforcement learning models of Experiment 1

In this section, we use the SMDP model of Experiment 1 to develop computational models for threshold adjustment in
this experiment. In the next section, we propose other computational models which are not based on the SMDP framework.

As it was explained before, the goal of the agent in an SMDP problem is to learn the optimal policy which maximizes the
average reward rate. This is equivalent to solving the Bellman optimality Eqs. (2). However, since the dynamic of the envi-
ronment (Ta

i;j;R
a
i ðrÞ and Da

i ðdÞ) is unknown to the agent, it is not possible to solve these equations directly. Instead, the agent
should learn the (approximate) optimal policy by interacting with the environment. In the literature of computer science and
machine learning, several algorithms based on the theory of reinforcement learning have been proposed to tackle this prob-
lem. In one class of these algorithms, the agent uses its experience with the environment to build a model of the environ-
ment and uses this model to find the optimal policy. For this reason, these algorithms are known as model-based RL
algorithms. The main idea is that after each decision (taking an action), the reward, the transition time and the new state
given the old state and the taken action, are considered as samples from the corresponding random variables. These samples
are used to estimate the probability distributions Ta

i;j;R
a
i ðrÞ and Da

i ðdÞ. Therefore, the agent builds an estimate of the dynamic
of the environment and updates it after each step. Then, in each state the agent uses this estimate model of the environment
and solves Bellman optimality equations using a dynamic programming algorithm. Since the agent has to re-solve the Bell-
man equations in each step, these algorithms are computationally demanding. On the other hand, since the agent updates its
estimate of the dynamic of the environment after each step, model-based RL algorithms are able to find a new optimal policy
rather quickly if the environment changes in the middle of the task (for example if the value of the rewards or the transition
probabilities changed during the task).

Another class of models, called model-free RL, learn the optimal policy by learning the state values directly and without
estimating the dynamic of the environment. Comparison between the model-based and model-free algorithms is outside the
scope of this paper. Since the action space is continuous in our SMDP models, formulation of the model-based algorithms is
harder than the model-free algorithms and so, for the sake of simplicity, we only consider model-free version of our algo-
rithms (see for example Daw et al. (2011), Simon & Daw (2011), & Dezfouli & Balleine (2013) for more details on comparing
model-free and model-based algorithms).

To model the adjustment of the decision thresholds in the SMDP framework, we use an Actor-Critic model with average
reward temporal difference learning (Fig. 7). In an Actor-Critic architecture, an Actor represents the current policy and is
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responsible for taking actions in each state, while the Critic module represents the estimated state values and evaluates
‘‘how good” are the actions taken by the Actor based on these estimated values. We first explain the implementation of
the Actor module and then the Critic module for our experiments.

In constructing the Actor, we need to consider two problems: how to represent the policy, and how to update the policy.
We first explain how the policy is represented in our model and then we turn to the problem of updating policy.

In most previous psychological experiments for which an RL model has been proposed, in each state there are a few pos-
sible actions available to the participant (for example a choice between four doors in Simon & Daw (2011) or a choice
between two boxes in Daw et al. (2011)). In these situations, the participant’s policy can be specified by a probability mass
function pðs; aÞ ¼ PrðajsÞ; 8a 2 As, where As is the set of all possible actions in state s. In each state s, the Actor selects an
action a with probability pðs; aÞ. After each step, the agent updates the value of these probabilities by some learning rule.
In our experiments, the available actions in each state are all possible values for the decision threshold in that state, and
therefore, the action space is continuous. Therefore, it is not possible to update the policy as in the discrete action case.
One possible way to address this problem is to represent the policy as a parametric distribution over the actions and update
the parameters of that distribution (Williams, 1992). We first explain the method for the case where the threshold is con-
stant during a trial and then extend it to the more complicated case where the threshold is allowed to dynamically change
within a trial (i.e. time-varying threshold).

The simplest choice is to represent the policy by a Gaussian distribution:
6 One
(Grice, 1
random
pkðs; aÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pr2

k;s

q exp
ða�mk;sÞ2

2r2
k;s

 !
ð3Þ
This means that if trial k is from condition s (easy or hard), the participant’s threshold will be a Gaussian random variable
with mean mk;s and variance r2

k;s. The actual value of the decision threshold, that we observe, in that trial will be a sample
from this distribution. The participant updates the mean and variance of this distribution after each trial by some learning
rule. Even if there is no learning, that is if mk;s and r2

k;s remain constant during the experiment, representing the policy by a
random variable means that there is between-trial variability in the decision threshold. Before explaining the learning rule
for the policy parameters, it is important to justify the choice of probabilistic decision thresholds in our models. In most
instantiations of the sequential sampling models, the decision threshold is assumed to be a deterministic parameter with
no between-trial variability. These models, however, assume that some other parameters are random variables (for example
initial value of the accumulated information and the drift rate in the drift diffusion model (DDM)). The main reason for this
modeling assumption is that these models are used for experiments in which the decision threshold is not observed directly
(e.g., the random dot motion task) and the effect of variability in the decision threshold can be mimicked by variability in
other parameters (specifically with variability in the initial value of the accumulated information in DDM). Therefore, these
models arbitrarily assume that the decision threshold is deterministic and some other parameters are random.6 In our exper-
iments, in contrast, we can directly observe the decision threshold and, as we will see, there is a lot of between-trial variability
notable exception in this regard is the Grice modeling framework in which the decision process is modeled as a race between several accumulators
968). In this framework, the information accumulation in each accumulator is modeled as a deterministic function while the thresholds are modeled as
variables (see Jones & Dzhafarov (2014) for the relationship between this framework and some other sequential sampling models).
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in the decision threshold of each participant. In addition, in this experiment, the initial position of the canoe is zero in all trials
and so there is no variability in the initial value of the accumulated information. Finally, the rate of the information accumu-
lation is controlled by the probability of moving in the correct direction in each time step, and so it remains constant between
trials. For these reasons, representing the decision threshold as a random variable is reasonable in our models.

Now we turn to the problem of updating the policy parameters after each trial. Developing algorithms for learning the
optimal policy for continuous action-space problems is challenging, specifically when the dimensionality of the state-
space increases. In the SMDPs of our experiments, however, there are at most 2 states. Also, our goal is not to develop an
algorithm that can efficiently learn the optimal policy. Instead, we are interested in simple algorithms that can model human
participants’ learning mechanisms in our experiments. Here, we develop a simple instantiation of a class of algorithms called
REINFORCE (Williams, 1992). Consider a stochastic policy pðs; ajhsÞ, in which the possible actions in state s are parameterized
by the set of parameters hs ¼ ½h1;s; . . . ; hp;s�T . In a REINFORCE learning algorithm, the amount of change in each parameter after
transition from state s in trial k, to a new state s0 is:
Dhi;s;k ¼ as;k � ðrs � Bi;sÞ � @ ln½pðs; ajhs;kÞ�
@hi;s;k

ð4Þ
where as;k is the learning rate, rs is some measure of the future reward achievable from state s by following the current pol-
icy, and Bi;s is a baseline reinforcement. Williams (1992) proved that in any REINFORCE algorithm: E½Dhsjhs� ¼ as � rhs E½rsjhs�. In
words, moving in the direction of Dhs, on average, is equivalent to moving in the direction of the gradient of the average
future reward with respect to the parameters.

The learning rule 4 defines a general class of algorithms. To specify a learning algorithm in this class completely, one
needs to define the measure of the future reward rs, and the baseline reinforcement Bi;s. In the SMDP framework, the future
expected reward is specified by the state values, VðsÞ ¼ E½rs;s0 � q � sþ Vðs0Þ�, where rs;s0 is the one-step reward that is
achieved by going from s to s0. The expectation is taken over the policy and all possible future states s0 and dwell times s.
Computing this expectation needs the knowledge of the quantities Ta

i;j;R
a
i ðrÞ and Da

i ðdÞ (see Eq. (2)). Instead, we use the
one-step sample of this expectation. Suppose that at trial k the agent is in state s, takes action ak, and transitions to a
new state s0 after dk units of time. Also, suppose that the agent’s current estimate of the value of states s and s0, and the aver-

age reward rate are bV kðsÞ; bV kðs0Þ and q̂k, respectively. Then, the estimate of the expected future reward in state s is defined as

rs;s0 � q̂ � dk þ bV kðs0Þ. If in addition, we defined Bi;s ¼ bV kðsÞ, the term in the parentheses in Eq. (4) becomes:
dsðkÞ ¼ rs;s0 � q̂k � dk þ bV kðs0Þ � bV kðsÞ ð5Þ

dsðkÞ is called the temporal difference (TD) error and plays an important role in many reinforcement learning algorithms. By
computing the derivative of the natural logarithm of the right-hand sight of Eq. (3) with respect tomk;s and replacing it in Eq.
(4), the final form of the learning rule for mk;s will be:
mkþ1;s ¼ mk;s þ as;m � dsðkÞ � ðak �mk;sÞ ð6Þ

where ak is the observed decision threshold in trial k. In this equation, as it was suggested by Williams (1992), we have set
as;k ¼ as;m � r2

s;k. Based on this learning rule, when dsðkÞ and ðak �mk;sÞ have the same sign, the mean will increase in the next
time-step, and it will decrease if they have different sign. Intuitively, this is an appropriate learning rule. For example, if tak-
ing action ak results in a positive value of dsðkÞ, it means that this action is probably a ‘‘good” action and so it would be desir-
able to move the mean toward it. Now, if mk;s < ak the mean should increase for the next time-step, which is the case in Eq.
(6). The amount of change in the mean, depends on how far is the current value of the mean from the chosen action (the term
ak �mk;s), and how large was the amount of the TD error.

It is easy to derive a similar learning rule for r2
s;k. However, to simplify the model, we assume that this parameter

increases or decreases linearly during the experiment:
r2
k;s ¼ r2

0;s þ as;r � k ð7Þ

Here, r2

0;s and as;r 2 ½�1;1� are free parameters of the model. The value of r2
s;k determines the balance between exploration

and exploitation in the model: larger values of this parameter means that the participant chooses values different from
the mean more often and therefore explores the policy space more. On the other hand, smaller values of this parameter
means that the participant uses values closer to the mean and therefore exploits what she has learned instead of exploration.
We expect that the participants explore less with experience and so the value of r2

s;k decreases. However, some participants
may decide to explore more with more experience and therefore we allow the parameter as;r to take both positive and neg-
ative values.

In the Actor-Critic architecture, the TD error signal is computed by the Critic. This module keeps the current estimates of
the state values and updates them using the following TD learning rule:
bV kþ1ðsÞ ¼ bV kðsÞ þ as;c � dsðkÞ ð8Þ
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The architecture of the model is depicted in Fig. 7. This figure shows the interaction between the agent, modeled as the
Actor-Critic architecture, and the environment. After the presentation of the cue at the beginning of a trial the state s is deter-
mined and both the Actor and the Critic are informed about it. The Actor then choses a value for the action based on its cur-
rent policy. Specifically, it draws a sample from the Gaussian distribution 3, given the current values of the parameters ms;k

and r2
s;k. This value, ak, is set as the decision threshold for the current trial. The participant responses as soon as the position

of the canoe exceeds this value on either side of the screen. Based on the chosen response and the state, the participant
receives some reward rk. The amount of this reward and the total time of the trial, dk, are sent to the Critic. After the pre-
sentation of the cue in the next trial, the Critic uses its current estimate of the values of the previous and current states,
the reward and trial time in the previous state, and its current estimate of the average reward rate, to compute the TD error.
This signal, then, is used to update both the state values, using Eq. (8), and the policy parameters, using Eqs. (6) and (7).

So far, we have assumed that the decision thresholds remain constant within a trial. Next, we extend this model to the
case where the decision thresholds can change dynamically within a trial. We can still represent the policy with the Gaussian
distribution 3, but now ms;k is a function of the elapsed time in the trial, and so we denote it by ms;kðtÞ. We need to represent
ms;kðtÞ with a parametric function which is flexible enough to generate different patterns that the decision threshold may
take, and has few parameters so the number of the free parameters of the model stays small. Following Hawkins,
Forstmann, Wagenmakers, Ratcliff, and Brown (2015) we use the following functional form for the thresholds which is
the Weibull cumulative distribution function:
7 In t
plausib
RL mod
Therefo
value o
ms;kðtÞ ¼ ws;k � 1� exp � t
ks

� �/s
 !" #

� 1
2
ws;k � w0

s

� �
ð9Þ
The free parameters are: ws;k; ks; /s and w0
s. To keep the number of free parameters low, we assume that the participant only

learns ws;k, and other parameters of this function remain constant during the experiment. To specify the learning rule for ws;k,

we first need to compute @ ln½pðs;ajhs;kÞ�
@ws;k

. We have:
@ ln½pðs; ajhs;kÞ�
@ws;k

¼ @ ln½pðs; ajhs;kÞ�
@ms;k

� @ms;k

@ws;k
¼ ðak �ms;kÞ

r2
s;k

� 0:5þ 0:5exp � tk
ks

� �/s
 !" #

ð10Þ
where tk is the time to complete trial k. Therefore, we use the following learning rule:
ws;kþ1 ¼ ws;k þ as;/ � dsðkÞ � ðak �ms;kÞ � 1þ exp � tk
ks

� �/s
 !" #

ð11Þ
We also use learning rule 7 for r2
s;k.

In Fig. 8, the function in Eq. (9) is plotted for different values of its parameters. Two points should be noted in this figure:
First, for different values of the parameters, this function can take different forms. Second, by changing w the shape of the
function may change dramatically. For example, in the middle panel of this figure, for w ¼ 200 the function is decreasing,
for w ¼ 100 it is constant, and for w ¼ 20 it is increasing (other parameters are kept constant).

Finally, we assume that the subjective value of reward is proportional to the number of coins obtained in each trial.
Specifically, we let rk ¼ bs;r � xk, where rk is the subjective reward, xk is the number of coins, and bs;r is the coefficient for con-
dition s ¼ E or H. The effect of this transformation, however, can be captured by q̂;as;c and as;/ and so we do not consider bs;r

as free parameters. The model with time-constant thresholds has 13 free parameters, ðr2
s;0;ms;0;as;r;as;m;as;c; bV s;0; q̂Þ,while

the model with time-varying thresholds has 19 free parameters, ðr2
s;0;ws;0;w

0
s; ks;/s;as;r;as;c;as;/; bV s;0; q̂Þ.7

2.4. Other computational models of Experiment 1

The models developed in the previous section can, potentially, learn the optimal policy that leads to the maximum pos-
sible average reward rate. Although computationally appealing, they may not be able to explain human participants’ learning
behavior in our experiments. Also, not all participants use the same learning strategy. Some participants may set their deci-
sion threshold at the beginning of the experiment and use the same threshold for the rest of the experiment. Also, in the RL
models of the previous section, it is assumed that the participants consider a cost for time. This is in contrast to the models
which have been proposed to explain the post-error slowing effect in perceptual decision making tasks. Based on these mod-
els, the participants increase (decrease) their decision threshold after an incorrect (correct) response (Laming, 1979; Smith &
Brewer, 1995) and only based on the values of the rewards. Finally, the participants may set two different desired levels of
he RL models of both experiments 1 and 2 we assume that q̂ is a fixed value and estimate it as a free parameter for each participant. This is not a
le assumption. The value of the reward rate should be estimated after each trial using the values of the rewards and trial times. We fitted a version of the
els in which q̂ was estimated using a simple moving average algorithm. However, this model resulted in larger BIC compared to the simpler RL models.
re, we do not report the results of these models here. One reason that models with constant q̂ resulted in lower BIC could be that in the experiments the
f the reward rate remains constant and therefore the additional complexity in the model for estimating q̂ is not necessary.
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accuracy and reaction time for the easy and hard conditions, based on the instructions at the beginning of the experiment,
and adjust their decision threshold to achieve those desired levels. In this section, we will develop models for Experiment 1
based on these assumptions.

In all these models, the decision threshold is modeled as a Gaussian random variable with the p.d.f. of Eq. (3). In the base-
line models below, the mean ms;k and variance r2

s;k remain constant during the experiment. For the other models, r2
s;k is

updated using Eq. (7). Therefore, the only difference between these models and the RL models in the previous section is
in the way ms;k is updated.

2.4.1. Baseline models
The simplest possible model for the experiment is to assume that no learning occurs during the experiment. We consider

two versions of this model. In the first version, which we call Model 0 for future reference, the participant sets two different
time-constant decision threshold for the two conditions. This model has 4 free parameters, ðmE;r2

E ;mH;r2
HÞ, which are the

mean and variance of the decision thresholds for the easy and hard conditions.
In the second version, Model 1, the participants sets two time-varying decision thresholds for the two conditions. The

decision thresholds have the functional form of Eq. (9). This model has 10 free parameters: ðr2
s ;ws;w

0
s; ks;/sÞ, for s ¼ E;H.

2.4.2. Adjusting thresholds proportional to reward
We will consider three versions of this model. In all these versions, the threshold is adjusted as a function of the subjec-

tive value of the reward received in a trial. Specifically, these models assume that if the participant receives a positive reward
in a trial, she will reduce her decision threshold for the next trial, while she will increase her decision threshold after receiv-
ing a negative reward. Let xk be the number of coins that the participant receives or loses in trial k. This will cause a subjec-
tive value of reward rk where:
rk ¼
½1� expð�bp � xkÞ�=bp; xk P 0
½1� expð�bn � xkÞ�=bn; xk < 0

�
ð12Þ
The parameters bp and bn control the shape of the subjective reward function (also called the utility function) for the positive
and negative rewards, respectively.

In the first version of the model, Model 2, the participant uses two different time-constant decision thresholds for the easy
and hard trials and adjusts them independently. At the beginning of the experiment, the mean of these decision thresholds
arem0

s ; s ¼ E or H. After each subsequent trial k of condition s, the mean of the corresponding threshold is updated as follows:
mkþ1
s ¼ mk

s þ as � rk ð13Þ

where as > 0 is the learning rate in condition s, and rk was defined in Eq. (12). This model has 10 free parameters,
ðms;0;r2

s;0;as;r;as; bp; bnÞ for s ¼ E;H.
In the second version of the model, Model 3, the participant uses time-varying thresholds. In contrast to the RL models,

we do not assume that the participant learns the parameters of these functions. Instead, the whole function is increased or
decreased after each trial:
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mkþ1
s ðtÞ ¼ mk

s ðtÞ þ as � rk ð14Þ

This model has 16 free parameters: (r2

s;0, as;r, ws, w
0
s, ks, /s, as, bp, bn)

In models 2 and 3, the decision thresholds in the two conditions are adjusted independently. That is, if for example trial k
is an easy trial, the threshold for the hard condition will not be updated after this trial. In the third version of this class of
models, Model 4, we assume that the reward received in one condition affects the threshold in the other condition.
Specifically, if trial k is from condition s, the thresholds corresponding to this condition and condition s0 – s are updated
as follows:
ms;kþ1ðtÞ ¼ ms;kðtÞ þ as � rk
ms0 ;kþ1ðtÞ ¼ ms0 ;kðtÞ þ cs0 � rk

ð15Þ
When cs ¼ 0 this model reduces to Model 3. It is worth noting that in the RL models, since the TD error dsðtÞ is a function of
both VðsÞ and Vðs0Þ, the rewards in one condition affect the adjustment of the threshold in the other condition.

2.4.3. Adjusting thresholds to achieve desired level of accuracy
The participant’s objective in this model is different from the previous models. In this model, it is assumed that the par-

ticipant has a desired level of accuracy for each condition. After each trial, the participant lowers her decision threshold if her
current estimate of accuracy is higher than the desired level and increases her threshold otherwise. Mathematically, after
trial k the thresholds are updated as follows:
ms;kþ1ðtÞ ¼ ms;kðtÞ þ as � ðhs � p̂s;kÞ ð16Þ

In this equation, as is the learning rate, hs is the desired level of accuracy, and p̂s;k is the participant’s estimate at trial k of

her accuracy in condition s.
We assume that the participant has a prior belief about her accuracy in each condition, and updates this belief after each

trial using the Bayes rule. The prior belief is modeled as a Beta distribution, Betaðas; bsÞ. Assume that up to trial k, the par-
ticipant has experienced condition s;ns times of which ns;c times her responses have been correct (and ns � ns;c incorrect).
Then, the posterior belief after trial k will be a Beta distribution, Betaðas þ ns;c; bs þ ns � ns;cÞ. We assume that the participant
uses the mean of this posterior as her estimate of the accuracy and so:
p̂s;k ¼ as þ ns;c

as þ bs þ ns
ð17Þ
The version of the model with time-constant thresholds, Model 5, has 14 free parameters, ðms;0;r2
s;0;as;r;as; as; bs; hsÞ, and the

version with time-varying thresholds, Model 6, has 20 free parameters, ðr2
s;0;ws;w

0
s; ks;/s;as;r;as; as; bs; hsÞ.

2.4.4. Adjusting thresholds to achieve desired level of accuracy and mean RT
This model can be considered as a generalization of Model 6. The participant’s objective in this model is to achieve a

desired level of both accuracy and mean RT. Let hs and Ts denote the desired levels of accuracy and mean RT for condition
s, respectively. After each trial k, the participant has an estimate of the current accuracy and mean RT in each condition. To
keep the number of the free parameters of the model low, we assume that the estimate of the accuracy is obtained by taking
the average of the number of correct trials in the last wa trials, and the estimate of the mean RT is obtained by taking the
average of the RT in the last wt trials, where wa and wt are free parameters. Let p̂s;k and t̂s;k be the estimates of the accuracy
and mean RT for condition s after trial k. These estimates are obtained as follows:
p̂s;k ¼ nc;s

wa
ð18Þ

t̂s;k ¼
Pk

i¼k�wtþ1di

wa
ð19Þ
where nc;s is the number of correct responses in the last wa trials, and di is the total time spent on trial i.
Now the question is how the participants must adjust their decision thresholds to achieve the desired levels of accuracy

and mean RT. We assume that the participants know that by increasing the decision threshold both their accuracy and mean
RT increases and vice versa (this information is given to the participants explicitly in the instructions). Now suppose that
both the current estimates of the accuracy and the mean RT are lower than their corresponding desired level. In this case,
to become closer to the desired levels, the participant must increase her decision threshold. But what if, for example, the
current estimate of the accuracy is lower than the desired level while the current estimate of the mean RT is higher than
the desired level?

Here, we consider a simple rule for updating the mean of the decision threshold:
ms;kþ1ðtÞ ¼ ms;kðtÞ þ Dms;k ð20Þ
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where
8 To
Dms;k ¼ aa � ðp̂s;k � hsÞ þ at � ð̂ts;k � TsÞ ð21Þ

In words, the change in the threshold is the weighted sum of the discrepancies between the current estimates and the
desired levels of the accuracy and mean RT. The weights aa and at can be considered as ‘‘attentional weights”: the relative
amount of attention that the participant pays to the discrepancy in the ‘‘dimensions” accuracy and RT. The notion of ‘‘atten-
tional weights” is used widely in the computational models of categorization (Nosofsky, 1986).

Not all free parameters in Eq. (21) are identifiable. Therefore, we use the following equation for model fitting which is
obtained by simple algebraic manipulation of Eq. (21):
Dms;k ¼ aa � p̂s;k þ at � t̂s;k þ cs ð22Þ

We only consider a version of this model with time-varying thresholds. This model, which we call Model 7, has 18 free

parameters, (r2
s;0, ws, w

0
s, ks, /s, as;r, at , aa, cs, wt , wa).

It is important to note that this model does not provide a normative account of the decision making process. For example,
if a participant has a very high level of desired accuracy and pays too much attention to this dimension (large value of aa) she
will eventually set her decision thresholds at values higher than the optimal values. Model 7 is meant to provide a reasonable
‘‘descriptive” account of the learning process. This provides an important alternative to the RL models which are based on the
optimization of performance.

It is not hard to see that if wa ¼ wt ¼ 1 and if there was only one state in the experiment, then Model 7 and the RL model
described above will be equivalent. Therefore, to be able to compare these models it is important to have two types of trials
and the cue at the beginning of the trials which creates an SMDP with two states as we saw before. Computational models for
Experiment 1 are summarized in Table 1. In this table, the RL models with time-constant and time-varying thresholds are
called Model 8 (or RLC) and 9 (or RLV ), respectively.

2.5. Computational models of Experiment 2

The goal here is to assess two hypotheses regarding the decisional mechanism of the participants. Based on the first
hypothesis, H1, since no cue is presented at the beginning of the trials, the participants use the same value of the decision
threshold for both easy and hard trials. As it was explained before, the corresponding SMDP model in this case will have only
one state. This hypothesis is particularly interesting due to the fact that the optimal behavior in this experiment is to use one
set of time-decreasing decision threshold for both types of trials (Drugowitsch et al., 2012; Rao, 2010). We will show this in
Section 3.1.

Based on the second hypothesis, H2, the participants use a difficulty-detection mechanism at the beginning of the trial to
identify the difficulty of the current trial and then set their decision threshold accordingly.

To compare these hypotheses, we consider three models based on the first hypothesis and one model based on the second
hypothesis. In the first model based on H1, M

1
H1
, the participants use a time-varying decision threshold, which is imple-

mented by the functional form 9, for both conditions. In addition, we do not consider any learning in this model. This model
has 5 free parameters: ðr2;w;w0; k;/Þ.

In the second model for H1;M
2
H1
, the threshold is modeled the same way. The only difference here is that in this model we

use a one-state version of the RL model to adjust the mean of the thresholds,ms;kðtÞ. When there is only one state, s ¼ s0 in Eq.
(5) and so the TD error will be dk ¼ rk � q̂ � dk, and does not depend on the state value anymore. We use this TD error together
with Eq. (6) to update the mean of the Gaussian distributions after each trial. We also assume that the subjective value of
positive and negative rewards are bp and bn, respectively. This model has 9 free parameters: (r2, w, w0, k, /, ar, bp, bn, q̂).

In the third model based on H1,M
3
H1
, as in the previous two models, the participants use the same threshold for both types

of trials. However, in contrast toM2
H1
, here the experiment is modeled as a two-state SMDP (this SMDP is not shown in Fig. 5).

The main assumption is that the participants set their decision threshold at the beginning of each trial and so they have to
use the same decision threshold for both types of trials. However, the adjustment of this single threshold is carried out after
the trial is finished and so the participant knows what was the trial condition. In other words, the experiment is modeled as a

two-state SMDP but the available action is the same in both states. This means that, in contrast to M2
H1
; bVkðs0Þ and bV kðsÞ are

not canceled out and the TD error will be computed using Eq. (5). This model has 12 free parameters: r2, w, w0, k, /, as;m, as;m,bV s;0, q̂.
In the model based on H2, MH2 , the participant first observed the canoe movement up to an internal deadline tD. If before

this deadline the canoe position exceeds a difficulty detection threshold aD, the participant decides that the current trial is
easy and sets her decision thresholds at �aE. Otherwise the trial is detected as being hard and the participant uses the
thresholds �aH . As before, the decision thresholds are modeled as Gaussian random variables.8 We only consider a version
of this model in which the thresholds aE and aH are time-constant. Specifically, if trial k is detected to be from the condition
reduce the number of free parameters, we assume that aD is a deterministic variable.



Table 1
Computational models of Experiment 1.

Model Thresholda Parameters No. of free parameters

0 C r2
s , ms 4

1 V r2
s , ws , w

0
s , ks , /s 10

2 C r2
s;0, ms;0, as;r , as , bp , bn 10

3 V r2
s;0, as;r , ws , w

0
s , ks , /s , as , bp , bn 16

4 V r2
s;0, as;r , ws , w

0
s , ks , /s , as , bp , bn , cs 18

5 C r2
s;0, ms;0, as;r , as , as , bs , hs 14

6 V r2
s;0, ws , w

0
s , ks , /s , as;r , as , as , bs , hs 20

7 V r2
s;0, ws , w

0
s , ks , /s , as;r , at , aa , cs , wt , wa 18

8ðRLCÞ C r2
s;0, ms;0, as;r , as;m , as;c , bV s;0, q̂ 13

9ðRLVÞ V r2
s;0, ws;0, w

0
s , ks , /s , as;r , as;c , as;/ , bV s;0, q̂ 19

a C:time-constant, V:time-varying.

Table 2
Computational models of Experiment 2.

Model Parameters No. of free parameters

M1
H1

r2, w, w0 , k, / 5

M2
H1

r2, w, w0 , k, /, ar , bp , bn , q̂ 9

M3
H1

r2, w, w0 , k, /, as;m , as;m , bV s;0, q̂ 12

MH2 r2
s , ms;0, as;c , as;m , bV s;0, q̂, tD , aD 13
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s, the value of the decision threshold is a sample from a Gaussian variable with mean ms;k and variance r2
s . The value of the

means are updated after each trial using Eqs. (6) and (8). This model has 13 free parameters: (r2
s , ms;0, as;c , as;m, bV s;0, q̂, tD,

aD). Computational models of Experiment 2 are summarized in Table 2.

2.6. Model fitting

We fitted each model to the trial by trial values of the decision threshold for each participant separately. In all models, the
threshold for condition s at trial k is modeled as a Gaussian random variable with mean ms;kðtÞ and variance r2

s;k. For a given
set of values of the parameters for each model, we can compute these quantities for all k and s. The likelihood of observing
the value ak for the decision threshold for a participant at trial k given that the trial was from condition s is:
lk ¼ Pr½akjs; k;ms;kðtÞ;r2
s;k; tk� ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pr2

s;k

q exp � ½ak �ms;kðtkÞ�2
2r2

s;k

 !
ð23Þ
Notice that we have usedms;kðtkÞ, the value of the decision threshold at time tk, where tk is the participant’s reaction time
in trial k. Also, although not explicitly mentioned in this equation, we use ms;kðtkÞ > 0 if the participant’s response was cor-
rect and ms;kðtkÞ < 0 if the response was incorrect in trial k. Therefore, the observed data for each participant has the form
ðyk; tk; akÞ; k ¼ 1;2; . . . ;N, where yk is the participant’s response (left or right). For each participant and each model we found
the values of the parameters of the model such that the likelihood of the observed data was maximized. To find these values
we used the differential evolution method for optimization (DEopim package in R, Mullen, Ardia, Gil, Windover, & Cline,
2011).

3. Results

3.1. Optimal performance

In this section, we compute the optimal decision thresholds which result in the maximum possible average reward rate
for the two experiments. Previous studies have used dynamic programming to obtain the optimal decision thresholds
(Busemeyer & Rapoport, 1988; Drugowitsch et al., 2012; Frazier & Yu, 2008; Rao, 2010). To do this, both time and the range
of possible values for the accumulated information are discretized. Then it is assumed that at each time-step and value of the
accumulated information, the participant has to make one of two possible actions: continue accumulating information or
stop and make a decision. There is a cost for each time step that the decision is not made. This results in a discrete time
and state MDP for which the optimal policy can be found using dynamic programming.
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Here, we take another approach for computing the optimal thresholds. Since in all computational models that we con-
sider, the time-varying boundaries are modeled as a Weibull function, for each experiment we find the values of the param-
eters of a Weibull function that maximizes the reward rate. Specifically, for each set of values of the parameters of the
Weibull function, we simulated the canoe movement path 10,000 times and computed the reward and reaction time for each
simulated path. Then the reward rate was computed as the average value of the reward divided by the average value of the
reaction time in these simulations. We found the optimal values of the parameters using differential evolution method for
global optimization (DEopim package in R, Mullen et al., 2011).

The optimal thresholds for Experiments 1 and 2 are shown in Fig. 9. The optimal threshold for the hard trials in Exper-
iment 1 is zero. For the easy trials, the optimal threshold remains constant (at about 155 pixels) up to about 13 s and col-
lapses rapidly afterwards. This collapse is because there is a 15 s deadline in each trial and if the participant does not
respond before this time the trial is considered as incorrect. Therefore, the thresholds collapse to insure that a response will
be given in each trial. The constant optimal threshold is interesting. If there is only one type of trials, based onWald’s famous
theorem on sequential probability ratio test, the optimal threshold is constant (Bogacz et al., 2006; Wald &Wolfowitz, 1948).
Our results suggest that even if there are more than one type of trials, intermixed randomly, and if it is possible to use a
different threshold for each type of trials (by presenting a cue in Experiment 1), then the optimal threshold for each condi-
tion is also constant.9

In Section 2, we proposed two models for Experiment 2. In the single-state SMDP model the participant adopts one time-
varying threshold for both easy and hard trials, while in the inferred-state SMDP model the participant tries to detect the
difficulty of the trial and then sets the decision thresholds accordingly. The right panel of Fig. 9 shows the single optimal
threshold for the first model. As it can be seen, the optimal threshold is time-decreasing. Intuitively, using this form of
the decision threshold looks reasonable: if the accumulated information has not reached the decision threshold after some
time, the trial is more likely to be a hard trial and so it is not worth it to spend much more time on it, and therefore it is
reasonable to decrease the decision threshold. With this threshold the average reward rate is 1.13.

In the second model, the participant accumulates information up to a time tD. If the canoe position reaches a threshold aD
before this deadline, the participant detects that the trial is easy and sets her decision threshold at �aE. Otherwise, she will
use �aH as the thresholds in that trial. We computed the values of the parameters tD; aD; aE and aH for which the reward rate
is maximized in Experiment 2. The optimal values of the parameters are: tD ¼ 1:5; aD ¼ 135; aE ¼ 135; aH ¼ 90. For these val-
ues the average reward rate is 0.88. Therefore, the maximum average reward rate obtained by the first model is larger than
the second model. In other words, detecting the difficulty and then setting the decision thresholds does not have any advan-
tage over using the same decision threshold for both easy and hard trials. However, as we will see, most of the participants
used the second strategy.

3.2. Behavioral results of Experiment 1

This experiment consisted of 40 blocks of trials. We recorded participants’ choice, reaction time and the canoe position at
the time the participant responded (the decision threshold) in each trial. These quantities as functions of the block number,
averaged across all 26 participants, are shown in Fig. 10. As it can be seen in the left panel of this figure, on average the par-
ticipants learn to decrease their threshold for responding in the hard trials. Also, it seems that the threshold in the easy trials
increases slightly. Mixed-effect regression analysis with block number and condition as regressors and considering block
9 We computed the optimal thresholds for many different values of the experiment’s parameters (values of the rewards, difficulty levels, delay penalties and
so on) and for all of them the optimal thresholds were time-constant.
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number as the random effect, showed that the change in the decision threshold (as a function of the block number) in the
easy condition is not significant (p ¼ 0:3508) while it is significant in the hard condition (p < 0:0001). Also, the difference
between the two conditions is significant (p < 0:0001).

In the previous section, we showed that the optimal value of the decision threshold is 155 and 0 pixels for the easy and
hard trials, respectively. As it can be seen in Fig. 10, for the hard trials the participants’ thresholds were much higher than the
optimal value at the beginning of the experiment and decreased by learning. For the easy trials, for 5 of the participants the
average of the decision threshold in the first block was higher than 155 pixels, and for 21 participants this value was lower
than 155 pixels. Fig. 11 shows the average value of the decision threshold in the easy trials in each block for these two groups
of participants. The best fitted linear model to this data is also shown in this figure. The slope of the line is �1.12
(tð38Þ ¼ 3:31; p ¼ 0:002) for the group with higher than optimal initial threshold, and 0.12 (tð38Þ ¼ 3:06; p ¼ 0:004) for
the group with lower than the optimal initial threshold. Therefore, the direction of the change in the decision threshold is
toward the optimal value for both groups of the participants.

Figs. 1 and 2 in Supplementary material show the decision threshold for each participant during the experiment. As it can
be seen in these figures, there is a lot of individual differences. One question that arises is how many participants have even-
tually learned the optimal decision thresholds. We investigate this question using Bayesian statistical analysis of the thresh-
olds in the last 5 blocks of trials for each participant. To this end, we assumed that this data for each participant comes from a
Gaussian distribution with a mean lP which has a Gaussian prior distribution, and a standard deviation rP which has a uni-
form prior distribution. Specifically, we used lP � NðlD;10;000r2

DÞ and rP � Unif ðrD=1000;1000rDÞ, where lD and rD are
the mean and standard deviation of the participant’s threshold in the last 5 blocks, respectively. We used large values for
the standard deviation of the priors to reduce the effect of the prior on the posterior. Fig. 12 shows the mean of the estimated
posterior alongside with the 95% highest density interval (HDI) of the posterior for each participant separated by trial condi-
tion.10 The 95% HDI is an interval containing the 95% of the most credible values in the posterior (Kruschke, 2014). The HDIs can
10 To perform theses analyses we used the codes accompanying Kruschke (2014) and available at the book’s website.
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be used to reject or accept a null hypothesis. To this end, one should specify a region of practical equivalence (ROPE) around the
null value, which is an interval indicating the values that are equivalent to the null value for practical purposes (Kruschke, 2013,
2014). The dash lines in Fig. 12 indicate the ROPE for the easy and hard conditions.11 Specifying the ROPE is rather arbitrary and
so we do not emphasize this type of analysis much. However, it can be seen in the figure that for the easy trials, most of the
participants learned to use threshold less than or equal to the optimal value (155 pixels). For the hard condition, several of
the participants did not learn to reduce the threshold to zero.

3.3. Comparison of computational models of Experiment 1

We attempted to characterize the participants’ learning by fitting 10 computational models to the behavioral data. The
models are summarized in Table 1. All models were fitted to each participant’s data separately. We do not expect that all
participants use the same learning mechanism. Some participants may not adjust their decision threshold during the exper-
iment. Therefore, it is important to examine which model can explain each participant’s data the best.

The results of the model fitting and comparison are depicted in Figs. 13 and 14 and Table 3. The top row of Fig. 13 shows
the number of participants for which each model has been the best model based on both the Bayesian information criterion
(BIC) and the Akaike information criterion (AIC). Based on both measures of the goodness of fit, the RL model with time-
varying decision thresholds is the best model for most of the participants.

One way to compare the models is to treat BIC/AIC as the log model evidence for each participant and investigate if there
is a significant difference between the BIC (AIC) for a pair of models. The average (across participants) difference between BIC
of Model 0 and Model 9 (RL model with time-varying thresholds) was 131. This difference was BIC1 � BIC9 ¼ 42:96 for Model
1 versus Model 9, and BIC3 � BIC9 ¼ 4:18. However, AIC3 � AIC9 ¼ 15:50. In words, based on AIC Model 9 performed signif-
icantly better than Model 3, but the difference between the models is not significant based on BIC. The average of the dif-
ference between the BIC/AIC of each model to Model 0 is shown in Fig. 14. It can be seen that all models perform
strongly better than this baseline model.

We can compute this difference for each pair of the models. However, this needs many pairwise comparisons. Another
problem is that the results based on AIC and BIC are not consistent to some extent: based on AIC, there is much stronger
evidence that model 9 is the best model. Part of the problem is that we are comparing 10 models and this makes the com-
parisons to be affected more by possible outlier values in BIC or AIC. A more sophisticated approach for comparing this num-
ber of models have been proposed by Stephan, Penny, Daunizeau, Moran, and Friston (2009). In this method, the models are
11 In each step of the Markov chain governing the canoe movement, the canoe moves 45 pixels in one direction. This is why we have specified the ROPE for the
hard condition to be the interval [0,45].
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Table 3
Goodness of fit of computational models of Experiment 1.

Model NLL AIC BIC

0 1735(51.7) 3478 3493
1 1673(47.3) 3367 3404
2 1697(49.5) 3415 3453
3 1636(46.2) 3305 3366
4 1632(45.8) 3301 3369
5 1690(48.7) 3408 3461
6 1631(45.8) 3302 3377
7 1632(45.4) 3300 3368
RLC 1681(48.8) 3389 3438
RLV 1626(45.7) 3290 3361

Note: The numbers in the parentheses are standard errors. NLL = negative log likelihood.
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considered as random variables. The probabilities that the data of a participant chosen at random is generated by each model
form a multinomial distribution. The parameters of this distribution are described by a Dirichlet distribution. Stephan et al.
proposed a simple variational algorithm to estimate the parameters of this distribution (see Stephan et al. (2009) Eq. (14)).
Given the parameters of the Dirichlet distribution, it is possible to compute the probability that a model is more likely than
any other model. This is called the exceedance probability (EP). To compute these probabilities, it is necessary to have an esti-
mate of the marginal likelihood of each modelm for the data set D, i.e. pðDjmÞ. The EPs for all 10 models, using BIC and AIC as
the estimate for logðpðDjmÞÞ, are shown in the bottom row of Fig. 13.12 Based on both AIC and BIC as the estimate, the RL model
with time-varying thresholds is the most likely model. The EP values based on AIC, strongly support this model. The EP value
based on BIC is 0.53 for this model, and 0.21 and 0.23 for models 1 and 3, respectively.

An important point that is consistent among all these analyses is that for each class of models, the time-varying version of
the model performs better than the time-constant version. The EPs for all models with time-constant thresholds, based on
both AIC and BIC, is almost zero. If a participant is using time-varying thresholds but we fit a time-constant threshold model
to her data, the residuals between the observed canoe position (at the time that the participants has responded) in each trial
and the predictions of model will be a function of the reaction time in the trials. For example suppose that the participant has
used time-decreasing decision thresholds. In this case, the observed canoe positions for trials with short reaction times will
be larger than those with longer reaction times. Now if we fit a model with time-constant threshold, the best fitted value of
the decision threshold will be smaller than the true decision threshold for short reaction times, and larger than the true deci-
sion threshold for longer reaction times. Therefore, the residuals between the observed canoe positions in each trial and this
best fitted value will be a function of the reaction time.

The residuals between the observed canoe position in each trial and the predictions of models 8 and 9 as a function of the
reaction time are shown in Fig. 15 (for all trials from all participants). A fitted linear model and spline smoother are also
shown in this figure. Model 8 and 9 are the time-constant and time-varying variants of the RL model. Among models with
time-constant threshold, Model 8 has the lowest AIC and BIC (see Table 3). As it can be seen, the residuals for model 8 are a
function of the reaction time while this is not the case for model 9. The slope in the fitted linear model for the residuals of
Model 8 is �3.73 and significantly lower than zero (p < 2e� 16). For the residuals of Model 9 the slope is �0.468 and is not
significantly different from zero (p ¼ 0:15). This provides another evidence favoring the models with time-varying thresh-
olds over the models with time-constant threshold. Fig. 3 in Supplementary material, shows the fitted decision thresholds
for each subject predicted by Model 9. As it can be seen, the fitted thresholds are time-varying for most of the subjects.

A main assumption in all the models is that the thresholds have Gaussian distributions. Fig. 4 in Supplementary materials
shows the histogram of the residuals obtained from Model 9. As it can be seen, this assumption seems reasonable.

One reason that the results from AIC and BIC are partly inconsistent could be that the number of the free parameters of
the models is large relative to the number of the trials (between 350–450 trials for different participants). To examine this
possibility more, we ran 2 more male participants for three sessions of Experiment 1. The first session consisted of 40 blocks
and the other two sessions consisted of 35 blocks. Each session was held in one day and there were not more than 2 days gap
between the sessions. All other task parameters were exactly the same as for the one-session version of the experiment. We
fitted models 1, 3 and 9 to the data of these participants. The results are reported in the Supplementary material. The results
show that for both participants the RL model with time-varying thresholds is the best model based on both AIC and BIC.
More participants should be run to make conclusions, however, these results provide evidence favoring this model.

3.4. Behavioral results of Experiment 2

This experiment consisted of 35 blocks of trials. The crucial difference between this experiment and Experiment 1 is that
here there is no cue indicating the condition of the upcoming trial. Therefore, if the participant sets her decision threshold at
12 To compute EPs, we used the MATLAB code developed by Samuel J. Gershman and available at. See Gershman (2016) for more details.
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the beginning of each trial, she must use the same decision threshold for both easy and hard trials. On the other hand, the
participant may use a mechanism to detect the condition of the trial first and then sets her decision threshold.

The decision thresholds, reaction times and accuracy, averaged across all 20 participants, are shown in Fig. 16. As it can be
seen in this figure, the decision threshold decreases in both easy and hard trials. Interestingly, on average, the decision
thresholds for the easy and hard conditions are different. The linear mixed-effect analysis of the decision threshold (with
block number and condition as regressors and considering block number as the random effect) showed that the decision
thresholds were significantly different in the easy and hard conditions (p < 0:0001). Also, the reduction in the decision
threshold is significant in both conditions (p ¼ 0:0091), but it is not different between the conditions (p ¼ 0:0829).

It is important to note that the difference between the decision thresholds for the easy and hard trials, observed in Fig. 16,
does not necessarily imply that the participants are using two different decision thresholds for these two conditions. A single
time-decreasing decision threshold for all trials can also explain the pattern observed in this figure. Since in the hard trials
the probability that the canoe moves to the correct direction is lower, on average it takes longer for the canoe to get away
from the center of the screen. Therefore, if a participant uses a time-decreasing threshold, in most of the hard trials, the
canoe will not reach the threshold position in a short course of time, and so the mean RT will be higher and the decision
threshold will be lower for the hard trials. To clarify this, the result of simulating the canoe position using two values of
P0 (the probability that the canoe moves to the correct direction in each time step), together with an example of a time-
decreasing threshold is shown in Fig. 17. For the red paths, P0 ¼ 0:99 and for the green paths P0 ¼ 0:5. As it can be seen, most
of the red (which correspond to the easy trials) paths reach the threshold around 5 s, when the value of the decision thresh-
old is high. Most of the green paths, on the other hand, reach the threshold later when the decision threshold has decreased.
This shows that the pattern of RT and decision thresholds observed in Fig. 16 can be accounted for by a single time-
decreasing decision threshold. Therefore, we need more sophisticated methods to distinguish between a single-threshold
and two-threshold hypotheses. In the next section, we use computational modeling to investigate this question more rigor-
ously. However, some insight can be gained by plotting the average decision threshold (canoe position) as a function of the
reaction time. Fig. 18 shows the average canoe position (averaged across all subjects and all blocks) as a function of the reac-
tion time quantiles for the easy and hard trials. As it can be seen, except for the fastest 20% of trials, the decision threshold on
average is different in the two types of trials. This is consistent with the assumption of the inferred-state SMDP model.

3.5. Comparison of computational models of Experiment 2

Our goal here is to compare two hypotheses. Based on the first hypothesis, the participants set their decision threshold at
the beginning of each trial and before the trial starts. Since there is no cue presented at this time, the participants have to use
the same decision threshold for both the easy and hard trials. This assumption has been made in previous research (Ratcliff,
2002; Ratcliff & Smith, 2004; Ratcliff et al., 1999). Importantly, in Experiment 2, the optimal behavior is also to use one deci-
sion threshold for both types of trials. For the task parameters used for this experiment (rewards, delay penalties, inter-
stimulus intervals and so on) this optimal threshold is a time-decreasing function of the elapsed time in a trial. Based on
the second hypothesis, in each trial the participant first attempts to recognize the difficulty level of the current trial, and then
sets different decision thresholds based on the detected difficulty level.
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To compare these two hypotheses, we fitted computational models corresponding to each hypothesis and examine which
model can account for the data better. The computational models corresponding to each hypothesis are summarized in
Table 2. Models M1

H1
, M2

H1
and M3

H1
all assume that the participants use only one threshold for both easy and hard trials.

The threshold is modeled as the Weibull function. The difference between these models is in the way the threshold is
updated. In M1

H1
there is no learning mechanism, while in M2

H1
the experiment is modeled as a one-state SMDP and the

parameters of the decision thresholds are updated using a variant of the REINFORCE algorithm (Eq. (6)). In M3
H1

the experi-
ment is modeled as a two-state SMDP but the available action in both states (the decision threshold) is the same. In MH2 , the
model based on the second hypothesis, the experiment is modeled as an SMDP with two states corresponding to the two
types of trials, easy and hard. In each trial, if the canoe position reaches a threshold aD before an internal deadline tD, the
participant recognizes the trial as easy and sets her decision thresholds at �aE. Otherwise, the trial is considered to be hard
and the participant uses thresholds �aH . The value of these thresholds are updated using an RL algorithm. See Section 2 for
more details.

The number of participants for which each model was the best and the exceedance probabilities (EP) based on both AIC
and BIC for the three models are shown in Fig. 19. ModelMH2 is the best model for 15 and 13 participants out of 20, based on
AIC and BIC, respectively. The EPs based on both AIC and BIC are almost 1 for this model and 0 for the models based on the
first hypothesis. NLL, AIC and BIC of the models averaged across all participants are presented in Table 4. These results
together strongly suggest that the participants use a mechanism to detect the difficulty of the trial first and then set the cor-
responding decision threshold. Next, we examine the properties of the fitted model MH2 more.

The first question that may arise is how accurate participants are in detecting the trials difficulty. The top panel of Fig. 20
shows the probability of correctly detecting the difficulty of a trial for each difficulty level for all participants. To generate
this figure, we fitted model MH2 to obtain tD and aD for each participant. Then, for each participant, we computed the prob-
abilities of correctly detecting the difficulty given the canoe path that the participant experienced in each trial and the esti-
mated values of tD and aD for that participant. As we can see, most of the participants are much more accurate in detecting
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Table 4
Goodness of fit of computational models of Experiment 2.

Model NLL AIC BIC

M1
H1

1862(53.8) 3734 3754

M2
H1

1821(51.5) 3661 3696

M3
H1

1827(52.9) 3679 3726

MH2 1790(46.5) 3606 3656

Note: The numbers in the parentheses are standard errors.
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for the first and last 20 trials for each participant to show the effect of learning.
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the hard trials than the easy trials. Specifically, for many participants the probability of correctly detecting an easy trial is less
than 0.5. This means that these participants tended to detect a trial as hard more than easy.

The bottom panel of Fig. 20 shows the average of the difficulty detection threshold (aD) together with the average of the
decision thresholds for the two types of trials (aE and aH) at the beginning and end of the experiment. This figure is plotted as
follows: For each participant, we first simulated modelMH2 with the best fitted values of the parameters for that participant.
This results in a predicted value of the mean of the decision thresholds, ms;k, for each trial k. Then, we computed the median
of these predicted values for the first and last 20 trials in the experiment for each participant. The figure shows the mean and
the standard error of these median values across all participants. It is important to note that in MH2 we assume that the par-
ticipants do not adjust the difficulty detection threshold and so its value is the same for the first and last 20 trials in the fig-
ure. As it can be seen in this figure, the mean of the Gaussian representing the threshold in the easy trials,mE;k, is much larger
than that of the hard trials, mH;k. The mean in both conditions decrease with experience. The estimated value of the param-
eter tD (the internal deadline for detecting trial as easy) is 2.37 (with standard error of 0.23). Together, these results show
that the participants try to respond rather quickly by detecting most of the trials as hard and using a lower value of the deci-
sion threshold for these trials.

4. Discussion

When a sequence of decisions should be made during a limited time interval, the total outcome depends not only on the
outcome of each decision, but also on the time spent on each decision on average. If the decisions have different properties,
the decision maker should decide how much time to spend on each decision in order to achieve the maximum outcome. Lit-
tle is know about how human and animals allocate limited time to decisions with different properties.
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In this paper, we reported the results of two experiments to investigate this question. In both experiments, the total dura-
tion of the experiment was fixed and the number of the trials that a participant could experience depended on her speed in
responding. Two types of trials were intermixed randomly in each block of the experiments: easy trials with larger absolute
value of positive and negative rewards (for correct and incorrect decisions), and hard trials with smaller values of positive
and negative rewards. We used a novel stimulus, the canoe movement detection task, which enabled us to observe the par-
ticipants’ decision thresholds directly. We used computational modeling to examine several aspects of the decision making
process in these experiments. In what follows, we discuss our findings in each of these, separately.

4.1. Allocation of limited time to decisions with different outcome

In the previous studies that investigated the optimal speed-accuracy trade-off, all trials in each block were of the same
type (Balci et al., 2011; Karsilar et al., 2014; Simen et al., 2009). Our experimental design can be considered as an extension to
these paradigms in that here the amount of time a participant should allocate to one type of decision to achieve the optimal
performance, depends on the task parameters for all types of decisions.

While we were writing this paper, another group of researchers, independently, reported their results on two experi-
ments similar to what we reported here (Oud et al., 2016). Specifically, in study 2 in that paper, participants performed a
perceptual decision making task in which the hard and easy trials were presented randomly in blocks with fixed duration.
Also, the hard trials were associated with lower stakes than the easy trials. In both experiments, no cue was presented to the
participants. Their results showed that the participants were slower in the hard trials than the easy trials. They concluded
that the participants are spending too much time on hard trials which have low relative reward and so the behavior is sup-
optimal. To provide stronger evidence for sub-optimality, they introduced an intervention in some blocks: in some randomly
chosen trials of these blocks, the participants were motivated to make their choice faster. The results showed that in these
intervention blocks, the participants achieved more rewards than the normal blocks, which shows that the participants are
too slow when there is no intervention and so sub-optimal.

Although these results show that the participants are sub-optimal, they do not necessarily show that the participants are
spending toomuch time in only the hard trials. Since in both of their experiments the hard and easy trials are intermixedwith
no cue presented, the participants may have adopted a single time-decreasing optimal threshold. As we showed (see Fig. 17),
in this case, although the behavior is optimal, the RT in the hard trials will be larger than the easy trials. Even if the participants
adopt two different decision thresholds, and even if the threshold for the hard condition is lower than the easy condition, it is
still possible to observe slower RT for hard trial just because the rate of information accumulation in the hard trials is lower.

Also, as the results of Experiment 1 showed, some participants are faster than optimal and some others are slower than
optimal. The intervention introduced by Oud et al. (2016) can be useful for slower than optimal participants but will hurt the
performance of the faster than optimal participants. They reported that in their perceptual decision making task, the inter-
vention was beneficial for 60% of the participants. Since in their experiment it was not possible to observe the decision
thresholds directly, it is not possible to explain why this is the case.

An interesting pattern thatwe observed in Experiment 1, is thatmost of the participants used lower than optimal threshold
(assuming that the threshold is time-constant) at the beginning of the experiment (see Fig. 11). This means that these partic-
ipants paid more attention to time than their accuracy. This is in contrast to some previous findings which showed that the
participants used higher than optimal decision thresholds (Balci et al., 2011; Bogacz et al., 2010; Simen et al., 2009;
Zacksenhouse, Bogacz, & Holmes, 2010). The experiments used in these papers and in the current paper differ in several ways
and so it is hard to decide why our results are not consistent with the results of these papers. One plausible source of differ-
ence could be the large perceptual effect observed in these studies (see for example Fig. 8 in Balci et al. (2011)). Currently, we
are conducting experiments similar to Experiment 1 but with the random dotmotion as the stimulus to investigate this more.

4.2. Shape of decision thresholds

We showed that in Experiment 1, the optimal threshold for both the easy and hard trials is time-constant for most of the
trial duration and decreases rapidly afterwards (left panel of Fig. 9). To examine the shape of the decision thresholds that the
participants adopted in this experiment, we fitted two versions of each computational model: one with time-constant
thresholds and one with time-varying thresholds in which the threshold was modeled as a Weibull function. The results
of comparing the models provided strong evidence favoring time-varying thresholds: for all participants and all models,
the time-varying version of the model fitted better than the time-constant version. Most of the participants used time-
decreasing boundaries with a shape different from the optimal thresholds (Fig. 3 in Supplementary material).

Time-decreasing thresholds are becoming more popular among researchers mostly based on two sources of evidence.
First, recent neurophysiological findings support the notion of an ‘‘urgency signal” to make a decision as time elapses in a
trial (Churchland et al., 2008). This signal can be considered as being equivalent to time-decreasing thresholds
(Thura, Beauregard-Racine, Fradet, & Cisek, 2012).13 Second, time-decreasing thresholds arise as the optimal solution in several
13 It is important to note that all these studies use paradigms and stimuli which result in fast decisions. It would be interesting to investigate if the same
results can be obtained using stimuli similar to the canoe task which result in much slower decisions.
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experimental designs (e.g., deffered decision making with limited resources to purchase information (Busemeyer & Rapoport,
1988), perceptual decision making with deadline (Frazier & Yu, 2008), perceptual decision making with mixed levels of diffi-
culty and without cue (Drugowitsch et al., 2012)).

Despite this popularity, the behavioral evidence supporting these models is less prevalent. To the best of our knowledge,
the most comprehensive comparison between the time-constant and time-decreasing models is provided by two recent
papers by Hawkins et al. (2015) and Voskuilen, Ratcliff, and Smith (2016). Model comparison results of Hawkins et al.
(2015) showed that the time-constant thresholds were preferred over the time-decreasing thresholds for most of the par-
ticipants. Consistent with these results, Voskuilen et al. (2016) found that the time-constant thresholds provide better fit
to the data. In addition, the fitted time-varying thresholds were very similar to the time-constant thresholds because the
amount of decrease in the threshold was very small (see also Karsilar et al., 2014).

The difference between our results and the results found by these papers could have several reasons. First, the stimuli
used were different in these studies. Hawkins et al. (2015) used random dot motion task, brightness discrimination task,
and dot separation task. Voskuilen et al. (2016) used numerosity discrimination task and the random dot motion task. In
all these experiments, the decision thresholds are not observable directly and their properties should be inferred from
the choice and reaction time data. In contrast, in our canoe movement detection task, we inferred the shape of the decision
threshold directly from the time series of the observed values of the decision thresholds in each trial. Another important dif-
ference is that the reaction time in the studies used in Hawkins et al. (2015) and Voskuilen et al. (2016) is lower than in our
experiment. For example, the median reaction time in all conditions of all 6 experiments reported in Voskuilen et al. (2016) is
less than 0.8 s, while the median reaction time in the easy condition of Experiment 1 of the current paper is more than 3 s
(middle panel of Fig. 10). This difference is important because if the participants have to make their decisions very quickly,
they may not have enough time to decrease their decision threshold. Consistent with this, several previous behavioral stud-
ies on the expanded judgment or deferred decision-making tasks have demonstrated that the subjects need less evidence to
make their decision as time elapses in a trial (Busemeyer & Rapoport, 1988; Rapoport & Burkheimer, 1971; Sanders & Linden,
1967). In these experiments, the evidence for each choice is provided in a very low rate (e.g., every 2 s) and the average reac-
tion time is large.

Second, in experiments reported in Hawkins et al. (2015) and Voskuilen et al. (2016) the participants do not receive
reward based on their performance. In contrast, in our experiments the participants are motivated to spend not too much
time on each trial. Therefore, even in the easy trials, the participants needed less information to make their decisions as
the time elapsed in a trial. Although, as we showed, this strategy was not optimal.

4.3. Optimal decision threshold

We chose the parameters of Experiment 1 such that the optimal strategy for the hard trials was to respond as quickly as
possible (zero threshold). Our statistical analysis showed that 11 out of 26 participants did not learn this simple strategy by
the end of the experiment (Fig. 12). Also, for the easy trials, some participants used higher than optimal and some others
used lower than optimal decision thresholds. In Experiment 2, the participants behaved sub-optimally by detecting the dif-
ficulty of the trial first and then setting the decision threshold. Sub-optimal behavior has been reported in some previous
studies of the speed-accuracy trade-off. Simen et al. (2009) found that the participants used higher than optimal decision
thresholds. Also, the results of Karsilar et al. (2014) showed that in experiments with deadline, where the optimal decision
threshold is time-decreasing, the participants did not decrease their decision threshold within a trial. One reason for this
sub-optimality could be the lack of enough practice. Balci et al. (2011) showed that with extensive practice (about 14 ses-
sions) the participants’ decision threshold became closer to the optimal values.

Every conclusion about the optimality should be made with caution. In all these studies, the optimality is defined with
respect to the actual value of the reward that a participant can earn. However, it is well-known that the subjective values
of positive and negative rewards could be dramatically different from the actual values. If, for example, the absolute subjec-
tive value of negative rewards is larger than that of equal positive rewards, then the ‘‘subjective optimal threshold” will be
higher than the value of the decision threshold that maximizes the actual reward. In addition, we showed that in our exper-
iments, the cost of time is equal to the average reward rate. The participants, however, may consider a subjective value for
the cost of time. This will also change the shape and value of the optimal decision threshold. In a recent paper, Fudenberg,
Strack, and Strzalecki (2015) proved (Theorem 6 in that paper) that for a diffusion process with arbitrary time-varying deci-
sion thresholds �bðtÞ, it is always possible to find a function cðtÞ as the cost of time, such that �bðtÞ is optimal in the sense
that it leads to minimum value of the total cost. In other words, any observed decision threshold could be considered as opti-
mal for a specific cost function. Also, it is possible that the subjects emphasize accuracy over reward (Maddox & Bohil, 1998).
Balci et al. (2011) considered this possibility by fitting a model in which the weight assigned to the accuracy over the reward
was a free parameter. Their results showed on average the value of this parameter decreased by practice (see Fig. 9 in that
paper). One way to interpret these results is as follows: the participants try to maximize a cost function which is different
from the reward rate at the beginning but converges to it with practice. Therefore, the deviation from optimality could be the
result of considering a sub-optimal cost function.

The RL models proposed here are based on the notion of optimizing the reward rate. Other notions of optimality have
been considered in previous work. For example Hawkins, Brown, Steyvers, and Wagenmakers (2012) proposed that the
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subjects set their thresholds such that the total experiment time is minimized while a desired level of accuracy is achieved.
They reported the results of an experiment in which each trial could be from one of several possible difficulty levels (in their
experiments the difficulty level is determined by the number of possible alternative responses in each trial). The total num-
ber of the trials was fixed. In this setting, there are several sets of values for the decision thresholds which result in the same
value of the overall accuracy. Based on the authors’ hypothesis, among these values, the subject sets the thresholds at the
values which result in the minimum total experiment time (min-RT criterion). In contrast to the models proposed in the cur-
rent paper, the min-RTmodel does not specify how these thresholds are learned on a trial-by-trial basis. Instead, the model is
fitted to the data averaged across difficulty levels. Model 7 proposed in Section 2.4.4, can be considered as a simple imple-
mentation of learning based on the min-RT criterion.14 Comparing the models based on the reward rate maximization and the
min-RT criteria is an interesting future line of research. For a comprehensive comparison, it is necessary to fit both models to
experiments with fixed number of trials (as in Hawkins et al. (2012)) and fixed experiment time (as in the experiments reported
in this paper).

4.4. Adjusting decision threshold

The main goal of this paper was to investigate how the participants adjust their decision threshold on a trial by trial basis.
To this end, we proposed and compare several computational models for learning the decision thresholds. The results of the
model comparison for Experiment 1 showed that the proposed RL model is the most likely model for most of the partici-
pants. However, based on the BIC of the fitted models, for some of the participants the model with no leaning (Model 1)
and the model in which the learning is based only on the rewards (Model 3), provided better fit. Of course we do not expect
that all participants use the same learning mechanism. The interesting result here is that although the RL model has a large
number of parameters, it was the best model for many participants even based on BIC (which penalizes the complexity of a
model more than AIC for large sample sizes).

Models 2–4 are based on the assumption that the participants adjust their decision threshold only based on the rewards
they receive in each trial. Based on the values of the subjective rewards, these models can predict different patterns in the
data. For example, if the absolute subjective value of the negative reward is smaller than the subjective value of the positive
reward, these models predict that the participant reduces her decision threshold to zero for the hard trials in Experiment 1.
This is because the participant decreases her decision threshold after each correct trial and increases it after each incorrect
trial. However, since the subjective value of positive rewards is higher, the amount of decrease is larger than increase and
thus overall the decision threshold decreases. The results of the model comparison based on BIC, showed that one version
of these models, Model 3, can explain the data of some of the participants better than other models.

The heuristic models which assume the participants adjust their decision thresholds to achieve a desired level of accuracy
(Models 5 and 6), or reaction time and accuracy (Model 7) did not win for any of the participants. Model 7 is an important
competitor to the RL models. As we mentioned earlier, for a one-state SMDP this model is equivalent to the RL model. There-
fore, to be able to distinguish these models, we need at least a two-state experiment. Model 7 was inspired by the compu-
tational models of categorization (Nosofsky, 1986), and multi-attribute decision making (Roe, Busemeyer, & Townsend,
2001). In this model, if we set wt ¼ wa ¼ 1, the learning rule in Eq. (22) will reduce to Dms;k ¼ aa � rk þ at � dk þ cs, where
rk and dk are the reward and the time in trial k. This term resembles the TD error (Eq. (5)) in the RL models. The difference

is that the last term for computing Dms;k is constant, cs, while in computing TD error we should use bV kðs0Þ � bV kðsÞ. This term,
which is the difference between the value of the current and the next state, is unique to the RL model. Model 7 is an instance
of a ‘‘supervised learning” algorithm: the desired values of the accuracy and reaction time are given and the participant
should adjust her threshold to achieve these values. In contrast, in the RL model the desired levels are not known to the par-
ticipant. In a sense, the state values determine the desired values. Therefore, in the RL models the participant both estimates
the desired values and tries to reach those values simultaneously.

The problem of adjusting the decision threshold in the accumulator models have been considered in several previous
work. For example, Vickers and Lee (2000) proposed a neural network model called PAGAN in which the evidence favoring
each possible response is accumulated in a separate accumulator. The threshold value is the same for all accumulators. After
responding in each trial, the confidence of the response is computed and its value is subtracted from a target confidence
level. The positive and negative values of this difference is accumulated in two accumulators. When one of these two accu-
mulators reaches its threshold, the response threshold of the evidence accumulators is adjusted (the response threshold
decreases if the confidence accumulator for over-confidence reaches its threshold first and increases otherwise). The main
difference between this model and the RL models considered in the current manuscript is that learning in PAGAN happens
in an unsupervised fashion. That is, the threshold adjustment in each trial is not a function of the feedback in that trial.
Although the model can explain several interesting phenomena (such as the set size effect) it cannot explain the key exper-
imental results reported in the current paper. For example, it is not clear without considering the value of the reward (and
reward rate) how the model can explain the observed pattern that some of the participants used lower decision threshold for
14 It is important to note that in Model 7 the desired level of both accuracy and mean RT are free parameters, while in the min-RT model only the goal
accuracy is estimated from the data and the mean RT is obtained from the optimality criterion.
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the hard condition in Experiment 1. Based on PAGAN, since the confidence in the hard trials would be low, the subjects
should increase their threshold on average in these trials.

4.5. Effect of cue presentation

Experiment 2 was designed to test the hypothesis that the participants set their decision threshold before the trial starts.
In contrast to this hypothesis, the results of model comparison provided evidence for a model in which the participants first
detect the difficulty of a trial and then set the corresponding decision threshold.

To the best of our knowledge, in all previous applications of the sequential sampling models, if trials with different levels
of difficulty were intermixed, it was assumed that the participants use the same decision threshold for all trials, and the only
parameter that varies between trials is the rate of information accumulation (drift rate) (Ratcliff, 2002; Ratcliff & Smith,
2004; Ratcliff et al., 1999). Again, we can think of two reasons for the inconsistency between the results of the previous stud-
ies and what we found in the current paper: first, short mean reaction times in these studies which does not give the par-
ticipants enough time to first detect the difficulty of the stimulus, and second, since in the previous studies the participants
are not rewarded based on their performance, they are not motivated to use different decision thresholds for different levels
of difficulty.

4.6. Limitations

The experiments considered in this paper correspond to simple SMDPs. In particular, the transition probabilities are not a
function of the actions taken by the participant. More research is necessary to investigate if the RL models can account for the
participants data in more complicated environments (Hotaling, Fakhari, & Busemeyer, 2015).

Another limitation of the current paper is that we have only applied our models to the data from the canoe task. It would
be interesting to investigate if the same results will be obtained if we use more conventional stimuli like the random dot
motion task. The main issue is that since in these tasks the decision threshold is not observable directly, the learning models
should be augmented with sequential sampling models. This makes the model fitting more complicated. We are currently
working on this problem.

The number of blocks and the difficulty level in Experiment 2 were different from Experiment 1. More importantly, we
have run each experiment for only one set of task parameters. These factors, limit the generality of our conclusions. In addi-
tion, we only ran two participants with three sessions. To make any conclusion, more participants should be run for more
experimental sessions.
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