Random Utility Models 1

Generic Random Utility Model

- Given a set of n options $A_{1}, A_{2}, \ldots, A_{n}$
- Each option A_{i} is assigned a random utility, $U\left(A_{i}\right)$,
- According to an n-dimensional density function.
- The probability of choosing A_{i} equals
- $\operatorname{Pr}\left[A_{i} \mid\left\{A_{1}, \ldots, A_{n}\right\}\right]=\operatorname{Pr}\left\{U\left(A_{i}\right)=\max \left[U\left(A_{i}\right), \ldots, U\left(A_{n}\right)\right]\right\}$.
- same holds true for some arbitary subset
- $\operatorname{Pr}\left[A_{i} \mid\left\{A_{j_{1}}, \ldots, A_{j_{m}}\right\}\right]=\operatorname{Pr}\left\{U\left(A_{i}\right)=\max \left[U\left(A_{j_{1}}\right), \ldots, U\left(A_{j_{m}}\right)\right]\right\}$ for

$$
m<n
$$

General Properties of Random Utility theories

Regularity Satisfied

- Cannot increase choice probability for one option by adding other options to the set

$$
\begin{aligned}
& \operatorname{Pr}\left[A_{i} \mid\left\{A_{1}, \ldots A_{n}, \ldots A_{n+m}\right\}\right] \\
= & \operatorname{Pr}\left[U_{i}=\max \left\{U_{1}, \ldots U_{n}\right\}\right] \\
& \times \operatorname{Pr}\left[U_{i}=\max \left\{U_{1}, \ldots, U_{n+m}\right\} \mid U_{i}=\max \left\{U_{1}, \ldots U_{n}\right\}\right] \\
\leq & \operatorname{Pr}\left[U_{i}=\max \left\{U_{1}, \ldots U_{n}\right\}\right]
\end{aligned}
$$

- All random utility models satisfy Regularity

Triangle inequality satisfied (Regenwetter, 2010)

- $\operatorname{Pr}\left[A_{i} \mid\left\{A_{i}, A_{j}\right\}\right]+\operatorname{Pr}\left[A_{j} \mid\left\{A_{j}, A_{k}\right\}\right] \geq \operatorname{Pr}\left[A_{i} \mid\left\{A_{i}, A_{k}\right\}\right]$

Proof of Triangle inequality

A	B	C	$\mathrm{A}>\mathrm{B}$	$\mathrm{B}>\mathrm{C}$	$\mathrm{A}>\mathrm{C}$
1	2	3	0	0	0
1	3	2	0	1	0
2	1	3	1	0	0
2	3	1	0	1	1
3	1	2	1	0	1
3	2	1	1	1	1

$$
\begin{gathered}
\operatorname{Pr}[A>B]+\operatorname{Pr}[B>C]=\operatorname{Pr}[A=1, B=3, C=2] \\
+\operatorname{Pr}[A=2, B=1, C=3]+\operatorname{Pr}[A=2, B=3, C=1] \\
+\operatorname{Pr}[A=3, B=1, C=2]+\operatorname{Pr}[A=3, B=2, C=1] \\
\operatorname{Pr}[A>C]=\operatorname{Pr}[A=3, B=1, C=2]+\operatorname{Pr}[A=3, B=2, C=1] \\
\quad+\operatorname{Pr}[A=2, B=3, C=1]
\end{gathered}
$$

Weak Transitivity not satisfied by RUM's

- (See Tversky 1969; Regenwetter et al., 2010) $\operatorname{Pr}\left[A_{i} \mid\left\{A_{i}, A_{j}\right\}\right] \geq .50$ and $\operatorname{Pr}\left[A_{j} \mid\left\{A_{j}, A_{k}\right\}\right] \geq .50$ $\rightarrow \operatorname{Pr}\left[A_{i} \mid\left\{A_{i}, A_{k}\right\}\right] \geq .50$

Tversky 1969

	prob win	Amt
A	.60	100
B	.55	150
C	.50	100

- Lexico graphic rule produces violation of WST
- First choose best on the basis of prob to win
- If approximately equal on prob win, then choose best on basis of Amt to win
- Results
- comparing A vs. B, difference in prob too small so choose B based on amount
- comparing B vs. C, difference in prob too small so choose C based on amount
- comparing A vs. C, difference in prob is large so choose A over C based on prob

Concordet paradox violates WST

- A person makes binary choices for all pairs at three time points using the utilities shown below
$\left[\begin{array}{cccc}\text { Utility table } & A_{1} & A_{2} & A_{3} \\ T_{1} & 3 & 2 & 1 \\ T_{2} & 1 & 3 & 2 \\ T_{3} & 2 & 1 & 3\end{array}\right]$
A_{1} beats A_{2} at T_{1} and T_{3} so pooling across three times produces
$\operatorname{Pr}\left[A_{1} \mid\left\{A_{1}, A_{2}\right\}\right]=2 / 3$
A_{2} beats A_{3} at T_{1} and T_{2} so pooling across three times produces $\operatorname{Pr}\left[A_{2} \mid\left\{A_{2}, A_{3}\right\}\right]=2 / 3$
A_{3} beats A_{1} at T_{2} and T_{3} so pooling across three times produces $\operatorname{Pr}\left[A_{3} \mid\left\{A_{1}, A_{3}\right\}\right]=2 / 3$

Independence of irrelevant alternatives not satisfied

$$
\begin{aligned}
\operatorname{Pr}\left[A_{i} \mid\left\{A_{1}, . . A_{n}\right\}\right] & \geq \operatorname{Pr}\left[A_{j} \mid\left\{A_{1}, . . A_{n}\right\}\right] \\
& \rightarrow \\
\operatorname{Pr}\left[A_{i} \mid\left\{A_{1}, . . A_{n}, A_{n+1}, \ldots, A_{n+m}\right\}\right] & \geq \operatorname{Pr}\left[A_{j} \mid\left\{A_{1}, . . A_{n}, A_{n+1}, \ldots, A_{n+m}\right\}\right]
\end{aligned}
$$

- Some random utility models can violate this property

Thurstone Utility Model for Binary Choices (Probit model)

- Given a set of 2 options A_{i}, A_{j}
- Each option A_{i} is assigned a random utility, $U\left(A_{i}\right)$,
- According to a normal distribution with mean $\mu_{i}=E\left[U\left(A_{i}\right)\right]$
- Variance $\sigma_{i}^{2}=\operatorname{Var}\left[U\left(A_{i}\right)\right]=E\left[\left(U\left(A_{i}\right)-\mu_{i}\right)^{2}\right]$
- Covariance

$$
\sigma_{i j}=\operatorname{Cov}\left[U\left(A_{i}\right), U\left(A_{j}\right)\right]=E\left[\left(U\left(A_{i}\right)-\mu_{i}\right) \cdot\left(U\left(A_{j}\right)-\mu_{j}\right)\right]
$$

- Correlation $\rho_{i j}=\sigma_{i j} /\left(\sigma_{i} \cdot \sigma_{j}\right)$

Choice probability for Binary Thurstone Utility Model

- The probability of choosing A_{i} over A_{j} equals

$$
\begin{aligned}
& \operatorname{Pr}\left\{U\left(A_{i}\right)\right.\left.=\max \left[U\left(A_{i}\right), U\left(A_{j}\right)\right]\right\} \\
&=\operatorname{Pr}\left\{U\left(A_{i}\right)-U\left(A_{j}\right)>0\right\} \\
& V=U\left(A_{i}\right)-U\left(A_{j}\right) \\
& V^{\sim} N\left(\mu_{V}, \sigma_{V}^{2}\right) \\
& \sigma_{V}=\mu_{i}-\mu_{j} \\
&=\sigma_{i}^{2}+\sigma_{j}^{2}-2 \cdot \sigma_{i} \cdot \sigma_{j} \cdot \rho_{i j} \\
& \operatorname{Pr}\left[A_{i} \mid\left\{A_{i}, A_{j}\right\}\right]=\int_{x>0} N(x) \cdot d x \\
&=F\left[\frac{\mu_{V}}{\sigma_{V}}\right] \\
& \mu_{V}>0 \rightarrow \operatorname{Pr}\left[A_{i} \mid\left\{A_{i}, A_{j}\right\}\right]>.50
\end{aligned}
$$

Thurstone Model for Binary Choice

- Two choice pairs, same mean difference but with different variances of difference
- Choice prob $=$ area above red line
- Blue pair of choices
- $E[V]=1, \sigma=$ $2, \operatorname{Pr}\left[A_{1} \mid\left\{A_{1}, A_{2}\right\}\right]=$.6915
- Green pair of choices
- $E[V]=1, \sigma=1 / 2$,
$\operatorname{Pr}\left[A_{1} \mid\left\{A_{1}, A_{2}\right\}\right]=.9772$

Properties of Thurstone Model for Binary Choice

- Weak Stochastic Transitivity is satisfied
- $\operatorname{Pr}\left[A_{i} \mid\left\{A_{i}, A_{j}\right\}\right] \geq .50$ implies $\mu_{i} \geq \mu_{j}$
- $\operatorname{Pr}\left[A_{j} \mid\left\{A_{j}, A_{k}\right\}\right] \geq .50$ implies $\mu_{j} \geq \mu_{k}$
- $\mu_{i} \geq \mu_{j} \geq \mu_{k}$ implies $\operatorname{Pr}\left[A_{i} \mid\left\{A_{i}, A_{k}\right\}\right] \geq .50$
- It also obeys moderate stochastic Transitivity (Halff, JMP, 1976)
$-\operatorname{Pr}\left[A_{i} \mid\left\{A_{i}, A_{j}\right\}\right] \geq .50$ and $\operatorname{Pr}\left[A_{j} \mid\left\{A_{j}, A_{k}\right\}\right] \geq .50$ implies
$-\operatorname{Pr}\left[A_{i} \mid\left\{A_{i}, A_{k}\right\}\right] \geq \min \left\{\operatorname{Pr}\left[A_{i} \mid\left\{A_{i}, A_{j}\right\}\right], \operatorname{Pr}\left[A_{j} \mid\left\{A_{j}, A_{k}\right\}\right]\right\}$

Random weight model

$$
\begin{aligned}
U_{i}= & W_{Q} \cdot u\left(Q_{i}\right)+W_{E} \cdot u\left(E_{i}\right) \\
& W_{Q} \sim N\left(w_{Q}, \sigma_{Q}^{2}\right) \\
& W_{E} \sim N\left(w_{E}, \sigma_{E}^{2}\right) \\
\operatorname{Cov}\left(W_{Q}, W_{E}\right)= & 0 \\
V= & U_{i}-U_{j} \\
E[V]= & w_{Q} \cdot\left[u\left(Q_{i}\right)-u\left(Q_{j}\right)\right]+w_{E} \cdot\left[u\left(E_{i}\right)-u\left(E_{j}\right)\right] \\
\operatorname{Var}[V]= & \sigma_{Q}^{2} \cdot\left[u\left(Q_{i}\right)-u\left(Q_{j}\right)\right]^{2}+\sigma_{E}^{2} \cdot\left[u\left(E_{i}\right)-u\left(E_{j}\right)\right]^{2}
\end{aligned}
$$

Thurstone Case V

- Assume $\sigma_{i}^{2}+\sigma_{j}^{2}-2 \cdot \sigma_{i} \cdot \sigma_{j} \cdot \rho_{i j}=\sigma^{2}$
- Constant variance of difference for all pairs
- $\operatorname{Pr}\left[A_{i} \mid\left\{A_{i}, A_{j}\right\}\right]=F\left[\left(\mu_{i}-\mu_{j}\right)\right]$
- Strictly increasing monotonic function of mean difference

Thurstone Case V obeys Strong Stoch Transitivity

$$
\begin{aligned}
\operatorname{Pr}\left[A_{i} \mid\left\{A_{i}, A_{j}\right\}\right] & \geq .50 \rightarrow \mu_{i} \geq \mu_{j} \\
\operatorname{Pr}\left[A_{j} \mid\left\{A_{j}, A_{k}\right\}\right] & \geq .50 \rightarrow \mu_{j} \geq \mu_{k} \\
\mu_{i} & \geq \mu_{j} \geq \mu_{k} \\
\mu_{i}-\mu_{k} & \geq \mu_{i}-\mu_{j} \rightarrow \operatorname{Pr}\left[A_{i} \mid\left\{A_{i}, A_{k}\right\}\right] \geq \operatorname{Pr}\left[A_{i} \mid\left\{A_{i}, A_{j}\right\}\right] \\
\mu_{i}-\mu_{k} & \geq \mu_{j}-\mu_{k} \rightarrow \operatorname{Pr}\left[A_{i} \mid\left\{A_{i}, A_{k}\right\}\right] \geq \operatorname{Pr}\left[A_{j} \mid\left\{A_{j}, A_{k}\right\}\right] \\
\operatorname{Pr}\left[A_{i} \mid\left\{A_{i}, A_{k}\right\}\right] & \geq \max \left\{\operatorname{Pr}\left[A_{i} \mid\left\{A_{i}, A_{j}\right\}\right], \operatorname{Pr}\left[A_{j} \mid\left\{A_{j}, A_{k}\right\}\right]\right\}
\end{aligned}
$$

Humans violate SST (Mellers and Biagini, 1994, Psychological Review)

Laptop	wgt	cost
X	1.03 kg	$\$ 1000$
Y	1.02 kg	$\$ 1100$
Z	.45 kg	$\$ 2000$

$$
\begin{gathered}
\operatorname{Pr}[X \mid\{X, Y\}]>\operatorname{Pr}[X \mid\{X, Z\}]>\operatorname{Pr}[Y \mid\{Y, Z\}]>.50 \\
\text { Violates SST }
\end{gathered}
$$

Correlation changes across pairs
Need general Thurstone model

Thurstone Case V obeys Independence

$$
\begin{aligned}
\operatorname{Pr}\left[A_{i} \mid\left\{A_{i}, A_{k}\right\}\right] & \geq \operatorname{Pr}\left[A_{j} \mid\left\{A_{j}, A_{k}\right\}\right] \rightarrow \mu_{i}-\mu_{k} \geq \mu_{j}-\mu_{k} \\
\mu_{i}-\mu_{k} & \geq \mu_{j}-\mu_{k} \rightarrow \mu_{i}-\mu_{l} \geq \mu_{j}-\mu_{l} \\
\mu_{i}-\mu_{l} & \geq \mu_{j}-\mu_{l} \rightarrow \operatorname{Pr}\left[A_{i} \mid\left\{A_{i}, A_{l}\right\}\right] \geq \operatorname{Pr}\left[A_{j} \mid\left\{A_{j}, A_{l}\right\}\right]
\end{aligned}
$$

Humans violate IIA (Busemeyer \& Townsend, 1993, Psychological Review)

Action	H	T
X	$\$ 1.00$	$-\$ 1.00$
Y	$\$.02$	$-\$.02$
Z	$\$.01$	$\$.01$
W	$-\$.01$	$-\$.01$

$$
\begin{gathered}
\operatorname{Pr}[X \mid\{X, Z\}]>\operatorname{Pr}[Y \mid\{Y, Z\}] \\
\operatorname{Pr}[X \mid\{X, W\}]<\operatorname{Pr}[Y \mid\{Y, W\}] \\
\text { Variance changes across pairs }
\end{gathered}
$$

Need to use general Thurstone model

Thurstone Model for Multiple Choice

- n - alternatives
- \mathbf{U}_{n} random vector of utilities
- $\mathbf{U}_{n}{ }^{\sim} N\left(\mu_{n}, \Sigma\right)$
- $\mu_{n}=E\left[U_{n}\right] \quad n \times 1$ centroid
- Var $\left[\mathbf{U}_{n}\right]=\Sigma=E\left[\left(\mathbf{U}_{n}-\boldsymbol{\mu}_{n}\right) \cdot\left(\mathbf{U}_{n}-\boldsymbol{\mu}_{n}\right)^{\prime}\right] n \times n$ variance covariance matrix

Choice Probabilities for Multiple Choice

- E.g. $n=3$

$$
\begin{gathered}
\operatorname{Pr}\left[A_{j} \mid\left\{A_{i}, A_{j}, A_{k}\right\}\right] \\
=\operatorname{Pr}\left[U_{j}-U_{i}>0, U_{j}-U_{k}>0\right]
\end{gathered}
$$

$$
U=\left[\begin{array}{l}
U_{1} \\
U_{2} \\
U_{3}
\end{array}\right], L=\left[\begin{array}{ccc}
-1 & 1 & 0 \\
0 & 1 & -1
\end{array}\right]
$$

$$
V=L \cdot U=\left[\begin{array}{l}
U_{2}-U_{1} \\
U_{2}-U_{3}
\end{array}\right]=\left[\begin{array}{l}
V_{1} \\
V_{2}
\end{array}\right]
$$

$$
\operatorname{Pr}\left[A_{j} \mid\left\{A_{i}, A_{j}, A_{k}\right\}\right]=\operatorname{Pr}\left[V_{1}>0, V_{2}>0\right]
$$

Choice Probabilities for Multiple Choice

- E.g. $n=3$

Choice Probabilities for Multiple Choice

$$
\begin{aligned}
X & =\left[\begin{array}{ll}
.1 & .9 \\
.8 & .2 \\
.9 & .1
\end{array}\right], w=\left[\begin{array}{l}
.6 \\
.4
\end{array}\right], X \cdot w=\left[\begin{array}{l}
.42 \\
.56 \\
.58
\end{array}\right] \\
A_{1} & : E[V]=\left[\begin{array}{l}
-.14 \\
-.16
\end{array}\right], \operatorname{var}(V)=\left[\begin{array}{ll}
13.8 & 13.2 \\
13.2 & 16.8
\end{array}\right] \\
A_{2} & : E[V]=\left[\begin{array}{c}
.14 \\
-.02
\end{array}\right], \operatorname{var}(V)=\left[\begin{array}{cc}
13.8 & .60 \\
.6 & 4.2
\end{array}\right] \\
A_{3} & : E[V]=\left[\begin{array}{l}
.16 \\
.02
\end{array}\right], \operatorname{var}(V)=\left[\begin{array}{cc}
16.8 & 3.6 \\
3.6 & 4.2
\end{array}\right] \\
\operatorname{Pr}\left[A_{1} \mid\left\{A_{1}, A_{2}\right\}\right] & =.48, \operatorname{Pr}\left[A_{1} \mid\left\{A_{1}, A_{3}\right\}\right]=.47, \operatorname{Pr}\left[A_{2} \mid\left\{A_{2}, A_{3}\right\}\right]=.49 \\
\operatorname{Pr}\left[A_{1}\right] & =.40, \operatorname{Pr}\left[A_{2}\right]=.27, \operatorname{Pr}\left[A_{3}\right]=.33
\end{aligned}
$$

Random Coefficient Model

- $U_{i}=\sum_{j=1}^{p} w_{j} \cdot s_{i j}$
- $s_{i j}:=$ scale value of attribute j for alternative i
- $w_{j}:=$ random weight given to attribute j
- $W:=p \times 1$ vector of random weights
- $S:=n \times p$ matrix of scale values (rows are alternatives, columns are attributes)
- $U=S \cdot W:=n \times 1$ vector of random utilities

Choice probability for Random Coefficient Model

$$
\begin{aligned}
& W^{\sim} N(\mathbf{w}, \Psi), p \times 1 \\
& U^{\sim} N(\mu, \Sigma), n \times 1 \\
\mu= & S \cdot \mathbf{w}, p \times 1 \\
\Sigma= & S \cdot \Psi \cdot S^{\prime}, p \times p \\
V= & L \cdot U,(n-1) \times 1 \\
& V^{\sim} N(v, \Phi) \\
v= & L \cdot \mu,(n-1) \times 1 \\
\Phi= & L \cdot \Sigma \cdot L^{\prime},(n-1) \times(n-1) \\
\operatorname{Pr}\left[A_{i} \mid\left\{A_{1}, \ldots, A_{n}\right\}\right]= & \operatorname{Pr}\left[V_{1}>0, \ldots, V_{n-1}>0\right]
\end{aligned}
$$

