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Luce Choice Model

Given a set of n options A1,A2, ...,An
Each option Ai is assigned a �xed utility, u(Ai )
v (Ai ) = exp (u (Ai )) is the strength of option i

The probability of choosing Ai equals

Pr [Ai j fA1, ...,Ang] = v (Ai )
n
∑
j=1
v (Aj )

same holds true for some arbitary subset

Pr
�
Aji j

�
Aj1 , ...,Ajm

	�
=

v (Aji )
m
∑
k=1

v (Ajk )
for m < n

() Random Utility Models 2 2 / 19



Relation between Luce and Logistic binary choice models

Pr [Aj fA,Bg] =
v (A)

v (A) + v (B)

=
eu(A)

eu(A) + eu(B )

=
e�u(A)

e�u(A)
� eu(A)

eu(A) + eu(B )

=
1

1+ e�[u(A)�u(B )]
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Logistic Choice model

Pr [Aj fA,Bg]
Pr [B j fA,Bg] =

v(A)
v (B)

= exp (u(A)� u (B))

log
Pr [Aj fA,Bg]
Pr [B j fA,Bg] = u (A)� u (B)

u (A) =
p

∑
j=1
wj � sAj

u (B) =
p

∑
j=1
wj � sBj
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Properties of Luce Choice model
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Regularity property

Pr [Ai j fA1, ...,Ang] =
v (Ai )
n
∑
j=1
v (Aj )

� v (Ai )
n
∑
j=1
v (Aj ) +

n+m
∑

j=n+1
v (Aj )

= Pr [Ai j fA1, ...,An, ..An+mg]
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SST property

Pr [Aj fA,Bg] � .50! v(A) � v (B)
Pr [B j fB,Cg] � .50! v(B) � v (C )

v (A) � v (B) � v (C )
Pr [Aj fB,Cg] � max [Pr [Aj fA,Bg] ,Pr [B j fB,Cg]]
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Luce�s choice axiom: Strong form of IIA

Pr [Ai j fA1, ...An, ...An+mg]

=
v (Ai )

n+m
∑
j=1

v (Aj )
=

v (Ai )
n
∑
j=1
v (Aj )

�

n
∑
j=1
v (Aj )

n+m
∑
j=1

v (Aj )

= Pr [Ai j fA1, ...,Ang]
�Pr [fA1, ...,Ang j fA1, ...An, ...An+mg]
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Product Rule

Pr [Aj fA,Bg]
Pr [B j fA,Bg] �

Pr [B j fB,Cg]
Pr [C j fC ,Bg]

=
v (A)
v (B)

� v (B)
v (C )

=
v (A)
v (C )

=
Pr [Aj fA,Cg]
Pr [C j fA,Cg] .

() Random Utility Models 2 9 / 19



Similarity E¤ects violate Luce Choice axiom

Paris Plus a dollar (Debreu)

Choose between trip to Rome versus Trip to Paris (.50)
Choose between trip to Paris versus Paris plus one dollar (1.0)
Choose between trip to Rome versus Paris plus one dollar (.50)

Red bus, blue bus (McFadden)

Choose between Red bus and car to go to work (.50)
Choose between the Blue bus and car to go to work (.50)
Choose between the Red bus or Blue bus or car to go to work (.25, .25,
.50)
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Extreme value random utility

Suppose the random utility of option Ai has the following probability
density function for non-positive values

fi (u) = vi � evi �u , u � 0

The cumulative distribution equals

Pr [U � u] =
Z u

�∞
vi � evi �xdx

= evi �x ju�∞ =
�
evi �u � e�∞�

= evi �u .
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Deriving Luce model from Extreme values (Yellot, 1977)

Suppose the random utilities are independent

Pr [Ui = max fU1,U2, ...,Ung]

=
Z 0

�∞
fi (u)∏

j 6=i
Pr [Uj � u] � du

= vi �
Z 0

�∞
evi �u �∏

j 6=i
evj �u � du

= vi �
Z 0

�∞
exp

 
n
∑
j=1
vj � u

!
� du

=
vi

∑n
j=1 vj

� exp
 

n
∑
j=1
vj � u

!
j0�∞

=
vi

∑n
j=1 vj

.

() Random Utility Models 2 12 / 19



McFadden Generalized extreme value model

Assume that the complete choice set of n options can be divided into
m groups, each is a group of similar options.

Ck represents a subset of similar options that belong to group k.

For example with a complete set X = {Red Bus, Blue Bus, Car} we
could posit C1 = {Red Bus, Blue Bus}, and C2 = {Car}. In this
example m = 2.

Pr [Ai j fA1, ...,Ang] =
m
∑
k=1

Pr [Ck ] � Pr [Ai jCk ]
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McFadden Generalized extreme value random utility model

Pr [Ai jCk ] =
eu(Ai )/θk

∑j2Ck e
u(Aj )/θk

, for Ai 2 Ck

hl = ln

 
∑
j2Cl

eu(Ai )/θl

!

Pr [Ck ] =
ak � eθk �hk

∑m
l=1 al � eθl �hl

, al � 0
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Application to X = {red bus, blue bus, car} problem

Pr [Carj fCar,Rbusg] =
exp

�
u(Car )

θC ,R

�
exp

�
u(Car )
θC ,Bus

�
+ exp

�
u(Rbus)

θC ,Bus

�

Pr [Carj fCar,Bbusg] =
exp

�
u(Car )

θC ,B

�
exp

�
u(Car )
θC ,Bus

�
+ exp

�
u(Bbus)

θC ,Bus

�

Pr [RbusjBus] =
exp

�
u(Rbus)

θBus

�
exp

�
u(Rbus)

θBus

�
+ exp

�
U (Bbus)

θBus

�
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Application to X = {red bus, blue bus, car} problem

hCar = ln
�
exp

�
u (Car)

θCar

��

hBus = ln
�
exp

�
u (Rbus)

θBus

�
+ exp

�
u (Bbus)

θBus

��

Pr [CjX] = QC =
aC � exp (hCar � θCar )

aC � exp (hCar � θCar ) + aB � exp (hBus � θBus )

QB =
aB � exp (hBus � θB )

aC � exp (hCar � θCar ) + aB � exp (hBus � θBus )

Pr [RbusjX] = QB � Pr [RbusjBus]
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McFadden Generalized extreme value utility model

satis�es regularity

can violate SST

can violate IIR

satis�ed triangular inequality
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Mixed Logit Model

De�ne L (Ai jw) as the probability that option Ai is chosen from a set
given a �xed set of weight coe¢ cients w . In particular, L can be
de�ned by the Logistic model.

L (Ai jw) =
eu(Ai )

∑ eu(Ai )
,

u (Ai ) = ∑wj � sij

Now suppose that Pr(Ai ) is given by a probability mixture of
L (Ai jw) as de�ned by the integral over the density

Pr [Ai ] =
R
f (w) � L (Ai jw) � dw
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Mixed Logit Model

Can violate WST

Can violate IIR

satis�es regularity
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