Random Utility Models 2

Luce Choice Model

- Given a set of n options $A_{1}, A_{2}, \ldots, A_{n}$
- Each option A_{i} is assigned a fixed utility, $u\left(A_{i}\right)$
- $v\left(A_{i}\right)=\exp \left(u\left(A_{i}\right)\right)$ is the strength of option i
- The probability of choosing A_{i} equals
- $\operatorname{Pr}\left[A_{i} \mid\left\{A_{1}, \ldots, A_{n}\right\}\right]=\frac{v\left(A_{i}\right)}{\sum_{j=1}^{n} v\left(A_{j}\right)}$
- same holds true for some arbitary subset
$-\operatorname{Pr}\left[A_{j_{i}} \mid\left\{A_{j_{1}}, \ldots, A_{j_{m}}\right\}\right]=\frac{v\left(A_{j_{i}}\right)}{\sum_{k=1}^{m} v\left(A_{j_{k}}\right)}$ for $m<n$

Relation between Luce and Logistic binary choice models

$$
\begin{aligned}
\operatorname{Pr}[A \mid\{A, B\}] & =\frac{v(A)}{v(A)+v(B)} \\
& =\frac{e^{u(A)}}{e^{u(A)}+e^{u(B)}} \\
& =\frac{e^{-u(A)}}{e^{-u(A)}} \cdot \frac{e^{u(A)}}{e^{u(A)}+e^{u(B)}} \\
& =\frac{1}{1+e^{-[u(A)-u(B)]}}
\end{aligned}
$$

Logistic Choice model

$$
\begin{aligned}
\frac{\operatorname{Pr}[A \mid\{A, B\}]}{\operatorname{Pr}[B \mid\{A, B\}]} & =\frac{v(A)}{v(B)}=\exp (u(A)-u(B)) \\
\log \frac{\operatorname{Pr}[A \mid\{A, B\}]}{\operatorname{Pr}[B \mid\{A, B\}]} & =u(A)-u(B) \\
u(A) & =\sum_{j=1}^{p} w_{j} \cdot s_{A j} \\
u(B) & =\sum_{j=1}^{p} w_{j} \cdot s_{B j}
\end{aligned}
$$

Properties of Luce Choice model

Regularity property

$$
\begin{aligned}
\operatorname{Pr}\left[A_{i} \mid\left\{A_{1}, \ldots, A_{n}\right\}\right] & =\frac{v\left(A_{i}\right)}{\sum_{j=1}^{n} v\left(A_{j}\right)} \geq \frac{v\left(A_{i}\right)}{\sum_{j=1}^{n} v\left(A_{j}\right)+\sum_{j=n+1}^{n+m} v\left(A_{j}\right)} \\
& =\operatorname{Pr}\left[A_{i} \mid\left\{A_{1}, \ldots, A_{n}, . . A_{n+m}\right\}\right]
\end{aligned}
$$

SST property

$$
\begin{aligned}
\operatorname{Pr}[A \mid\{A, B\}] & \geq .50 \rightarrow v(A) \geq v(B) \\
\operatorname{Pr}[B \mid\{B, C\}] & \geq .50 \rightarrow v(B) \geq v(C) \\
v(A) & \geq v(B) \geq v(C) \\
\operatorname{Pr}[A \mid\{B, C\}] & \geq \max [\operatorname{Pr}[A \mid\{A, B\}], \operatorname{Pr}[B \mid\{B, C\}]]
\end{aligned}
$$

Luce's choice axiom: Strong form of IIA

$$
\begin{aligned}
& \operatorname{Pr}\left[A_{i} \mid\left\{A_{1}, \ldots A_{n}, \ldots A_{n+m}\right\}\right] \\
= & \frac{v\left(A_{i}\right)}{\sum_{j=1}^{n+m} v\left(A_{j}\right)}=\frac{v\left(A_{i}\right)}{\sum_{j=1}^{n} v\left(A_{j}\right)} \cdot \frac{\sum_{j=1}^{n} v\left(A_{j}\right)}{\sum_{j=1}^{n+m} v\left(A_{j}\right)} \\
= & \operatorname{Pr}\left[A_{i} \mid\left\{A_{1}, \ldots, A_{n}\right\}\right] \\
& \times \operatorname{Pr}\left[\left\{A_{1}, \ldots, A_{n}\right\} \mid\left\{A_{1}, \ldots A_{n}, \ldots A_{n+m}\right\}\right]
\end{aligned}
$$

Product Rule

$$
\begin{aligned}
& \frac{\operatorname{Pr}[A \mid\{A, B\}]}{\operatorname{Pr}[B \mid\{A, B\}]} \cdot \frac{\operatorname{Pr}[B \mid\{B, C\}]}{\operatorname{Pr}[C \mid\{C, B\}]} \\
= & \frac{v(A)}{v(B)} \cdot \frac{v(B)}{v(C)}=\frac{v(A)}{v(C)} \\
= & \frac{\operatorname{Pr}[A \mid\{A, C\}]}{\operatorname{Pr}[C \mid\{A, C\}]} .
\end{aligned}
$$

Similarity Effects violate Luce Choice axiom

- Paris Plus a dollar (Debreu)
- Choose between trip to Rome versus Trip to Paris (.50)
- Choose between trip to Paris versus Paris plus one dollar (1.0)
- Choose between trip to Rome versus Paris plus one dollar (.50)
- Red bus, blue bus (McFadden)
- Choose between Red bus and car to go to work (.50)
- Choose between the Blue bus and car to go to work (.50)
- Choose between the Red bus or Blue bus or car to go to work (.25, .25, .50)

Extreme value random utility

- Suppose the random utility of option A_{i} has the following probability density function for non-positive values

$$
f_{i}(u)=v_{i} \cdot e^{v_{i} \cdot u}, u \leq 0
$$

- The cumulative distribution equals

$$
\begin{aligned}
\operatorname{Pr}[U \leq u] & =\int_{-\infty}^{u} v_{i} \cdot e^{v_{i} \cdot x} d x \\
& =\left.e^{v_{i} \cdot x}\right|_{-\infty} ^{u}=\left(e^{v_{i} \cdot u}-e^{-\infty}\right) \\
& =e^{v_{i} \cdot u}
\end{aligned}
$$

Deriving Luce model from Extreme values (Yellot, 1977)

- Suppose the random utilities are independent

$$
\begin{aligned}
& \operatorname{Pr}\left[U_{i}=\max \left\{U_{1}, U_{2}, \ldots, U_{n}\right\}\right] \\
= & \int_{-\infty}^{0} f_{i}(u) \prod_{j \neq i} \operatorname{Pr}\left[U_{j} \leq u\right] \cdot d u \\
= & v_{i} \cdot \int_{-\infty}^{0} e^{v_{i} \cdot u} \cdot \prod_{j \neq i} e^{v_{j} \cdot u} \cdot d u \\
= & v_{i} \cdot \int_{-\infty}^{0} \exp \left(\sum_{j=1}^{n} v_{j} \cdot u\right) \cdot d u \\
= & \left.\frac{v_{i}}{\sum_{j=1}^{n} v_{j}} \cdot \exp \left(\sum_{j=1}^{n} v_{j} \cdot u\right)\right|_{-\infty} ^{0} \\
= & \frac{v_{i}}{\sum_{j=1}^{n} v_{j}} .
\end{aligned}
$$

McFadden Generalized extreme value model

- Assume that the complete choice set of n options can be divided into m groups, each is a group of similar options.
- C_{k} represents a subset of similar options that belong to group k.
- For example with a complete set $X=\{$ Red Bus, Blue Bus, Car $\}$ we could posit $C_{1}=\{$ Red Bus, Blue Bus $\}$, and $C_{2}=\{C a r\}$. In this example $\mathrm{m}=2$.

$$
\operatorname{Pr}\left[A_{i} \mid\left\{A_{1}, \ldots, A_{n}\right\}\right]=\sum_{k=1}^{m} \operatorname{Pr}\left[C_{k}\right] \cdot \operatorname{Pr}\left[A_{i} \mid C_{k}\right]
$$

McFadden Generalized extreme value random utility model

$$
\begin{aligned}
\operatorname{Pr}\left[A_{i} \mid C_{k}\right] & =\frac{e^{u\left(A_{i}\right) / \theta_{k}}}{\sum_{j \in C_{k}} e^{u\left(A_{j}\right) / \theta_{k}}}, \text { for } A_{i} \in C_{k} \\
h_{l} & =\ln \left(\sum_{j \in C_{l}} e^{u\left(A_{i}\right) / \theta_{l}}\right) \\
\operatorname{Pr}\left[C_{k}\right] & =\frac{a_{k} \cdot e^{\theta_{k} \cdot h_{k}}}{\sum_{l=1}^{m} a_{l} \cdot e^{\theta_{l} \cdot h_{l}}}, \quad a_{l} \geq 0
\end{aligned}
$$

Application to $X=\{$ red bus, blue bus, car $\}$ problem

$$
\begin{gathered}
\operatorname{Pr}[\text { Car } \mid\{\text { Car,Rbus }\}]=\frac{\exp \left(\frac{u(C a r)}{\theta_{C, R}}\right)}{\exp \left(\frac{u(C a r)}{\theta_{C, B u s}}\right)+\exp \left(\frac{u(\text { Rbus })}{\theta_{C, B u s}}\right)} \\
\operatorname{Pr}[\text { Car } \mid\{\text { Car, Bbus }\}]=\frac{\exp \left(\frac{u(C a r)}{\theta_{C, B}}\right)}{\exp \left(\frac{u\left(C_{\text {ar }}\right)}{\theta_{C, B u s}}\right)+\exp \left(\frac{u(\text { Bbus })}{\theta_{C, B u s}}\right)} \\
\operatorname{Pr}[\text { Rbus } \mid \text { Bus }]=\frac{\exp \left(\frac{u(R b u s)}{\theta_{\text {Bus }}}\right)}{\exp \left(\frac{u(\text { Rbus })}{\theta_{\text {Bus }}}\right)+\exp \left(\frac{U(\text { Bbus })}{\theta_{\text {Bus }}}\right)}
\end{gathered}
$$

Application to $X=\{$ red bus, blue bus, car $\}$ problem

$$
\begin{gathered}
h_{C a r}=\ln \left(\exp \left(\frac{u(\operatorname{Car})}{\theta_{C a r}}\right)\right) \\
h_{B u s}=\ln \left(\exp \left(\frac{u(R b u s)}{\theta_{B u s}}\right)+\exp \left(\frac{u(B b u s)}{\theta_{B u s}}\right)\right) \\
\operatorname{Pr}[\mathrm{C} \mid \mathrm{X}]=Q_{C}=\frac{a_{C} \cdot \exp \left(h_{C a r} \cdot \theta_{C a r}\right)}{a_{C} \cdot \exp \left(h_{C a r} \cdot \theta_{C a r}\right)+a_{B} \cdot \exp \left(h_{B u s} \cdot \theta_{B u s}\right)} \\
Q_{B}=\frac{a_{B} \cdot \exp \left(h_{B u s} \cdot \theta_{B}\right)}{a_{C} \cdot \exp \left(h_{C a r} \cdot \theta_{C a r}\right)+a_{B} \cdot \exp \left(h_{B u s} \cdot \theta_{B u s}\right)} \\
\operatorname{Pr}[\operatorname{Rbus} \mid X]=
\end{gathered}
$$

McFadden Generalized extreme value utility model

- satisfies regularity
- can violate SST
- can violate IIR
- satisfied triangular inequality

Mixed Logit Model

- Define $L\left(A_{i} \mid w\right)$ as the probability that option A_{i} is chosen from a set given a fixed set of weight coefficients w. In particular, L can be defined by the Logistic model.

$$
\begin{aligned}
L\left(A_{i} \mid w\right) & =\frac{e^{u\left(A_{i}\right)}}{\sum e^{u\left(A_{i}\right)}}, \\
u\left(A_{i}\right) & =\sum w_{j} \cdot s_{i j}
\end{aligned}
$$

- Now suppose that $\operatorname{Pr}\left(A_{i}\right)$ is given by a probability mixture of $L\left(A_{i} \mid w\right)$ as defined by the integral over the density

$$
\operatorname{Pr}\left[A_{i}\right]=\int f(w) \cdot L\left(A_{i} \mid w\right) \cdot d w
$$

Mixed Logit Model

- Can violate WST
- Can violate IIR
- satisfies regularity

