Latent Structural Equation Models

Purpose: Combine a econometric structural (regression) model with a psychometric measurement (factor) model.

The structural model is a causal model that relates the exogenous (independent) variables to the endogenous (dependent) variables.

The measurement model is a factor model that relates the observed indicators to the latent factors. All relations are assumed to be linear.

 

References:

Bollen, K. A. (1989) Structural equations with latent variables. NY: Wiley

Long, J.S. (1983) Covariance structure models: An introduction to LISREL. Beverly Hills: Sage Pubications.

MacCallum,R. C.; Wegener, D. T.; Uchino, B. N.; Fabrigar, L.R. The problem of equivalent models in applications of covariance structure analysis. Psychological-Bulletin.1993 Jul; Vol 114(1): 185-199.


 

Fishbein Model

 

 

 

 

 

 

 

 

 


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Boxes: Manifest variables

Circles: Latent Variables

Marked Arrows:  Hypothesized Causal Relations

Unmarked Arrows: Other Unknown Disturbances or Errors

Double Arrows: Corrlated Variables

 


 

Equations For Fishbein Model

 

Structural Equations:

 

A = g1P + V1

I = b1A + g2S + V2

B = b2×I + V3

 

Measurement Equations:

 

X1 = S + e4

X2 = l3 S + e5

X3 = l4 S + e6 

 

Y1 = A + e1

Y2 = l1 A + e2

Y3 = l2 A + e3

 

Y4 = I + e7

Y5 = l5 I + e8

 

Parameters:  23

g1 g2 b1 b2

l1 l2 l3 l4 l5

V(V1) V(V2) V(V3)

V(e1) V(e2) V(e3) V(e4) V(e5)  V(e6) V(e7) V(e8)

V(P) V(S) Cov(P,S)

 


 

 

 

Bem Model

 

 

 

 

 

Boxes: Manifest Measures

Circles: Latent Factors


 

 

Equations For Bem Model

 

Structural Equations:

 

A = g1B + g2P + V1

S = g3B + g4P + V2

I  = g5B + g6P + V3

 

Measurement Equations:

 

Y1 = A + e1

Y2 = l1 A + e2

Y3 = l2 A + e3

 

Y4 = S + e4

Y5 = l3 S + e5

Y6 = l4 S + e6 

 

Y7 = I + e7

Y8 = l5 I + e8

 

Parameters:  25

g1 g2 g3 g4 g5 g6

l1 l2 l3 l4 l5

V(V1) V(V2) V(V3)

V(e1) V(e2) V(e3) V(e4) V(e5)  V(e6) V(e7) V(e8)

V(P) V(B) Cov(P,B)

 


 

Modified Fishbein Model

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Equations For Modified Fishbein Model

 

Structural Equations:

 

A = g1P + V1

I = b1A + g2S + V2

B = b2×I + b3×P + V3

 

Measurement Equations:

 

 

X1 = S + e4

X2 = l3 S + e5

X3 = l4 S + e6 

 

Y1 = A + e1

Y2 = l1 A + e2

Y3 = l2 A + e3

 

Y4 = I + e7

Y5 = l5 I + e8

 

Parameters:  24

g1 g2 b1 b2  b3

l1 l2 l3 l4 l5

V(V1) V(V2) V(V3)

V(e1) V(e2) V(e3) V(e4) V(e5)  V(e6) V(e7) V(e8)

V(P) V(S) Cov(P,S)

 

 


 

Data Used to Test Models

 

The models are evaluated on the bass of their fits to the variance - covariance matrix.

 

 

 

 

P

X1

X2

X3

X4

X5

X6

Y1

Y2

Y3

P

98.0256

0.260437

3.655717

-3.24522

2.011896

-3.99883

-0.73241

0.101508

4.245765

26.37323

X1

0.260437

32.02758

8.782259

4.513822

0.295539

-0.10599

1.947976

7.403358

4.578843

4.621822

X2

3.655717

8.782259

33.06517

3.426569

0.06254

2.332248

3.35754

3.663966

4.035624

5.569399

X3

-3.24522

4.513822

3.426569

27.92651

0.990226

0.692618

0.839207

3.067759

1.922617

0.886226

X4

2.011896

0.295539

0.06254

0.990226

32.05944

4.616755

-3.31035

4.577991

4.105686

4.590362

X5

-3.99883

-0.10599

2.332248

0.692618

4.616755

32.78238

-2.99564

2.835772

0.931755

1.19207

X6

-0.73241

1.947976

3.35754

0.839207

-3.31035

-2.99564

27.46124

-0.84694

-0.92867

-0.88343

Y1

0.101508

7.403358

3.663966

3.067759

4.577991

2.835772

-0.84694

35.57686

6.393068

5.880421

Y2

4.245765

4.578843

4.035624

1.922617

4.105686

0.931755

-0.92867

6.393068

30.24919

5.518454

Y3

26.37323

4.621822

5.569399

0.886226

4.590362

1.19207

-0.88343

5.880421

5.518454

16.15012

 

10 variables yields (10)*(11)/2 = 55  covariances.

 

Each model is fit to the data by searching for the parameters that minimize a discrepancy function that measures the lack of fit between the predicted and observed data points.

 

F(model) = S S  wij [ Covij(obs)  - Covij(model) ]2

 

Under certain distribution assumptions, for large sample sizes, 

 

(N-1)×F ~ Chi-square

df = (no. data points - no. parameters)

 


Nested versus Non-nested Model Comparisons

 

Chi-square comparisons are limited to comparison of nested models.

 

Model A is nested within Model B if Model A is a special case of Model B -- Model A constructed by restricting the parameter space of Mode B.

 

The Fishbein model is nested within the modified Fishbein model.

(set b3 = 0).

 

But the Bem model is not nested within either of the above.

 


 

Cross Validation

 

This method can be used for non-nested models that differ in number of parameters.

 

Divide total sample into two parts, calibration versus test sample.

N = N1 + N2

S1 is the sample cov matrix from first sample

S2 is the sample cov matrix from second sample

1. Estimate q of each model using S1 .

2. Use these same parameters to evaluate fit to S2 .

3. Compare each model using F from second test sample.

4. This procedure can be repeated many times with different partitions of the data to produce a sampling distribution for the cross validation index.

5. Under certain distribution assumptions, it is possible to theoretically derive the cross - validation estimate. This is a simpler and more efficient method.

 


Fit Indices

q = no. of measurements for exogenous var's,

p = no. of measements for endogenous var's

X = N x (p+q) data matrix, N = no. observations

S = X'X/(N-1) = (p+q) x (p+q) sample covariance matrix

S = predicted covariance matrix

v = (p+q)(p+q+1)/2

s = no. model parm's

F = .5 Tr [ (S-1(S - S ))2 ]          (Generalized Least Squares Lack of Fit)

 

Indices:

GFI = 1 - 2 F /(p+q)) (Goodness of fit, like R-square)

c 2 = (N-1)F (Chi-square lack of fit)

Cross sample estimate of F

AIC = c 2 + 2 s   (Derived from Information Theory)

BIC = c 2 + ln(N) s  (Derived from Bayesian Statistical Theory)

 

Choose the model with the highest GFI

or lowest cross sample F, Chi-square, AIC, or BIC .


 

 

 

Model Comparisons

 

 

Model

parm's

Chi-Sq

Cross-F

AIC

BIC

GFI

Fish

23

79.4***

(.20, .31)

125

-9

.968

Bem

25

51.0*

(.16, .24)

101

-25

.980

M-Fish

24

30.3

(.12, .19)

78

-52

.988

 

Note: Cross validation column displays 90% confidence interval.

* p < .05  ** p < .01 *** p < .001

 

 

Based on this analysis, we would choose the Modified Fishbein Model.


 

 

Concluding Comments About Model Comparisons in General:

 

1. Chi-square tests are limited to nested model comparisons.

 

2. Non-nested model comparisons are more important.

 

3. Cross validation provides an important tool for non-nested model comparisons.

 

4. Model evaluation is meaningless without performing critical model comparisons.