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A variety of theories in psychology postulate that the causal variables combine
according to a multiplicative rule to determine the value of the dependent variable.
To test multiplicative combination rules empirically, applied researchers fre-
quently use an observational method that involves the following procedure: (a)
assessment techniques are used to measure the value of each theoretical construct
for each individual, (b) product scores are formed by multiplying the measures
of the causal variables, and (c) hierarchical regression analysis is used to test the
statistical significance of the increment in R2 contributed by the product term.
The purpose of this article is to evaluate the validity of the observational method
with respect to two measurement issues: measurement level (i.e., the effects pro-
duced by allowing monotonic transformations of the measures), and measure-
ment error (i.e., the effects produced by using unreliable measures of the causal
variables). Our evaluation is based on a theoretical distinction between the struc-
tural model (the set of equations relating theoretical constructs to each other) and
the measurement model (the set of equations relating the theoretical constructs
to the observed measures). We conclude that hierarchical regression analysis is
inadequate for determining whether the structural model is additive or multi-
plicative for two reasons. First, an additive structural model may produce mul-
tiplicative effects through a nonlinear measurement model. Second, a multipli-
cative structural model may produce nondetectable multiplicative effects because
of multiplicative measurement error. Some alternatives to hierarchical regression
analysis are described.

Multiplicative models are ubiquitous in industrial/organizational psychology are
psychological research. A famous example Vroom's (1964) models: Motivation to work
from learning theory is Hull's (1943) model: is a function of Expectancy X Valence,
Response strength is a function of Drive X summed across outcomes, and performance
Habit, Another classic example is Edwards' is a function of Ability X Motivation. Finally,
(1954) model of decision making: Utility of an example from attitude research and con-
a gamble equals Subjective Probability X sumer psychology is Fishbein and Ajzen's
Utility of each outcome, summed across (1975) model: Attitude equals Belief X Eval-
outcomes. Two important examples from uation, summed across salient beliefs.
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teau (1970) have developed tests of the
subjective expected utility model based on
functional measurement methods. Krantz
and Tversky (1971) have described methods
based on ordinal comparisons for diagnosing
various composition rules. Finally, Birn-
baum (1982) has described "scale free" and
"scale convergence" methods for testing ratio
and difference models of judgment. All of
these are considered experimental methods
because they require manipulation of the in-
dependent variables according to special ex-
perimental designs and they use specific con-
trasts among cell means to test the multipli-
cative model against the alternative of simple
additivity.

Unfortunately, it is often difficult or im-
possible for researchers to perform the ma-
nipulations of theoretical variables required
by the experimental method. This is espe-
cially true of individual difference variables
such as ability. As a result, many researchers
working in attitude theory (see Fishbein &
Ajzen, 1975, chap. 3), work motivation the-
ory (see Vroom, 1964, chap. 2), and person-
ality theory (see Wiggins, 1973, chap. 3) have
resorted to an observational method. The
methodology can be summarized as follows:
(a) a sample of individuals is selected for
study; (b) assessment techniques (e.g., per-
sonality tests, aptitude tests, or attitude scales)
are used to measure the value of each variable
for each individual; (c) product scores are
computed ,from the measured values of the
variables; and (d) multiple regression analysis
is used to evaluate the multiplicative model.

The purpose of the present article is to
evaluate the usefulness of the observational
method for empirically testing multiplicative
theories. Two major issues threaten the va-
lidity of theoretical conclusions based on the
observational method—the problem of mea-
surement level and the problem of measure-
ment error. A more precise definition of these
two issues is possible by considering an ex-
ample.

reading of Spence's theory would indicate that the
Spence model is not a simple polynomial. As Black
(1965) pointed out earlier, the intervening variable in-
centive is a classically conditioned response, and this
learning process is a function of consummatory behav-
ior. Thus, incentive and drive are functionally related.

An Example:
Performance = Ability X Motivation

Suppose a researcher was interested in test-
ing Vroom's theory that Performance = Abil-
ity X Motivation using the observational
method. Figure 1 is a causal diagram that is
useful for illustrating the theoretical issues.
Referring to Figure 1, the uppercase letters
represent theoretical constructs. In particu-
lar, define the letters A, M, and P as A =
ability, M = motivation, and P = perfor-
mance potential. These constructs are latent
random variables representing individual dif-
ferences and are not directly observable. The
symbol pAiM represents the correlation be-
tween A and M. The subscripted variables Xa
and Xm are fallible measures of the corre-
sponding constructs A and M. For example,
define Xa and Xm as Xa = ability test score,
and Xm = effort rating. The subscripted vari-
ables YPI and YP2 are both fallible measures
of the performance construct P. For example,
define YPI and YP2 as YP1 = response latency,
and YP2 = response accuracy. The two mea-
sures YPI and YP2 illustrate the idea that any
given construct may have multiple indicators.
For convenience, the subscripted variable Yp
will be used to refer to either Yp, or YP2,
whenever it is not important to distinguish
these two measures. These measures are as-
sumed to be related to the theoretical con-
structs by the following system of equations,
which will be referred to collectively as the
measurement model:

(la)

(Ib)

(Ic)

where F, G, and H are monotonic functions,
and Ea, Em , and Ep are random measurement
errors. The exact form of the monotonic
functions F, G, and H may be known, par-
tially known, or unknown. For convenience,
the variables Xa and Xm will be referred to
as predictor variables because they are mea-
sures of the hypothesized causal variables A
and M, and the observed measure Yp will be
referred to as the criterion variable because
it is a measure of the hypothesized dependent
variable P.
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Measurement Model Causal Model Measurement Mode!

-m-

A = ABILITY CONSTRUCT

X = OBSERVED MEASURE OF ABILITY
a

E = MEASUREMENT ERROR FOR X
a a

H = MOTIVATION CONSTRUCT

X '= OBSERVED MEASURE OF MOTIVATION
m

E = MEASUREMENT ERROR FOR X

P = PERFORMANCE CONSTRUCT

V = OBSERVED MEASURE OF PERFORMANCE
P

E = MEASUREMENT ERROR FOR Y
P P

U = DISTURBANCE FACTOR

F, G, AND H ARE MONOTONIC FUNCTIONS

fl CORRELATION BETWEEN A AND M.m / A , M

Figure 1. A causal diagram of Vroom's model of performance, with.multiple indicators of one construct.

The paths in Figure 1 showing the influ-
ence of A and M on P represent the hypoth-
esized causal relations, and the symbol U rep-
resents unknown causal factors that also in-
fluence P. The unknown disturbance U is
assumed to be uncorrelated with all other
causal variables. The set of functional rela-
tions among the theoretical constructs is re-
ferred to as the structural model (cf. Rock,
Werts, Linn, & Joreskog, 1977). The struc-
tural multiplicative model can be stated as

+ B3-(M-A) + U, (2)

where B' = (BQ, B\, B2, B3) are called the
structural parameters. The additive struc-
tural model can be obtained by assuming that
53 = 0.

The goal of the researcher is to determine
whether the structural model is additive or
multiplicative. Because the true structural
relations are not directly observable, they
must be inferred from statistical relations
among the observed measures. Since the es-
timated regression equation is influenced by

both the measurement model and the un-
derlying structural model, any assumptions
concerning the measurement model must be
carefully considered so that valid inferences
about the structural model can be made.

It is now possible to state the issues re-
garding measurement level and measurement
error more precisely. In the section on the
measurement level problem, we analyze the
effect that restrictions on the forms of the
functions F, G, and H have on empirical tests
of the structural model. In the section on the
measurement error problem, we analyze the
effect of assumptions concerning the random
errors Ea, Em, and Ep on empirical tests of
the structural model.

The Measurement Level Problem

To simplify the analysis of the measure-
ment level problem, it will be assumed that
there is no measurement error (i.e., Ea =
Em = Ep = 0). The effects of measurement
error will be considered in a later section.
Table 1 breaks the measurement level prob-
lem down into four categories.
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Table 1
Four Cases of the Measurement Level Problem

Criterion
Predictors

Linear Monotonic

Linear

Monotonic

F, G, and H all
linear"

H linear F, G,
monotonic

H monotonicb

F, G, linear
F, G, and //

monotonic

a Linear function: F(X) = C0 + CtX, where Co and C,
are unknown scale constants.
b Monotonic functions:

F(X) = C0

F(X) = C0

C,,C2,

< 0.

restricted to maintain monotonicity.

Any function F(X) such that ~~ > 0,

Category 1: Linear Predictors and Criterion

In this category, Xa = F(A) = C, + C2 •
A, Xm = G(M) = C3 + C4 • M, and Yp =
H(P) = C5 + C6 • P, where the Cs are un-
known constants representing the origins and
the units of the scales. The effect of these
scale constants is to bias the estimates of the
structural parameters. This bias is revealed
by writing the structural equation in terms
of the observed measures. Substituting P =
(Yp - C5)/C6, M = (Xm - C3)/C4) and A =
(Xa - C,)/C2 into Equation 2 yields

(Yp - C5)/C6 = B0 • (Xtt - C,)/C2

+ B, - (Xa - CMXm - C3)/(C2 • C4) + U,

which reduces to the following multiple
regression model:

Yp = b0 + bt • Xa

e, (3)

where

= (C6/C2)'[Bl-(B3-C3/C4y\.

and
•e=C6-U.

Equation 3 implies that even when the struc-
tural model is assumed to be strictly multi-
plicative (i.e., 5, = B2 = 0,53 ̂  0 in Equation
2), the regression model could contain both
additive and multiplicative effects (i.e., b{, b2,
and Z>3 are all nonzero) because of the additive
constants C, and C3. However, if the struc-
tural model is strictly additive (i.e., 53 = 0
in Equation 2), this implies that the regres-
sion model will also be strictly additive (i.e.,
bj, = 0 in Equation 3).

Cohen (1968, 1978) has proposed a test of
the additive versus the multiplicative regres-
sion model, based on hierarchical regression
analysis, which is unaffected by the scales of
the measures in Equation 3. The hierarchical
regression test is performed by comparing the
percentage of variance predicted by Equation
3, with no restrictions on the parameters
(symbolized as R2

mu\d, with the percentage of
variance predicted by Equation 3, with the
restriction that b3 = 0 (symbolized as RlM).
The increment in R2, AJ?2 = Rmu\i ~ Rldd,
provides the test statistic for testing the sig-
nificance of the Linear X Linear trend com-
ponent in Equation 3. The value of A/?2 will
be invariant to linear transformations of the
scales of Xa and Xm.

Cohen's work was primarily concerned
with data analytic issues. Arnold and Evans
(1979) have gone further and argued that
hierarchical regression analysis can be used
to empirically evaluate psychological theo-
ries, and such techniques have been applied
to theories of work motivation by Arnold and
House (1980). We argue below that there are
a number of complex issues that may limit
the usefulness of hierarchical regression anal-
ysis for empirically evaluating psychological
theories.

Category 2: Linear Criterion,
Monotonic Predictors

In this category, Yp = H(P) = C5 + C6 •
P, but Xa = F(A) and Xm = G(M) are un-
known or partially known monotonic func-
tions. In order to provide concrete examples,
it will be useful to assume that the inverse
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functions A =.p-\X-a) and M = G~\Xm) can
be approximated by quadratic functions.
Under these assumptions, it is possible to
write the structural model in terms of the
observable measures as

(Yp - C5)/C6 = B0 + B\-F-\Xa) + B2

X G~l(Xm) + B3 • F~\Xa) • G~l(Xm) + U,

which reduces to

Yp = b0 + bl-Xa + b2- Xm + .b3- (Xa
2)

+ bs-(Xa
2-X2,) + e. (4)

Equation 3 contains only linear and Linear X
Linear trend components, and Equation 4
also contains quadratic, Linear X Quadratic,
and Quadratic X Quadratic trend compo-
nents (cf. Cohen .& Cohen, 1975).

Birnbaum (1973, 1974) has shown that in-
valid conclusions can be drawn from multi-
ple regression analyses when a researcher in-
appropriately assumes that F, G, and //are
linear (as in Equation 3) rather than nonlin-
ear (as in Equation 4). The following example
illustrates how this can happen when hier-
archical regression analysis is used. Suppose
that YP = M+ U, but that G(M) = V/fcf, so
that M = X2

n . Also assume that there is a
correlation between Xa and Xm so that Xm =
Xa + V, where F is the uncorrelated residual
variation in X,,,ihat cannot be predicted by
Xa. Rewriting the equation for Yp in terms
of the observable measures yields

'=(Xm-Xa).+ e,

where e = (U + Xm • V) is the correlated re-
sidual in the prediction equation. Applica-
tion of Equation 3 to this model could yield
a significant increment in R2 for the Linear X
Linear trend favoring the multiplicative
model, despite the fact that performance was
actually a simple linear function of the mo-
tivation construct. The result might be termed

a "spurious" product effect, since the Linear X
Linear trend was actually correlated with an-
other unknown factor. This spurious product
effect could also be produced by correlations
with trend components other than the qua-
dratic trend. For example, the Linear X Lin-
ear trend may be correlated with the Qua-
dratic X Quadratic trend.

Theoretically, the problems encountered
by monotonic predictors may be overcome
by including not only linear and Linear X
Linear trend components (as in Equation 3),
but also higher order trend components (as
in Equation 4). One could test the additive
model versus the multiplicative model by
comparing the R2 produced by Equation 4
using unrestricted parameters with the R2

produced by Equation 4 using the restrictions
Z>5 = b6 = 67 = 68 = 0.

There are practical problems associated
with the use of polynomial models such as
Equation 4. One is the task of determining
the appropriate number of necessary trends
(e.g., should cubic trends be included?). The
second problem occurs when the predictors
contain measurement error. As will be shown
later, multiplication of variables containing
measurement error greatly amplifies the mea-
surement error problem.

Categories 3 and 4: Monotonic Criterion

In both of these categories Yp = H(P) is
an unknown or partially known monotonic
function. As a result, both categories share
the common problem that it is theoretically
permissable to monotonically transform the
criterion measure in order to rescale Yp in
terms of the theoretical construct P. It should
be noted that some current measurement
theorists (see Krantz & Tversky, 1971) argue
that it is only safe to assume a monotonic
relation between most "objective" perfor-
mance measures and the relevant psycholog-
ical construct. For example, suppose that
YP] = response latency and YP2 = response
accuracy. Both YPI and YP2 measure an im-
portant aspect of the subject's performance.
However, it is usually the case that these vari-
ables are nonlinearly related to each other
(Pachella, 1974), and therefore they cannot
both be linearly related to the performance
construct.
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When H(P) is assumed to be an unknown
or partially known monotonic function, it is
extremely difficult to interpret the results of
hierarchical regression analyses based on the
observed measure Yp. This is because an ad-
ditive structural model can be transformed
into a multiplicative regression model through
the monotone function Yp = H(P). Similarly,
a multiplicative structural model can also be
transformed into an additive regression model
through the function H(P). Thus simply us-
ing hierarchical regression analysis to deter-
mine whether the Linear X Linear trend is
significant is not sufficient for determining
whether the underlying structural model is
additive or multiplicative.

To show this in a simple manner, assume
that P = A + M. Next assume that

Xa = F(A) = C, + exp(/l),

Xm = G(M) = C2 + exp(Af),

where exp(x) is the exponential function and
the Cs are constants. The original scales can
be obtained from the inverse transformations

A = F~\Xa) = \og(Xa - C,),

M = G~l(Xm) = \og(Xm - C2\

where log(x) is the natural logarithm of x.
Finally, assume that Yp = C3 + exp(F) + Ep,
where E,, is the random measurement error
associated with Yp. Then substitution of the
above definitions for P, A, and M into the
equation for Yp yields Yp = C3 + (Xa - C,) •
(Xm — C2) + Ep, which is a multiplicative
regression model similar to Equation 3.

This example shows that it is possible for
an additive structural model to be trans-
formed into a multiplicative regression model.
The conditions that determine whether or
not a transformation to additivity exists pro-
vide a possible method for empirically eval-
uating the structural model. Referring to
Equation 3, whenever b3 =£ 0 it will be pos-
sible to algebraically rearrange the equation
into a pure multiplying model

YP = [bo ~ (b, • b2)/b,}

where

and
Xa = (Xa

Define the joint density function for the
pair (Xa, Xm) as f(Xa, Xm) and define the con-
ditional density of Xa given that Xm = m as
f(Xa/nf). Also define the conditional expected
value of Yp given Xa = a and Xm = m as

E[Yp/a, m] = u(a, m) = C, + (a-m\

for pairs (Xa,Xm) with f(Xa, Xm) > 0. If the
product Xa • Xm is always positive, then the
monotonic transformation \og[u(a, m) —
C\\ = log(a) + log(m) produces an additive
structural model. Similarly, if Xa-Xm is al-
ways negative, then the monotonic transfor-
mation log[C, - u(a, m)} = log(a) + log(m)
also produces an additive structural model.

It is not possible to transform to additivity
if a violation of the independence axiom (cf.
Krantz & Tversky, 1971) occurs. Assuming
that Equation 5 is the correct model, then a
violation of the independence axiom occurs
when the following two conditions exist: (a)
Xm can be fixed at a nonzero value, Xm = m\,
and the product (a • m\) is always positive for
all Xa with f(Xa/m^ > 0 in some range a\ <
Xa < a2 and (b) Xm can also be fixed at a
nonzero value Xm = m2 and the product (a •
m-i) is always negative for all Xa with f(Xa/
m2) > 0 in the same interval a\ < Xa < a2.
The first condition states that the slope of the
line u(a, m{) = [Ci + (a • m,)] is positive, and
the second condition states that the slope of
the line u(a, m2) = [C\ + (a • m2)] is negative.
This slope reversal is similar to a crossover
interaction (cf. Busemeyer, 1980) in analysis
of variance.2

In practice, it may not be possible to use
the test of the independence axiom with the
observational method for four reasons. First,
violations of independence may occur only
for sets of pairs (Xa • Xm) with very low prob-

or
(5)

2 It is also possible that the slope of the line (C, +
is exactly zero for some value of Xm = m\ with

f(XJtnt) > 0 for ai < Xa < a2. In this case, it would not
be possible to transform the multiplicative model into
an additive model.
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abilities of occurrence, so that an additive
model would be valid for the majority of the
values in the range. Second, in order to eval-
uate the conditional means, u(a, m), it is nec-
essary to know the parameters b\>bi, and b$
in Equation 3. If only small sample estimates
are available, then the estimates of b\ and 62
are likely to have large standard errors due
to multicollinearity associated with the use
of product scores.3 Third, the estimates of &,,
b2 , and Z>3 may be severely biased as a result
of measurement error, a problem that is de-
scribed in detail later. Fourth, it is always
possible that Equation 3 is the wrong regres-
sion model, and for example, Equation 4 is
more appropriate. Under certain conditions,
Equation 4 can also be factored into a pure
multiplicative model given by

X(C4 + Cs-Xm + C6-X
2

m) + e. (6)

If the product in Equation 6 always has the
same sign, then Equation 6 can be trans-
formed into an additive structural model by
a logarithmic transformation. Specifying the
regression model as Equation 3 when in fact
Equation 4 was the correct model would lead
to incorrect estimates of u(a, m) and an in-
valid test of the independence axiom.4

An alternative to ordinary multiple regres-
sion analysis is to use a monotone regression
procedure (e.g., Young, de Leeuw, & Takane,
1976) that allows the researcher to specify the
level of measurement for each variable. There
are also limitations associated with this ap-
proach. The distribution theory for mono-
tone regression has not been sufficiently de-
veloped, so that significance tests for lack of
fit are not available. Without rigorous tests
for lack of fit, it may be very difficult to reject
the additive model (cf. Anderson & Shanteau,
1977).

Summary of the Measurement
Level Problem

The previous arguments indicate that when
it is theoretically permissable to monotoni-
cally transform the criterion variable, then
hierarchical regression analysis cannot yield
an interpretable test of the multiplicative ver-
sus additive structural models. If the criterion

is assumed to be a linear measure and the
predictors are nonlinear, then it is theoreti-
cally possible to use the hierarchical regres-
sion method. However, in this case, it is es-
sential that all relevant trend components be
included in the model, otherwise spurious
results could occur. In practice, it may be
very difficult to use the hierarchical regres-
sion method with monotonic predictors for
two reasons: one is the problem of determin-
ing which trend components to include in the
model, and the second is the fact that mul-
tiplying variables measured with error am-
plifies the measurement error problem. If one
can establish that the criterion and the pre-
dictors are linear measures, then a stronger
argument can be made for the use of the ob-
servational method and hierarchical regres-
sion analysis to empirically evaluate the mul-
tiplicative structural model. However, even
in this case the results may be invalid due
to the problem of measurement error (see
below).

Measurement Error

In the discussion that follows, the classic
true score measurement model (cf. Lord &
Novick, 1968) is assumed, so that

Xa = A + Ea,

Xm = M+ E,,,,

YP = P + Ep,

(7a)

(7b)

(7c)

3 When the means of Xa and Xm are substantially dif-
ferent from zero, the product score (Xa- Xm) tends to be
highly correlated with Xa and Xm. This tends to increase
the standard errors of the estimated beta weights for Xa

and Xm. Using deviation scores will tend to reduce this
problem.

4 Scheffe (1959, p. 95) discussed a general method for
determining whether a two-variable polynomial regres-
sion model can be transformed into an additive model
when the model parameters are known. Suppose y is the
polynomial function of Xa and Xm given by Equation 4.
Scherfe has shown that if

dx\dx

where w(y) is an integrable function of y, then a trans-
formation to additivity exists. There are three problems
concerning the use of Schefffe's method: (a) the param-
eters are never known exactly, (b) it may be difficult to
prove that no solution w(y) to the functional equation
exists, and (c) the solution w(y) may not be integrable.
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where the random errors Ea, Em, Ep are un-
correlated with each other and with the latent
random variables A, M, P, and U. The errors
have zero means, and the variances are Qa,
Qm, and Qp for Ea, Em, and Ep, respectively.
The reliabilities ofXa and Xm can be denned
as Pa = V(A)/V(Xa) and Pm = V(M)IV(Xm\
where V(X) is the variance of X.

A serious limitation of the hierarchical
regression method for testing additive and
multiplicative structural models is the fact
that this method does not take into consid-
eration the consequences produced by mul-
tiplying predictor variables measured with
error (see Arnold, 1982). Ordinary least
squares multiple regression analyses assume
that the predictor variables are error free.
Contrary to Arnold and Evans' ( 1 979) earlier
conclusions concerning the appropriateness
of the fixed regression model for theory test-
ing, it will be shown here that violations of
the assumptions concerning measurement
error can lead to faulty inferences concerning
the structural parameters. These inferential
problems cannot be corrected by increasing
sample size or by averaging across replica-
tions of research.

In order to reveal the influence of mea-
surement error on the parameters estimated
by the hierarchical multiple regression
method, it is useful to write the structural
equation in terms of the observed measures,
which yields

(Yp - Ep)

or

} - (Xa - Ea) + B2 • (Xm - Em)

B3 • (Xa - Ea) • (Xm - Em) + U,

e, (8)

where

e=U- [Bi-Ea + B2>Em

+ B, • (Xm -Ea + Xa- Em - Ea • £,„)] + Ep.

Since the error in Equation 8 is correlated
with each of the predictors, Xa, Xm, and Xa •
Xm, the least squares estimates of b' = [b0,
b(, b2, £3] will be biased and inconsistent es-

timates of the structural parameters B' = [B0,
B\, B2, BI] from Equation 2 (see Johnston,
1972, chap. 9). The bias from measurement
error can severely influence the relative mag-
nitudes and even the signs of the regression
coefficients (see Bohrnstedt & Carter, 1971,
for examples).

Implications for Multiplicative
Structural Models

Define -Rmuit as the percentage of variance
predicted by Equation 8 with unrestricted
parameters, and define RlM as the percentage
of variance predicted by Equation 8 with the
restriction that b3 = 0. The increment in R2,
defined as AJ?2 = (Rmuit — .Radd)* will be se-
verely attenuated by even moderate mea-
surement error associated with the predic-
tors. To demonstrate this, it is necessary to
investigate the asymptotic distribution of
AJ?2 as the sample size N increases to the
limit.

Specifically, the symbol Ap2 will be used
to represent the probability limit of AJ?2 (i.e.,
AT?2 converges in probability to Ap2 as N —>
oo). In the Appendix, the value of Ap2 is de-
rived based on the following assumptions:
(a) Xa, Xm, and Yp are generated by Equa-
tions 7a through 7c, (b) the errors are nor-
mally distributed, and (c) the latent variables
A and Mare distributed multivariate normal
with a correlation of PA,M- (ft is not assumed
that product A • M will be normally distrib-
uted). For simplicity, all observed measures
are expressed in deviation score form.

The value of Ap2 will depend directly on
the reliability of the product term5 (Xa • Xm),

5 Arnold (1982) has reported a derivation of Ap2 for
the special case where one of the predictors (say Xm) is
dichotomous and measured without error (i.e., pm = 1.0).
However, Arnold's derivation contains an apparent error.
Arnold reported that Ap2 = pa

2 [actual effect size]. Actual
effect size = B}

2[\ - R(x,xa).x,,xm
2], and R(XM.x,,xm

2

equals the percentage of variance in the product (Xn •
X,,,) predicted by Xa and Xm. This cannot be correct
because R(x,xm).x,,xm

2 w>" vary depending on the inter-
cepts of the scales Xa and Xm, while Ap2 is invariant to
changes in these intercepts. Also Arnolds's definition
allows "actual effect size" to be greater than 1.0 under
some circumstances, but 0 < Ap2 < 1.0.

If it is assumed that Xm is dichotomous, pm - 1.0,
PA,M - 0.0, and V(Xa) is constant across both levels of
Xm, then we can derive the following simple expression
for this special case:
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which is defined as pam = V(A-M}/V(Xa-
Xm). The Appendix shows that

t\P2 = Pam[BS.V(A-M)]IV(Yp), (9)

where B3 is the structural parameter asso-
ciated with the product (A-M) in Equation
2. Bohrnstedt and Marwell (1978) have ex-
pressed the reliability of a product (i.e., pani),
in terms of the reliability of Xa (i.e., pa) and
the reliability of Xm (i.e., pm). Under the as-
sumptions stated above (including the use of
deviation scores)

Pan, = [(Pa'Pm) + + PA,M\ (10)

where pAM is the correlation between the la-
tent variables A and M. If Xa and Xm were
perfectly reliable, then pam = 1 and Ap2 =
[BS-V(A-M)]/V(YP). Therefore, the per-
centage of attenuation in Ap2 resulting from
measurement error is indicated directly by
Pam- When pAtM - 0, then pam = pa-pm, so
that if one measure were highly reliable (e.g.,
pa = .8) and the other very unreliable (e.g.,
pm = .2), then the reliability of the product
would be below the reliability of the less re-
liable measure (e.g., pam = (.2)(.8) = .16). Ta-
ble 2 provides some examples of the reli-
ability of a product (and thus the percentage
attenuation) for some sample values of pa ,
pm, and PA%M- As can be seen, the value of
ft am is a decreasing function of pa and pm,
usually falling below the minimum for (pa,
pm). Also, the value of pam is an increasing
function of pAtM, so that the attenuation is
maximal when pAiM = 0 (e.g., when the causal
variables are orthogonal).

The point of this analysis is that AJ?2 can
be reduced to practically zero if either pa or
pm or both are small. The problem of mea-
surement error becomes even more severe
when product scores involving more than
two fallible measures such as (Xc'Xi-
X3) = (Xt + Ei)(X2 + E2)(X3 + E3). are used.
For example, if it is assumed that X^Xi, and
X3 are normally distributed and uncorrelated
deviation scores, then the reliability of the

= factual effect size],

where actual effect size equals the value of Ap2 when
Pm = Pa = 1-0.

Table 2
Effects of the Reliability ofXa (pa), the
Reliability of Xm (pm), and the Correlation, pA:M,
Between A and M on the Reliability of the
Product (Xa-Xm)

Pa Pm Pam

.1

.2

.2

.2
,2
.2
.5
.5
.5
.5
.5
.5
.8
.8
.8

.2

.2

.2

.8

.8

.8

.5

.5

.5

.8

.8

.8

.8

.8

.8

.00

.15

.32

.00

.20

.40

.00

.25

.50

.00

.30

.55

.00

.30

.63

.04

.06

.13

.16

.19

.28

.25

.29

.40

.40

.45

.54

.64

.67

.74

Note. These values were generated by setting V(A) =
V(M) = 1. The resulting values of pam were determined
as a function of p,tiM, pa, and p,,,. The correlations pAM
span the range permitted by the constraints resulting
from the reliabilities. These results are based on the use
of deviation scores for Xa and Xm.

three-way product will be the product of the
individual reliabilities! This fact highlights
the necessity for researchers to recognize the
severe attenuation in statistical power to de-
tect Linear X Linear or higher order trends
when the predictor variables are measured
with error.

Enors-in-Variables Regression Models

Many of the problems produced by mea-
surement error may be overcome by using
latent structural equation models (e.g.,
Bentler, 1980; Rock et al., 1977), errors-in-
variables regression models (e.g., Warren,
White, & Fuller, 1974), or regression models
with instrumental variables (Johnston, 1972;
James & Singh, 1978). Except for McDonald
(1967), few researchers have considered mul-
tiplicative latent structural equation models,
and there are a number of statistical prob-
lems that must be overcome before latent
structural equation analyses can be safely
used to test multiplicative models.

The latent structural equation approach
requires the researcher to obtain estimates of
the following two covariance matrices: One
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is the covariance matrix for the latent causal
variables (A, M, and A • M), which will be
symbolized as 4?; the second is the covariance
matrix for the measurement errors, symbol-
ized as G, where G is usually a diagonal
matrix. The standard procedure is to use
multiple indicators of each construct. Using
a congeneric measurement model (cf. Rock
et al, 1977), it is possible to obtain consistent
estimates of $ and 6. Separating true score
variance from measurement error variance
makes it possible to obtain consistent esti-
mates of the structural parameters. The ma-
jor problem that is introduced by the mul-
tiplicative latent variable (A • M) is that es-
timates of the measurement error variance
associated with the multiplicative term Xa •
Xm are not readily available. Two different
approaches have been suggested to estimate
the measurement error variance for the mul-
tiplicative term Xa-Xm.

One obvious approach to the problem is
to obtain several product scores Xai-Xmt,
each being a separate indicator of A • M. The
measurement error for each product score
will be equal to Eam = (A • Em + M- Ea + Ea •
£,„). Once multiple indicators of A • M have
been constructed, they are introduced into
the congeneric measurement model in the
same fashion as the indicators for A and M.
A recent example of the use of this approach
is the analysis of the Fishbein and Ajzen
model by Bagozzi (1981). The major prob-
lem with this approach is that the statistical
properties of the estimates produced by the
inclusion of the complex error structure Eam
are completely unknown. For example, it is
not known whether the estimates obtained
from this method will be consistent estimates
of the structural parameters. Thus, it is risky
at best to use the product-score indicator
method.

A second approach, suggested by Bohrn-
stedt and Marwell (1978), depends on prior
knowledge of the reliabilities of Xa and Xm.
Suppose that the measurement error vari-
ances 0a and 0,H associated with Xa and Xm
are given either by theory or extensive con-
firmatory factor analytic research. Then us-
ing the formulas provided by Bohrnstedt and
Marwell (1978, p. 266) for the variance of a
product, it is possible to derive the variance

of Eam (symbolized as 0am). If the assump-
tions described earlier for Equation 9 hold
(including the use of deviation scores), then

+ pm' V(Xm) • (0J + (0fl) • (0m). (11)

Having determined the covariance matrix
© = diag(0fl, 0m, 0nm) for all three variables
Xa, Xm, and Xa'Xm, it is possible to obtain
consistent estimates of the structural param-
eters by the following modified least-squares
method: Define X as a (TV X 3) matrix con-
taining TV rows of observations on Xa, Xm,
and Xa'Xm. Also define 2^ as the unbiased
estimate of the covariance matrix for X. Let
y be a column vector containing TV obser-
vations of the criterion variable measured in
deviation score form. Finally, define 2xy as
the unbiased estimate of the covariance ma-
trix between y and X. Then a modified least
squares estimator is given by

Warren et al. (1974) have described this ap-
proach in more detail. Alternatively, one
could use the latent structural equation model
described by Rock et al. (1977), treating 0
as a fixed parameter matrix. In sum, the
Bohrnstedt and Marwell approach attempts
to overcome some of the problems of the
product score indicator approach by deriving
the measurement error variance of the prod-
uct scores analytically rather than by esti-
mating it. An example illustrating the use of
the Bohrnstedt and Marwell approach is a
study by Heise and Smith-Lovin (1981) that
investigated a multiplicative impression for-
mation model.

There are two problems with the Bohrn-
stedt and Marwell approach. First of all, it
requires prior knowledge of the reliabilities
of Xa and Xm. The second problem is that
the derivation of the reliability of a product
depends on assumptions of multivariate nor-
mality and uncorrelated measurement er-
rors. If the population values of 6 are not
available, but consistent estimates are avail-
able, then Equation 12 will still produce con-
sistent estimates of the structural parameters.
However, using sample estimates for 6 will
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also increase the variance of the estimates of
B. In addition, subtracting a sample value of
0 from XT may produce a singular matrix.
(See Warren et al., 1974, for more details on
both of these issues). Overall, the Bohrnstedt
and Marwell approach appears to be superior
to the product score indicator method de-
scribed earlier.

Summary of Measurement Error Problems

Hierarchical regression analyses will tend
to severely underestimate the Linear X Lin-
ear trend and higher order trends of the struc-
tural model when the predictor variables
were measured with error. The increment in
R2 from the product term is directly related
to the reliability of the product. Under rea-
sonable conditions, the reliability of the prod-
uct of several measures is directly related to
the product of the reliabilities of the individ-
ual measures being multiplied. Thus, the
presence of measurement error in the pre-
dictor variables will drastically reduce the
power to detect a significant contribution
from the product term. If the reliabilities of
the individual predictor variables are known,
then under certain assumptions an errors-in-
variables regression procedure suggested by
Bohrnstedt and Marwell (1978) will provide
consistent estimates of the structural param-
eters for a multiplicative model.

General Conclusions

If the researcher is interested in empirically
evaluating a theory that proposes a multipli-
cative combination rule, then hierarchical
regression analysis used in conjunction with
the observational method is inadequate for
two reasons: (a) a significant Linear X Linear
trend or higher order trends may be elimi-
nated by a theoretically permissable mono-
tonic transformation, and (b) a nonsignifi-
cant Linear X Linear trend or higher order
trends may result from a drastic reduction
in power caused by the multiplication of vari-
ables containing measurement error. Simul-
taneous consideration of the measurement
level and measurement error problems makes
the results of hierarchical regression analysis
extremely difficult to interpret. The mea-

surement level problem implies an increased
rate of false detections of multiplicative ef-
fects, and the measurement error problem
implies a decreased rate of detection of true
structural multiplicative effects. Unfortu-
nately, one cannot easily identify the form of
the associated operating characteristic curve,
which, in turn, makes it difficult to identify
the optimal decision-making strategy, A test
of the independence axiom and an errors-in-
variables regression procedure were proposed
as possible ways of eliminating these two
problems. However, the correct use of those
procedures requires precise estimates of the
measurement error variances and the regres-
sion coefficients.

Alternatives to the observational method
are the use of experimental designs, conjoint
measurement methods (Krantz & Tversky,
1971), functional measurement methods
(Anderson, 1982, chap. 5), and "scale free"
or "scale convergence" methods (Birnbaum,
1982).
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Appendix

The purpose of this appendix is to determine the magnitude of the asymptotic bias in the estimate
of the increment in R2 for the Linear X Linear trend estimated by hierarchical regression when the
predictor variables are measured with error. The column vector Y represents N observations obtained
from Yp, and the (N X 3) matrix X represents N observations on Xa, Xm, and (Xa-X,,,). The column
vector y represents the deviation score measures of Y, and x represents the deviation score measures
of X. The development below is based on these deviation scores.

It is assumed that Yp, Xa, and Xm were generated by Equations 7a-7c. In addition, the errors Ea and
Em are assumed to be independently normally distributed. Finally, it is assumed .that the latent random
variables A and M are distributed according to a multivariate normal distribution.

On the basis of Equations 7a and 7c, the matrix of predictor deviation scores can be decomposed
into x = Z + V, where Z is the matrix of true scores and V is the matrix of measurement errors
corresponding to each value in x. The deviation score form of the structural model can then be written
as

y = ZB + U = (x - V)B +-U = xB + (U - VB) = xB + e, (Al)

where B' = [ B { , B2, 53] is the vector of structural parameters, and e is a vector of residuals that are
correlated with x,

The covariance matrix for the latent variables [A, M, and (A • M)} is given by

$11
$21 $22
0 0 $33J

where <£,, = V(A), <t>22 = V(M\ 02, = COV(A, M), and </>33 = V(A) • V(M) + COV(^, M)2 (see Bohrnstedt
and Goldberger, 1969). The error for the multiplicative term will equal Eam = [A-Em + M-Ea +
Ea •£,„]. The covariance for the errors [£,1, Em, Eam] is given by

"©11
e = 022

e33J

where 0,, = V(Ea\ 022 = V(Em\ and 033 = V(E^ = V(A)- V(Em) + V(M)- V(Ea) + V(Ea}-V(Em)
(see Bohrnstedt & Goldberger, 1969).

The covariance matrix for the observed measures in x will be symbolized as S.v with elements a-,-,,
and is given by

2.v = * + 6.

The ordinary least squares estimator for B is obtained from the following equation:

b = (x'x)-'x'y. (A2)

To find the asymptotic value of R2 it is necessary to obtain the probability limit of the ordinary least
squares estimator, symbolized as plim(b). Using the derivation by Johnston (1972, p. 282),

plim(b) = [I - (S.V-'6)]B, (A3)
or

plim(63) = ($3/ff33)B3,

where &3 is the regression coefficient associated with the product term and 0-33 is the variance of the
product.

The second step is to find the probability limit for the R2 predicted by Equation A1, symbolized as
plim(JR

2
nuit)' One useful formula for R2 is the following:

-"mult

Taking the probability limit yields

= [plim(b)]'S.v[plim(b)]/ffy
2. (A5)
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Using a similar argument, one can obtain the probability limit for the R2 predicted by the additive
model obtained by setting 83 = 0 in Equation A l . The probability limit for the R2 predicted by the
additive model will be symbolized as plim(7?2

dd). The increment in R2 resulting from the Linear X
Linear trend is obtained from AJ?2 = (Rmu\i ~ Rl<u)- The probability limit for AT?2 will equal

\ (A6)= A/r = pa,,,[B

where Ap2 is a symbol representing plim (A/?2). In Equation A6, pam =
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