
Bivariate Linear Regression 
 

See General Linear Model for a More Rigorous 
Presentation, including proofs of estimates and variance of 
estimates. 

 

The multiple regression model is used when we have a set of continuously 
varying predictors which are used to predict a continuously varying 
criterion. For example we may use various measures of personality (e.g., 
impulsiveness, sensation seeking both measured on 100 point scales) to 
predict severity of alcohol abuse (amount of alcohol per week) for 
individuals.  The bivariate regression model is just a special case involving 
only two predictors. But this is complex enough to illustrate all the basic 
issues of multiple regression. 

First we define the bivariate model and the variables that enter the model. 

 

 

1. Definitions 

  

Bivariate Regression Model: 

yi’ = b0 + b1X1i + b2X2i 

Yi = observed criterion score for row i  (eg. alcohol intake 
of individual i in row i of a table of data) 



X1i = value of first predictor variable for row i (eg. 
impulsiveness score for person i) 

X2i = value of second predictor variable for row i (e.g. 
sensation seeking score for person i) 

Yi' = predicted criterion score for row i (generated by the 
model) 

ei =(Y - Y')= residual score for row i  

b1 = the regression coefficient representing the change in y 
produced by each unit change in X1. In other  words, this 
represents the effect of X1 on y. 

b2 = the regression coefficient representing the change in y 
produced by each unit change in X2. In other words, this 
represents the effect of X2 on y. 

How we determine these two coefficients is discussed later. Next we review 
the sample statistics that enter into the formulas used to compute the 
coefficients, which are then used to computer the predictions of the bivariate 
regression model. (click here for a review of these statistics) 

 

2. Sample Statistics: 

Notation 

Mx1 = sample mean of X1 

Mx2 = sample mean of X2 

My = sample mean of Y 



sx1
2 = sample variance of X1  

sx2
2 = sample variance of X2  

sy
2 = sample variance of Y  

rx1,y = correlation between X1 and Y 

rx2,y = correlation between X2 and Y 

rx1,x2 = correlation between X1 and X2  
 

TSS = total sum of squared deviations scores = S (Yi-My)2   

SSE = sum of squared error scores = S ei
2  

SSR = TSS-SSE = sum of squared predictions  

 

R-square  

R2 = SSR / TSS 

This is an important measure of the fit of the model to the data. It is 
interpreted as the proportion of variance in the criterion predicted by the 
model. 

 

The next statistic is a sample estimate of the error variance for the model. 
This is important for computing standard errors and for performing 
statistical tests. 

MSE = SSE / (N-3) = mean squared error  
df = N-3 



df refers to the number of free residuals. If we have N rows in the data table, 
then we have N residuals, but not are all free. Three constraints on are 
placed on the residuals due to three model parameters estimated from the 
data. The df is important for performing f-tests.  In general, df = N – number 
of model parameters. 
 

Initially we do not know what the coefficients , b0, b1, and b2 should be used 
to generate predictions. So we need to find the coefficients that produce the 
best fit to the data. Fit is measured by the sum of squared residuals. Thus we 
need to find the coefficients that minimize the sum of squared error.  

 

3. Least squares estimates of regression coefficients  

(see reference for a general proof) 

Example of a SSE surface as a function of b1 and b2 

For the bivariate model  

yi' = b0 + b1X1i + b2X2i  

the formulas for the coefficients that minimize SSE are 

 



It is important to study these formulas, not because you will use them in 
your research to computer numerical answers, but to understand how to 
interpret these estimates. Note how the standard deviations and the 
correlations influence each estimate.   

Compare these bivariate estimates to the estimate obtained from the simple 
linear regression model:  y’ = b0 + b1×X1i , which is 

  b1 = rx1,y (sy / sx1 )  

Note that sign and magnitude of rx1,x2 can change the sign of the regression 
coefficient for b1 when comparing the simple vs. bivariate model.   

 

These estimates of the coefficients are usually based on a small sample of 
data, and so they are estimated with error.  We also need to determine how 
precisely we have estimated the coefficients, and this is determined from the 
standard error of the regression coefficients. Intuitively, the standard error 
indicates how much we expect our estimate to deviate from the true 
population coefficient (which can never be known exactly).  The formulas 
for the variance of each coefficient are given above as well. 

To get the std errors we take the square roots of the above: 

sb1 = sqrt(sb1
2) = standard error of b1 

sb2 = sqrt(sb2
2) = standard error of b2 

 

We use the standard errors to obtain confidence interval estimates of the 
coefficients. 

 

4. 95% Confidence Interval for one of the coefficients of 
the bivariate model: 

 



Lower bound of the est for b1 : 

LB = b1 - (sb1)(tc)  

Upper bound of the est for b1 : 

UB = b1 + (sb1)(tc) 

Thus the interval is [ LB, UB] 

where tc is the table t value obtained from row df = N-3 and using the 
column for the 5% error (two tail).  

Using a classic statistics interpretation, we say that there is a .95 probability 
that this sample interval covers the true population coefficient.  Using a 
Bayesian interpretation, we say that there is a .95 probability that the true 
coefficient falls within this interval. 

 

We can perform a statistical test of a coefficient from the bivariate model as 
follows (Note: E(X) = population mean of X): 

H0: E(b1) = b1 = 0.       

Reject H0 if the confidence interval [LB,UB] does not 
cover zero. 

Alternatively we can do the same test as follows: 

T-test for a parameter.   

H0 : E(b1) = 0 

T  =   (b1 / sb1) 

reject reject H0 if  p < .05  



 

What is the p-value? Suppose b1 > 0, then 

p =  2 × (Probability of obtaining a T statistic greater than the one you 
observed given that the null hypothesis is true). There are no other 
interpretations except wrong ones.  

   

Next we consider comparing various models. The most complex model we 
consider is the bivariate model, and so it is the complete model. This 
produces the smallest sum of squared errors. A restricted model is formed by 
restricting b2 = 0 reducing it to a simple linear regression model y’ = b0 + 
b1X1. The simplest model is formed by restricting b1 = b2 = 0 to form the 
null model y’ = b0 which has the largest sum of squared error (which is 
called TSS). 

There are various methods for comparing models. One is based on R-square. 
The complete model will always have the highest R-square, but we can 
evaluate how much improvement we gain going from a simple to a complex 
model in terms of R-square. Another method is to use an f-test to statistically 
test the difference between models.  R-square is more meaningful for large 
samples, and the f-test is only meaningful for small samples.  )Almost 
anything will be significant with a large sample. ) 

 

5. Model Comparisons 

First we list 4 models and their sum of squared errors: 

 

Null model:  Y' = bo  

which produces a sum of squared error = TSS 

(this just predicts the mean) 



 

X1 alone model: Y' = b0 + b1X1  

which produces a sum of squared error = SSE(X1) 

(this of course is a simple linear regression model) 

 

X2 alone model: Y' = b0 + b2X2  

which produces a sum of squared error = SSE(X2) 

(this of course is a simple linear model) 

 

X1 and X2 model:  Y' = b0 + b1X1 + b2X2  

which produces a sum of squared error =SSE(X1,X2) 

(this of course is the bivariate model) 

 

Now we do compare various models. The first step in any comparison is to 
compute the difference in sum of squared errors between two models, which 
is denoted SSR = SSE1 – SSE2.  The f – test is based on F* = MSR/MSE, 
where MSR = SSR/q, and q is the difference in number of parameters used 
by each model. 

 

1. Suppose we wish to compare the bivariate model to the 
null model and test H0: E[b1] = E[b2] = 0 



SSR(X1,X2) = TSS - SSE(X1,X2)  

MSR = SSR(X1,X2) / 2  

MSE = SSE(X1,X2)/(N-3)  

F* = MSR/MSE , reject if F* > f(2,N-3)  

R2 = SSR(X1,X2)/TSS 

 

2. Suppose we wish to compare the bivariate model to the 
simple linear model using only X2, H0: E[b1] = 0 (unique 
effect of X1) 

SSR(X1|X2) = SSE(X2) - SSE(X1,X2)  

MSR = SSR(X1|X2) / 1  

MSE = SSE(X1,X2) / (N-3)  

F* = MSR/MSE, reject if F* > f(1,N-3)  

R2 change = SSR(X1|X2)/TSS 

 

3. Suppose we wish to compare the bivariate model to the 
simpler linear model using only X1, H0: E[b2] = 0 (unique 
effect of X2) 

SSR(X2|X1) = SSE(X1) - SSE(X1,X2)  

MSR = SSR(X2|X1) / 1  



MSE = SSE(X1,X2) / (N-3)  

F* = MSR/MSE, reject if F* > f(1,N-3)  

R2 change = SSR(X2|X1)/TSS 

 

4. Suppose we wish to compare the simple linear model 
using only X1 to the null model, H0: E[b1] = 0 (effect of 
X1 ignoring X2) 

SSR(X1) = TSS - SSE(X1)  

MSR = SSR(X1) / 1  

MSE = SSE(X1,X2) / (N-3)  

F* = MSR/MSE, reject if F* > f(1,N-3)  

R2 = SSR(X1)/TSS 

Note that this comparison tests the b1 coefficient in a different way than 
comparison 2.  This ignores the effect of X2, whereas comparison 2 
examines the contribution of X1 that cannot be explained by X2.  The results 
are different whenever rx1,x2 ¹ 0.  (Look back at the bivariate vs simple linear 
regression coefficient formulas). 

 

Reference for an example multiple regression application 

Ganzach, Y. (1995) Nonlinear models of clinical judgment: Meehl's data revisited.  

Psychological Bulletin, 118, 422-429.  

 


