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Abstract

A new evaluation method is proposed for comparing learning models used for predicting decisions based
on experience. The method is based on the generalization of models’ predictions at the individual level.
First, it evaluates the ability to make a priori predictions for decisions in new tasks using parameters from
different tasks performed by an individual decision-maker. Second, it evaluates the consistency of parame-
ters estimated in different tasks performed by the same person. We use this method to examine two rules for
updating past experience with payoff feedback: The Delta rule, where only the chosen option is updated;
and a Decay-Reinforcement rule, where additionally, non-chosen options are discounted. The results reveal
that although the Decay-Reinforcement rule fits the data better, it has poor generality and parameter consis-
tency at the individual level. The current method thus improves the ability to select models based on their
correspondence to consistent characteristics within individual decision-makers.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Recently, there has been a rising interest in learning models that are applied to choices from
repeated play games. Studies of choice behavior in individual (see, e.g., Busemeyer and Myung,
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1992; Erev and Barron, 2005; Sarin and Vahid, 1999) and multi-player games (see, e.g., Camerer
and Ho, 1999; Cheung and Friedman, 1997; Erev and Rapoport, 1998; Erev and Roth, 1998;
Fudenberg and Levine, 1995; Sarin and Vahid, 2001; Stahl, 1996) have shown that learning in
repeated choice problems can be summarized by simple mathematical models. Two important
issues have surfaced from this research.

First, methods for testing learning models have become a major concern. It is difficult to de-
rive qualitative properties that distinguish the models unambiguously, and so researchers must
resort to comparisons of the accuracy of model predictions . However, model comparisons must
also take into consideration model complexity (Myung, 2000). A particular model might fit a
data set better simply because more parameters were used to fit the same data. For this reason
generalization tests provide an important model comparison method—model parameters are es-
timated from one learning condition, and then these same parameters are used to make a priori
predictions for a new learning condition.

In the past, these generalization tests have been conducted between different groups or popu-
lations of decision makers (see, e.g., Rieskamp et al., 2003). An important problem arises when
using group data to perform generalization tests. Parameters differ across individuals, and there-
fore the predictions for groups must reflect the effects of parameter heterogeneity. Much stronger
tests are possible by conducting generalization tests across tasks within the very same person.
This allows one to estimate parameters for a single individual on one learning task, and then ex-
amine how well these same parameters predict performance for the same individual on another
learning task. This method has rarely ever been used to compare learning models.

Second, assessing the validity of model parameters is another major concern. The parameters
are usually estimated by maximizing a fit statistic, which then raises the following question.
Do these parameters actually measure stable characteristics of an individual, or do they simply
reflect model mimicry for a particular task? If the former is true, then the parameters are stable
across tasks and measure something meaningful about a person; but if the latter is true then the
parameters lack stability and have no meaningful interpretation at the individual level. Having
the same person perform several different learning tasks allows us to assess the validity of model
parameters. We can estimate the parameters separately using data collected from the same person
on each task, and examine the extent to which the estimated parameters remain invariant across
tasks within a single person. This property of a model is hereafter called “individual parameter
consistency.”

Parameter consistency has only been partially addressed before, owing to the lack of proper
methodology. Previous studies examined the consistency of parameters across conditions when
the parameters were estimated from data averaged across individuals within a group (thus assum-
ing homogeneity of parameters across individuals). Yet as far as the authors know, no previous
study has assessed the consistency of parameters at the individual level.

Assessing the accuracy of each individual’s parameters is particularly important for applica-
tions of learning models to the study of cognitive processes (see, e.g., Busemeyer and Stout,
2002; Wallsten et al., 2005; Yechiam et al., 2005). In these applications, the model parameters
provide measurements of latent cognitive and decision processes, such as utility coefficients or
learning rates. However, the examination of individual parameter consistency is an important step
for model testing and comparison in general, for two reasons. First, it can be used to improve the
understanding of which components of the model should be fixed and which should be changed
under different tasks and contexts (i.e., the parameters that are consistent across different tasks
within the individual performer can be kept fixed, while the parameters that are not consistent
should be re-estimated). A second benefit is that studying the consistency of parameters within
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the individual can identify models whose accurate prediction is due to flexibility and success in
mimicking data rather than providing accurate representation of “stable” internal processes.

The present investigation uses the proposed method to compare two classes of learning mod-
els and evaluate the parameter consistency of each model. These two classes of models were
previously evaluated in a study of the Iowa Gambling task, a complex task used for examining
individual differences in choice behavior (Yechiam and Busemeyer, 2005). In the current studies
we examine three tasks that comprise some of the components of the more complex Iowa Gam-
bling task. Study 1 evaluates the two learning models in three tasks where the outcomes are, for
the most part, in the gain domain. Study 2 evaluates the same learning models for three tasks in
which the outcomes are mostly in the loss domain. First we present the two classes of learning
models.

2. A comparison of learning models

An examination of the learning models used in previous studies reveals that most models
employ three groups of assumptions: first, a utility function is used to represent the evaluation
of the payoff experienced immediately after each choice; second, a learning rule is used to form
an expectancy (or propensity) for each alternative, which summarizes the experience of all past
utilities produced by each alternative; third, a choice rule selects the alternative based on the
comparison of the expectancies (see Yechiam and Busemeyer, 2005). In the present study we
compare two learning models that posit different assumptions about the process of updating the
expectancies.

2.1. Utility

The evaluation of gains and losses experienced after making a choice is represented by a
prospect theory type of utility function (Kahneman and Tversky, 1979). The utility is denoted
u(t), and is calculated as a weighted average of gains and losses produced by the chosen alterna-
tive in trial t :

u(t) = W · win(t)γ − L · loss(t)γ . (1)

The term win(t) is the amount of money won on trial t ; the term loss(t) is the amount of money
lost on trial t ; W and L are parameters that indicate the weights to gains and losses, respectively;
and γ is a parameter that determines the curvature of the utility function. In the present study, it
was assumed that L = 1 − W (see Yechiam et al., 2007). Thus, a single parameter W denoted
the relative attention weight to gains over losses.

Furthermore, for the small amounts of money used in the present experiment (less than $1 per
outcome), γ = 1 was considered to be a sufficiently good approximation to the utility function.

2.2. Updating of expectancies

Two general classes of models have been proposed to account for the way new information
is accumulated in repeated choices (Yechiam and Busemeyer, 2005). Under one class of models,
the expectancy for an alternative changes only if the alternative is selected. This class of models
has been labeled “interference” models, because the memory representation is only modified by
relevant events, and not simply as a function of time (e.g., Newell, 1992; Oberauer and Kliegl,
2001). In a second class of models, the expectancy of an alternative can diminish on each choice
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trial even if no new information concerning that particular alternative is presented. This class of
models has been labeled “decay” models, because decay of memory can take place purely as a
function of time even without the occurrence of interfering events (e.g., Atkinson and Shiffrin,
1968; Broadbent, 1958).

A Delta learning rule was used as an example of an interference class model. This model was
found to have the best fit among interference class models in two previous studies that evaluated
models at the individual level (see, e.g., Busemeyer and Stout, 2002; Yechiam and Busemeyer,
2005). A Decay-Reinforcement model (Erev and Roth, 1998) was studied as an example of
the decay class. This model was found to have the best fit among all models in our previous
investigation (Yechiam and Busemeyer, 2005).

2.2.1. Delta model
Connectionist theories of learning usually employ a learning rule called the Delta learning

rule (see Gluck and Bower, 1988; Rumelhart and McClelland, 1986; Sutton and Barto, 1998).
It has been applied to learning in decision tasks by Busemeyer and Myung (1992) and by Sarin
and Vahid (1999). According to this learning rule, the expectancy Ej(t) for each alternative j on
each trial t is updated as follows:

Ej(t) = Ej(t − 1) + φ · [u(t) − Ej(t − 1)
] · δj (t). (2)

The variable δj (t) is a dummy variable which equals 1 if alternative j is chosen on trial t , and 0
otherwise. If alternative j is not chosen on trial t , then the new expectancy Ej(t) simply remains
the same as it was on the previous trial, Ej(t −1). On the other hand, if alternative j is selected on
trial t , then its expectancy changes in the direction of the prediction error given by [u(t)−Ej(t)].

The parameter φ is the learning rate parameter. It dictates how much of the expectancy is
changed by the prediction error. If 0 < φ < 1, then the effect of a payoff on the expectancy for an
alternative decreases exponentially as a function of the number of times a particular alternative
was chosen. Thus, recently experienced payoffs have larger effects on the current expectancy as
compared to payoffs that were experienced in the more distant past.

2.2.2. Decay-Reinforcement rule
More recently, Erev and Roth (1998) added a decay parameter to the reinforcement-learning

model, which can be represented by the following equation:

Ej(t) = φ · Ej(t − 1) + δj (t) · u(t). (3)

Note that for this model, the past expectancy is always discounted, regardless of whether or
not an alternative is chosen and new payoff information is experienced. This is implemented by
multiplying the past expectancies of all alternatives Ej(t − 1) by the recency parameter φ in
each trial, where 0 < φ < 1. The decay model can be more flexible because the expectancies
of selected and unselected alternatives can both be changed. Previously, this model was found
to have more accurate predictions than the Delta model (Yechiam and Busemeyer, 2005). Yet
it is important to evaluate whether this improved accuracy is a result of more flexibility for the
Decay-Reinforcement rule as compared to the Delta learning model. High model flexibility can
lead to overfitting the choices made by an individual in a specific task.

We also implemented a second version of the Decay-Reinforcement rule in which the para-
meter φ is constrained so as not to affect the long-run expectation Ej(t) as follows:

Ej(t) = φ · Ej(t − 1) + δj (t) · u(t) · (1 − φ). (4)
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This model, labeled Constrained Decay-Reinforcement, was constructed to avoid an embedded
association between the recency parameter φ and the accumulated expectancies, as the size of
the expectancies is not a strict function of φ.1 It therefore more clearly sets the function of the
recency parameter in relation to the expectancies.

2.3. Choice rule

The choice on each trial was determined by the expectancies for each alternative, using to a
ratio-of-strength choice rule (see Yechiam and Busemeyer, 2005). The ratio rule assumes that the
choice made on each trial is a probabilistic function of the relative expectancies of the alternatives
(Luce, 1959). It can be formalized by the following ratio-of strengths rule:

Pr
[
Gj(t + 1)

] = eθ(t)·Ej (t)

∑
k eθ(t)·Ek(t)

. (5)

The parameter θ(t) controls the sensitivity of the choice probabilities to the expectancies. On
one hand, setting θ(t) = 0 produces random guessing; on the other hand, as θ(t) → ∞ we re-
cover a strict maximizing rule. The probability of choosing the alternative producing the largest
expectancy increases according to an S-shaped logistic function with a slope (near zero) that
increases with θ(t).

It is assumed that the sensitivity to the expectancies, denoted by θ(t), may change as a function
of experience. This is parameterized by a power function for the sensitivity change over trials:

θ(t) = (t/10)c. (6)

Here c is a free parameter. The parameter c determines how the consistency of the choice
and expectancies change across training. When the value of c is negative, choices become more
inconsistent with training (perhaps because of boredom or fatigue); if the value of c is positive,
then choices become more consistent with training (perhaps because of increased experience
with the task).2

2.4. Model evaluation

All of the model evaluations are based on a measure computed from the accuracy of ‘one
step ahead’ predictions generated by each model for each individual performer. Specifically,
define Y(t) as a t × 1 vector, representing the sequence of choices made by an individual up to
and including trial t ; define X(t) as the corresponding sequence of payoffs produced by these
choices; and define Pr[Gj(t)] as the probability that alternative j will be selected on trial t by
the model. Each model is given X(t) and uses this information to generate Pr[Gj(t + 1)|X(t)]

1 In the original Decay-Reinforcement model as t → ∞, E → u/(1 − α). In the Constrained Decay-Reinforcement
model as t → ∞, E → u.

2 This model assumes that the slope of the choice sensitivity is the consistent trait of individual subjects. It sets up a
point after an initial exploration period (the tenth trial) and compares the exploration before and after that point. We also
contrasted it with a model that assumes independent magnitude and slope, as follows: θ(t) = θ0 · (t/10)c , where θ0 is an
additional free parameter denoting the magnitude of the choice sensitivity (0 � θ0 � 700). However, the latter model did
not improve the fit or the individual parameter consistency and generality. Therefore, for conciseness, it is not detailed
here.
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for choice trials t = 1 to 100 and alternatives j = 1 to 2. The accuracy of these predictions is
measured using the log likelihood criterion for each individual:

LLmodel = lnL(model | data) =
∑

t

∑

j

ln
(
Pr

[
Gj(t + 1) | X(t)

]) · δj (t + 1). (7)

Recall that δj (t) = 1 if alternative j is chosen on trial t , and zero otherwise.
Each learning model has only three parameters {W,φ, c} estimated from each person’s

choices on the first 100 trials. When fitting parameters, we optimize the log likelihood for each
participant and model using a robust combination of grid-search and simplex (Nelder and Mead,
1965) search methods. Each point on the grid serves as a starting position for the simplex search
algorithm, which is then used to find the parameters that maximize the log likelihood for an in-
dividual. This generates a set of solutions, one for each starting point on the grid. Occasionally
these solutions differ due to local maxima, and so we select the grid point that produces the
maximum over all starting positions for the final solution.

The parameter search is forced to satisfy the following constraints. The value of W is limited
between 0, denoting complete attention to losses, and 1, denoting complete attention to gains.
The value of φ is limited between 0 and 1. Values lower than 0 for φ allow for gambler’s fallacy
and values higher than 1 allow for a primacy effect. These values produce predictions that are
qualitatively different from that of recency. For parsimony, we focus on the range of the learning
parameter that produces recency thus preventing the other response strategies to past expectan-
cies.3 The value of the sensitivity parameter c is set between −5 and 5, permitting the full range
between deterministic and random choices (approximately 90% of the participants conform to
this range in the Delta model and 95% in the Decay-Reinforcement model).

For the fit index, we compare the learning models presented above to a baseline statistical
model. The baseline model assumes that the choices are generated by a statistical Bernoulli
process. That is, the choice probabilities for each alternative are assumed to be constant and
statistically independent across trials:

Pr
[
Gj(t + 1) | Y(t)

] = pj . (8)

The baseline model has only a single parameter (p1,p2 = 1 − p1) which corresponds to the
proportion of choices from Alternative H , pooled across all of the trials (the proportion for L is
determined from the proportion for H ). The different models are evaluated by comparing a log
likelihood score for the baseline and the learning model:

G2 = 2 · [LLmodel − LLbaseline]. (9)

Because the baseline model has only one parameter, while the learning models have three pa-
rameters, when we compare model fits, we adjust for the difference in number of parameters.
This is achieved by using the Bayesian Information Criterion (BIC; Schwartz, 1978) statistic
to compare models. The BIC is a model-comparison index based on Bayesian principles which
penalizes models with additional parameters:

BIC = G2 − k · ln(N) (10)

where k equals the difference in the number of parameters and N equals the number of obser-
vations. For our comparisons, we have k = 2 (two additional parameters in the learning models

3 One way of measuring primacy and gambler’s fallacy is to conduct a separate evaluation and constrain φ to be below
zero or above 1, accordingly. This examination was considered to be beyond the scope of the current study (but see
Yechiam and Busemeyer, 2006).
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compared to the baseline model) and N = 100. Thus, 2 · ln(100) ≈ 9.2. This constitutes the de-
duction from the G2 of the learning models. Positive values of the BIC statistic indicate that a
learning model performs better than the baseline model.

In addition to the fit index, generalization tests were conducted for each individual performer.
In the test of generalization at the individual level, the parameters in one task are used to form
predictions for another task. The model’s predictions are compared to a random prediction us-
ing the G2 index. Clearly, the statistical baseline model is of no use in this generalization test,
because its predictions only reflect the measured choice proportions in a given task.

Finally, we evaluated individual parameter consistency by examining the associations be-
tween parameter values extracted in different tasks performed by the same individual. If the
parameters estimated in one choice task are consistent within individual performers, then their
ranking across individuals in different choice tasks is expected to be similar. For example, if the
parameter W , denoting the weighting to gains, has high individual parameter consistency, then
the same individuals exhibiting high attention to gains in one task should have high attention
to gain in other tasks, resulting in a high positive correlation between the parameters estimated
in the different tasks. A correlation of zero implies no individual parameter consistency, and a
negative correlation indicates a tendency to be consistent in the opposite direction in a given
parameter across tasks.

3. Experimental setup

3.1. General layout

In two experimental studies participants performed a set of three distinct and independent
choice tasks. In all three tasks the probabilities and payoffs were initially unknown and were
learned by repeatedly choosing alternatives and obtaining immediate payoff feedback. Partici-
pants were not made aware that the distributions were fixed; and this too was to be learned from
experience (as in Barron and Erev, 2003). The alternatives were presented on the screen as two
buttons, and choices were made by selecting one button on each trial. Each button was associated
with a fixed payoff distribution.

The payoffs for the two studies are summarized in Table 1 and fully described in the methods
section. Task 1 (Payoff-Sensitivity task) included two alternatives with different averages and the
same variance. Task 2 (Small-Probability task) included an alternative with a small probability
outcome and an alternative with a constant outcome. Task 3 (High-Variance task) included an

Table 1
The payoff distributions of the three tasks in Studies 1 and 2. H denotes High expected value, and L denotes Low
expected value; N ∼ (X,Y ) denotes a Normal distribution with a mean of X and a standard deviation of Y

Task Payoff in Study 1 Payoff in Study 2

1. Payoff-Sensitivity H : N ∼ (20,20 truncated at −10, 50) H : N ∼ (−10,20 truncated at −20, 40)
(PS) L: N ∼ (10,20 truncated at −20, 40) L: N ∼ (−20,20 truncated at −10, 50)

2. Small-Probability H : 10 with certainty. H : −20 90% of the time, otherwise 90*

(SP) L: 20 90% of the time, otherwise −90* L: −10 with certainty
3. High-Variance H : N ∼ (100,354) H : N ∼ (−25,17.7, truncated at 0)

(HV) L: N ∼ (25,17.7, truncated at 0) L: N ∼ (−100,354)

* This outcome includes a noise factor, so that it is constantly distributed between 85 and 95, rounded to the closest
integer.
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alternative with high average and variance, and an alternative with low average and variance.
The tasks were therefore considerably different in their payoff structure.

These three tasks were selected because they comprise the components of more complex
tasks used for studying individual differences in decision making, such as the Iowa Gambling
task (Bechara et al., 1994) and others (e.g., Lejuez et al., 2002; Newman et al., 1985). First, the
tasks include choice alternatives that produce both gains and losses. This property is considered
to be important because individual differences in the relative weight of rewards and penalties are
central to most theories of cognitive style and personality (see, e.g., Gray, 1994; Higgins, 1997;
Hjelle and Ziegler, 1981; Fowles, 1988). Secondly, the Iowa Gambling task in particular in-
volves choosing between payoffs of different magnitude, dealing with differences in variance,
and responding to small probabilities. Accordingly, the present tasks were considered as a good
starting point for discovering whether the current method of model evaluation would reveal im-
portant characteristics of the studied models that are also relevant to the more complex tasks
currently in use.

Participants’ choices in these three tasks were used to systematically compare the two com-
peting learning models with different rules for updating the expectancy of the alternatives. The
first goal of the two studies was to compare the decay and interference class models by means
of the new method that combines generalization at the individual level and individual parameter
consistency. A secondary goal was to evaluate the three choice tasks. Namely, it is theoretically
possible, and even likely, that some tasks would be better for extracting more robust parameters.
This should be reflected in better generalizability from one task to another at the individual level,
as well as by greater individual parameter consistency.

3.2. Method

One hundred and eighty students from Indiana University, Bloomington campus (90 males and
90 females), participated in the two studies (90 students in each study). The students’ average
age was 20, ranging from 18 to 30. In Study 1 participants were paid a sum of $15 to $35
($20 on average) for their participation, and in Study 2 they were paid a sum of $5 to $23 ($14
on average). The exact amounts depended on the participants’ performance in the experimental
task.

The experiment took place in the Experimental Spatial Lab at Indiana University. Participants
filled informed consent forms prior to participating in the study. Participants were asked to read
the instructions, which were also read out loud. They were encouraged to ask questions. The
instructions read as follows:

“Your payoff in this experiment will be ___ ($8 in Study 1 and $30 in Study 2) plus your
gains/losses during the experiment. Gains/losses will be accumulated during 200 trials. In each
trial you will have to click a button. The payoff for your selection will appear on the button that
you selected. You receive 1 cent for every 10 points earned.

“You will immediately see a form with two buttons like the one in the picture below (a picture
of the form was shown at this point; see Fig. 1). You can press either of the two buttons in
the form. The payoff for choosing a button appears on the respective button. The accumulating
payoff appears below. At the end of 200 trials you will see a message to call the experimenter.
When you get the message, please raise your hand. After you finish the task there will be two
other similar tasks but the payoffs for pressing buttons might be different from the payoffs in the
first task.”
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Fig. 1. A screen capture of the experimental task in Studies 1 and 2.

Altogether, the set of three tasks took about 40 minutes to complete. Subsequent to performing
the tasks participants filled a short questionnaire for another study (Yechiam and Budescu, 2006).
After filling out the questionnaire participants were paid, thanked, and dismissed.

The three experimental tasks involved selecting one of two buttons, labeled A and B, in each
of the 200 trials (see Fig. 1). The number of trials was unknown to the players. The color of
the buttons was different for each of the three tasks to emphasize their distinctiveness. Payoffs
were presented in points (rounded to the next integer) and converted into money at the end of the
experiment. In Study 1 payoffs were contingent upon the button chosen as follows:

Task 1: Payoff-Sensitivity (PS). In this task, the payoff for Alternative H (denoting High
expected value) is drawn from a discrete approximation to a normal distribution with an average
of 20 and a standard deviation of 20. The payoff for alternative L (denoting Low expected value)
is drawn from a discrete approximation to a normal distribution with an average of 10 and the
same standard deviation. In addition, payoffs are rounded to 0, ±10,±20, or ±30 around the
mean. Accordingly, outcomes from H are superior about 70% of the time.

Task 2: Small Probability (SP). In this task, alternative H produces 10 with certainty. Al-
ternative L produces 20 with a probability of 0.9, and a negative value with a probability of 0.1,
where the negative value is uniformally distributed within the range 85–95. This produces an
expected value equal to 9.17 for alternative L. The payoffs from L thus have high variance
(SD = 32.7; compared to 0 in H ), but are positively skewed, so that L produces high positive
outcomes 90% of the time.

Task 3: High Variance (HV). In this task, the payoff for H is drawn from a normal distrib-
ution with an average of 100 and a standard deviation of 354. The payoff for L is drawn from a
normal distribution with an average of 25 and a standard deviation of 17.7. The distribution of L

is further truncated above 0. The variance of the payoffs from H is therefore very high, produc-
ing superior payoffs only 58% of the time. This task was originally used by Thaler et al. (1997).
Their results indicated that, on average, decision makers preferred alternative L over H , indi-
cating a strong variance aversion, even at the expense of losing about two thirds of the potential
payoffs (see replication by Barron and Erev, 2003).

In Study 2, the payoffs were identical, but the signs of all payoffs were reversed (see Table 1).
The location of the H and L options was randomized for each participant and for each task.
There was a delay of 1 second after pressing a button in which the two buttons could not be
pressed. Two types of feedback immediately followed each choice: (1) The basic payoff for the
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choice, which appeared on the selected button for a duration of one second and then re-appeared
on the caption below the buttons, (2) an accumulating basic payoff counter, which was displayed
constantly.

Participants were randomly assigned to one of six groups. Each group performed the three
tasks in a different order. An equal number of participants were assigned to each of the groups;
also there was an equal proportion of males and females in each group (except for two groups in
which there was either one more male or one more female).

4. Experimental results of Study 1 (Gain Domain)

4.1. Behavioral results

Figure 2 summarizes the average choice proportion from the High expected value alterna-
tive in each task. The results in the Payoff-Sensitivity task show a slow but significant effect
of experience. Choices from H increased significantly from the first to the last block of 10 tri-
als (t (89) = 6.35,p < 0.01). In the other two tasks, performers did not learn to select the high
expected-value alternative. In the Small-Probability task H was chosen 49% of the time, and
there was no significant effect of experience. In the High-Variance task, consistent with previous
findings, participants learned to avoid the High-Variance alternative (H ) despite its much higher
expected value. In this task, choices from H decreased significantly from the first to the last
block of 10 trials (t (89) = 2.74,p < 0.01). Thus, the prescriptive predictions of expected value
clearly do not drive the participants’ behavior in all of the current tasks.

We first examined the consistency of the participants’ choices across tasks at the individ-
ual level using Spearman rho. There was no association between choice of H in the Payoff-
Sensitivity task and choice of H in each of the other two tasks (Small-Probability: r = 0.10,
NS; High Variance: r = 0.03, NS). We also calculated the association between choices from the
high variance alternatives in the Small-Probability task (L) and the High-Variance task (H ). The
Spearman correlation was small but significant for the average choice proportion in 200 trials
(r = 0.37,p < 0.01) as well as in the first 100 trial block (r = 0.21,p < 0.05). This indicates
that there is some consistency in the choice of the high variance (risky) alternative. Learning
models can shed light on the component processes that modulate this association.

4.2. Model evaluation

Our comparison of learning models focused on the first 100 trials, because in the second half
of the task many participants reached a plateau, repeatedly selecting from the same alternative.

4.2.1. Model fit
The average BICs of the learning models, indicating their accuracy compared to the base-

line model, are summarized in Table 2. The average BIC of the Decay-Reinforcement was
higher than the BIC of the Delta model (t (269) = 6.09,p < 0.01), with the Constrained
Decay-Reinforcement model falling in between but still significantly lower than the Decay-
Reinforcement model (t (269) = 4.03,p < 0.01). An examination at the individual level confirms
these results. Under the Delta model only 42% of the participants had BICs above the baseline
level, compared to 55% under the Decay-Reinforcement model, and 48% under and the Con-
strained Decay-Reinforcement model.
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Fig. 2. Proportion of choices from the High expected value alternative (H ) as a function of time in the three experimental
tasks of Study 1.

Focusing on the Decay-Reinforcement model, an examination of the fit in specific tasks
showed an advantage of this model over the Delta model in the Payoff-Sensitivity task (mean
BIC of 13.7 compared to 8.4; t (89) = 6.28,p < 0.01) and in the Small-Probability task (mean
BIC of 11.4 compared to 2.7; t (89) = 7.23,p < 0.01). In the High-Variance task, the BICs of
the models were similar, with both models falling below the baseline model (mean BICs of −1.9
and −2.8, respectively). Thus, overall the Decay-Reinforcement model had better fit for the data
used for parameter estimation.

A comparison of different tasks indicated that the Payoff-Sensitivity task produced the best fit
(with a BIC of 11.3, averaged across all three models), and that the High-Variance task produced
the poorest fit (BIC of −2.8). The fit of the Small-Probability task fell in between (BIC of 7.2).
The difference in fit between tasks was significant for all three models (Delta: (F (2,267) =
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Table 2
Study 1: Means and standard deviations (in parenthesis) of the BIC scores and estimated parameters of the models in the
three experimental tasks

Task Model BIC Weight to
gains (W )

Recency
(φ)

Sensitivity
(c)

Payoff- Delta 8.41 (18.1) 0.59 (0.4) 0.62 (0.4) 1.11 (2.2)

Sensitivity Decay-Reinforcement 13.72 (19.3) 0.57 (0.4) 0.47 (0.4) 0.95 (1.5)

Constrained Decay-Reinforcement 11.64 (19.9) 0.60 (0.4) 0.42 (0.3) 1.61 (1.6)

Small- Delta 2.72 (20.2) 0.60 (0.4) 0.43 (0.4) 1.78 (1.3)

Probability Decay-Reinforcement 11.37 (20.8) 0.62 (0.4) 0.64 (0.4) 1.01 (1.2)

Constrained Decay-Reinforcement 7.36 (22.3) 0.68 (0.4) 0.43 (0.4) 1.98 (1.3)

High- Delta −1.86 (17.0) 0.27 (0.4) 0.31 (0.3) 0.47 (1.7)

Variance Decay-Reinforcement −2.76 (20.4) 0.36 (0.4) 0.64 (0.4) −0.63 (1.6)

Constrained Decay-Reinforcement −3.77 (20.6) 0.35 (0.4) 0.78 (0.3) 1.34 (2.1)

6.97,p < 0.01, MSE = 342.1), Decay-Reinforcement: F(2,267) = 17.53,p < 0.01, MSE =
408.1, Constrained Decay-Reinforcement: F(2,267) = 13.02,p < 0.01, MSE = 437.7).

4.2.2. Generalization at the individual level
The parameters estimated in each of the three tasks were used to generate predictions for the

other two tasks. This was conducted separately for each individual. As indicated above, in this
comparison the fit index is G2 because the baseline model is a random draw. Another way to
present the results is by the percent of individuals for whom G2 > 0. A percent above 50 implies
above-chance success in predicting the next choice ahead in the generalization test.

The results (summarized in Table 3) show an unexpected interaction between experimental
task and the generalization success of the models. The generalization from the Payoff-Sensitivity
and the Small-Probability tasks was not successful under all three models, being below chance
level. In the High-Variance task, the predictions of all three learning models (for the other two
tasks) were better than the random baseline model. However, the predictions of the Delta model
were superior, with 74% of the participants having better fit than the baseline model compared
to 59% in the Decay-reinforcement model, and 53% in the Constrained Decay-reinforcement
model. The differences between the Delta model and the other two models were significant
in a Z-test for proportion differences (Decay-reinforcement: Z = 3.01, p < 0.01; Constrained
Decay-reinforcement model: Z = 5.10, p < 0.01).4

The success of the Delta model in the generalization test cannot be attributed to a smaller
sampling variance (or standard error) for the parameter estimates. To rule out this possibility we
conducted a parametric bootstrap cross-fitting analysis (Efron, 1979; Wagenmakers et al., 2004).
The procedure and the results are detailed in Appendix A. The outcomes of this analysis indicated
no advantage to the Delta model over the Decay-Reinforcement model. Thus, the success of the
Delta model in the generalization test is not due to an interaction between the specific tasks used
here and the sampling variance of the model parameters.

The success of the Delta model (and of the High-Variance task) also cannot be attributed to
high between-performer variance in model parameters. Fisher’s F -tests showed no significant
differences in the variance of the parameters in different models or in different tasks (in fact,
the variances, presented in Table 2, were very similar). The High-Variance task also did not

4 Note that the G2 averages are below zero because of some extreme low values.
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Table 3
Study 1: Mean G2 scores and percent of individuals for which the generalization prediction is better than a random
model (in parenthesis). Comparison of the three models in the three experimental tasks (PS = Payoff-Sensitivity; SP =
Small-Probability; HV = High-Variance). Shaded cells denote tests that do not involve generalization

Target task Tasks used for estimating the parameters

PS task SP task HV task

Delta model
PS task 33.7 (100%) −32.3 (46.7%) −8.5 (82.2%)

SP task −60.7 (34.4%) 37.3 (100%) 1.5 (66.7%)

HV task −303.3 (18.9%) −314.1 (16.7%) 44.5 (100%)
Average* −181.9 (26.7%) −173.2 (31.7%) −3.5 (74.4%)

Decay-Reinforcement model
PS task 39.1 (100%) −32.2 (44.4%) 0.5 (64.4%)

SP task −69.5 (52.2%) 46.0 (100%) −17.0 (54.4%)

HV task −198.1 (22.2%) −224.9 (17.7%) 43.6 (87.8%)
Average* −66.0 (37.2%) −91.6 (31.1%) −8.2 (59.4%)

Constrained Decay-Reinforcement model
PS task 36.3 (97.8%) −31.1 (48.9%) −20.1 (56.7%)

SP task −51.9 (48.9%) 41.8 (98.9%) −32.2 (50.0%)

HV task −142.9 (23.3%) −151.9 (22.2%) 40.6 (93.3%)
Average* −97.4 (36.1%) −91.5 (35.6%) −26.1 (53.3%)

* Average for the generalization tests only.

have more variability in preferences: The between-performer standard deviation in selections
from alternative H (or L) was similar in all tasks (High-Variance: 0.25, Payoff-Sensitivity: 0.25,
Small-Probability: 0.23).

4.2.3. Individual parameter consistency
In addition to studying the generalizability of the model predictions, we studied the con-

sistency of each of the estimated parameters in the three tasks. For this purpose, one-sided
Spearman correlations were used to examine the association between individual parameter val-
ues. Table 4 summarizes the results for the three models. As expected from the generalization
tests, the correlations were generally higher for the Delta model than for the two versions of
the Decay-reinforcement model. However, the only significant correlations were for parameters
estimated in the High-Variance task.

Specifically, both the Delta and Decay-Reinforcement models showed a significant correlation
between the weight to gains parameters extracted in the Small-Probability and High-Variance
tasks (although it was higher for the Delta model). However, the Delta model also showed a
significant correlation between the recency parameter in the High-Variance task and the same pa-
rameter extracted in the Small-Probability task (r = 0.20,p < 0.05) and in the Payoff-Sensitivity
task (r = 0.18,p < 0.05). In the Constrained Decay-Reinforcement only the latter correlation
was significant (r = 0.24,p < 0.05). A factor analysis of the parameters (see Appendix B) con-
firms that the results are not due to covariance between different parameters.

4.3. Summary

Differences in the ranking of models emerged between the conventional evaluation method
based on fit and the two generalization tests at the individual level. The two Decay-Reinforcement
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Table 4
Study 1: Spearman correlations between parameter values estimated in the different tasks (PS = Payoff-Sensitivity;
SP = Small-Probability; HV = High-Variance)

Weight to gains (W) Recency (φ) Sensitivity (c)

Delta model
PS–SP tasks −0.02 0.09 0.00
PS–HV tasks −0.04 0.18* 0.11
SP–HV tasks 0.24* 0.20* 0.05

Decay-Reinforcement model
PS–SP tasks −0.03 −0.08 −0.07
PS–HV tasks 0.02 0.06 0.10
SP–HV tasks 0.20* −0.07 0.13

Constrained
Decay-Reinforcement model

PS–SP tasks 0.13 0.09 0.11
PS–HV tasks −0.01 0.24* 0.08
SP–HV tasks 0.07 −0.16 0.10

* p < 0.05.

models produced high fit, especially in the Payoff-Sensitivity and Small-Probability tasks. How-
ever, the Delta model produced better generalization at the individual level, especially in the
High-Variance task, as well as improved individual parameter consistency.

Interestingly, the High-Variance task produced the poorest fit, yet it led to the best generaliz-
ability to other tasks at the individual level. It is not clear why the High-Variance task (replication
of Thaler et al.’s, 1997 resource allocation task) produced the best generalizability. One possi-
bility that was refuted is that this task has more between-performer variability in selections or
parameter values.

It is our view that the task was successful simply because it is relatively difficult for decision
makers to calculate the advantage of each choice alternative based on trial to trial outcomes. This
was confirmed in discussions with participants following the experiment, and is further supported
by the finding that, on average, the estimated choice sensitivity in this task was low but positive
(mean c of 0.47 compared to 1.61 and 1.98 in the Payoff-Sensitivity and Small-Probability task,
respectively). This implies that on average participants did learn from experience, but that their
learning process was relatively slow. A slow learning process based on trial to trial reinforcement
may calibrate the model better. This task is re-examined in the next study.

5. Experimental results of Study 2 (Loss Domain)

In Study 2 the tasks were changed so that the sign of all payoffs was reversed, and outcomes
were mostly negative (see Table 1). In this way, we assessed whether the results of Study 1 are
restricted to tasks where most outcomes are in the gain domain.5

5 For instance, if the advantage of the High-Variance task is due to the frequency of losses (upon choosing H ; see
Table 1) then it is not likely to be replicated in the inverted payoff version, in which the other tasks produce more
frequent losses.
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5.1. Behavioral results

Figure 3 summarizes the average choice proportion from the High expected value alternatives
in the three tasks. As in Study 1, in the Payoff-Sensitivity task participants learned to select the
High expected value alternative. Choices from H increased significantly from the first to the last
block of 10 trials (t (89) = 4.98,p < 0.01). However, in the Small-Probability task participants
displayed learning towards the Low expected-value alternative that produced −10 with certainty
(t (89) = 5.60,p < 0.01). Finally, in the High-Variance task participants learned to stay away
from the High-Variance alternative (t (89) = 1.92,p = 0.06). Interestingly, the high variance
option was equally enticing in the loss domain (where it produced an average of −100) and gain
domain (where it had an average of +100), capturing about 35% of the choices in both studies.

Fig. 3. Proportion of choices from the High expected value alternative (H ) as a function of time in the three experimental
tasks of Study 2.
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As in Study 1, there were no significant correlations between choices from the High expected
value alternatives. However, the association between choices from the two high-variance alter-
natives (H in the Small-Probability task and L in the High-Variance task) was significant for the
entire task (r = 0.29,p < 0.01) and for the first 100 trials (r = 0.36,p < 0.01), indicating that
participants were consistent in their choice of the high-variance alternative.

5.2. Model evaluation

We focused on the original version of the Decay-Reinforcement model because it yielded
better fits and generalizations in the first study, as compared to the Constrained Decay model.
In addition, we applied an adjustment proposed by Erev and his colleagues (Bereby-Meyer and
Erev, 1998; Erev et al., 1999) for dealing with negative expectancies. Such negative expectancies
are likely to develop when the outcomes are mainly losses. The adjustment, called Low Reference
Point (LRP) solution, forces the expectancies to be positive. This is implemented by deducting
the worst possible outcome (in a given task) from all payoffs. Accordingly, models with the LRP
adjustment do not have a weight to gains parameter, as all payoffs occur in the gain domain. We
implemented a version of the LRP that was considered to be best suited for the analysis at the
individual level: In this version the payoff that was deducted was the worst payoff encountered
by the individual up to the current trial.6

5.2.1. Model fit
The average BICs of the models in the three tasks are summarized in Table 5. As can

be seen, without the LRP adjustment, the fit of the Delta model was above the fit of the
Decay-Reinforcement model (t (269) = 9.15,p < 0.01). The LRP adjustment significantly im-
proved the fit of both learning models (Delta: t (269) = 4.17,p < 0.01, Decay-Reinforcement:
t (269) = 6.06,p < 0.01). Under the LRP adjustment there was a slight advantage to the Decay-
Reinforcement model over the Delta model (t (269) = 0.63, NS).

A comparison of specific tasks shows that as in Study 1, the Delta model produced lower fits
than the Decay-Reinforcement model in the Payoff-Sensitivity task and in the Small-Probability
task (both with and without the LRP adjustment). The fit of all four models was highest in the
Payoff-Sensitivity task (average BIC of 6.4 across all models, compared to −14.4 in the Small-
Probability task and −6.3 in the High-Variance task). The differences in BICs between tasks
were significant for all models. However, for conciseness, the tests are not presented here.

5.2.2. Generalization at the individual level
The results of the generalization test appear in Table 6. The table indicates that as in Study 1

there was an interaction between task and learning model. Consistent with the previous results,
the task that produced the best generalization was the High-Variance task. The predictions from
the High-Variance task (to the other two tasks) using the Delta model were better than ran-
dom for 61% of the participants, compared to only 41% under the Decay-Reinforcement model
(Z = 3.69,p < 0.01). Thus, without the LRP adjustment, the Delta model produced better gen-
eralization at the individual level.

6 The LRP is useful because without this adjustment the Decay-Reinforcement model cannot converge on a single
alternative when the expectancies are negative (because if φ < 1 then the unchosen alternative always improves faster
than the chosen alternative).
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Table 5
Study 2: Means and standard deviations (in parenthesis) of the BIC scores and estimated parameters of the models in the
three experimental tasks

Task Model BIC Weight to
gains (W)

Recency
(φ)

Sensitivity
(c)

Payoff- Delta 2.75 (19.3) 0.46 (0.5) 0.69 (0.4) 1.39 (2.0)

Sensitivity Delta–LRP 6.57 (15.7) – 0.68 (0.4) 0.40 (1.8)

Decay-Reinforcement 3.56 (15.9) 0.72 (0.4) 0.55 (0.4) 0.80 (2.2)

Decay-Reinforcement–LRP 12.71 (19.5) – 0.35 (0.3) 0.97 (1.3)

Small- Delta −7.30 (17.5) 0.30 (0.4) 0.62 (0.4) 2.01 (1.8)

Probability Delta–LRP −3.33 (15.5) – 0.64 (0.4) −0.82 (2.0)

Decay-Reinforcement −52.53 (51.2) 0.83 (0.3) 0.46 (0.4) −0.15 (3.9)

Decay-Reinforcement–LRP 5.42 (17.22) – 0.68 (0.4) 0.44 (1.4)

High- Delta 2.40 (14.1) 0.51 (0.4) 0.40 (0.4) 0.73 (2.0)

Variance Delta–LRP 2.34 (12.22) – 0.24 (0.3) 1.26 (2.0)

Decay-Reinforcement −14.69 (35.3) 0.58 (0.4) 0.51 (0.4) −1.15 (1.9)

Decay-Reinforcement–LRP −15.39 (39.4) – 0.26 (0.3) 2.51 (1.4)

Table 6
Study 2: Mean G2 scores and percent of individuals for which the generalization prediction is better than a random model
(in parenthesis). Comparison of the two models in the different tasks (PS = Payoff-Sensitivity; SP = Small-Probability;
HV = High-Variance). Shaded cells denote tests that do not involve generalization

Target
task

Task used for estimating the parameters Task used for estimating the parameters

PS task SP task HV task PS task SP task HV task

Delta model Delta–LRP

PS task 26.5 (99.9%) −84.7 (28%) −4.17 (72%) 26.0 (98.9%) −128.9 (24.4%) 1.6 (77.8%)

SP task −47.8 (54%) 51.5 (99.9%) −20.0 (49%) −9.2 (68.9%) 52.1 (98.9%) −0.4 (83.3%)

HV task −255.5 (13%) −247.4 (13.5%) 22.6 (100%) −214.6 (20.2%) −234.8 (20.0%) 33.4 (100%)
Average* −151.7 (33.9%) −166.0 (21.0%) −12.1 (60.6%) −111.9 (44.6%) −181.9 (22.2%) 0.6 (80.6%)

Decay-Reinforcement model Decay-Reinforcement–LRP

PS task 27.5 (100%) −25.5 (41.1%) −12.2 (57.8%) 32.1 (94.4%) −124.2 (24.4%) −10.9 (56.6%)

SP task −146.9 (11.1%) 7.3 (70.0%) −32.4 (23.3%) 10.5 (78.9%) 60.9 (94.4%) 4.3 (73.3%)

HV task −269.0 (4.5%) −110.0 (14.6%) 4.1 (88.9%) −222.2 (19.1%) −294.5 (16.7%) 15.3 (53.3%)
Average* −208.0 (7.8%) −51.3 (42%) −22.3 (40.6%) −105.9 (49.0%) −209.4 (21%) −3.3 (65.0%)

* Average for the generalization tests only.

The LRP adjustment improved the generalization from the High-Variance task using both
models. Yet the Delta model retained its advantage over the decay model (81% compared to 65%;
Z = 3.44, p < 0.01). Moreover, the High-Variance task was again the only task that produced
adequate fits in the generalization test.

5.2.3. Individual parameter consistency
One-sided Spearman correlations were used to examine the association between the parame-

ter values estimated in the different tasks. Table 7 presents the results for the four models. Only
the Delta model produced significant positive correlations. These correlations were primarily be-
tween the weight to gains and recency parameters estimated in two tasks: The Payoff-Sensitivity
task and the Small-Probability task. However, as in our investigation in the gain domain, there
were positive correlations between the parameters estimated in the Small-Probability task and
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Table 7
Study 2: Spearman correlations between parameter values estimated in the different tasks (PS = Payoff-Sensitivity;
SP = Small-Probability; HV = High-Variance)

Wgt. gains (W) Recency (φ) Sensitivity (c) Recency (φ) Sensitivity (c)

Delta model Delta–LRP

PS–SP tasks 0.220* 0.179* −0.031 0.083 −0.081
PS–HV tasks 0.119 −0.120 0.191* −0.123 0.058
SP–HV tasks 0.163 0.151 0.106 0.122 −0.090

Decay-Reinforcement model Decay-Reinforcement–LRP

PS–SP tasks −0.196 −0.069 −0.053 0.075 −0.010
PS–HV tasks 0.133 0.131 0.145 0.117 −0.120
SP–HV tasks −0.118 0.057 0.061 0.101 0.083

* p < 0.05.

High-Variance task as well, with p-values approaching significance (weight to gains: r = 0.15;
p < 0.1; recency: r = 0.16; p < 0.1; see also factor analysis on Appendix B).

None of the other models had any significant correlations. Interestingly, the LRP adjustment
for the Delta model, which improved the generalizability of the model at the individual level,
produced poor individual parameter consistency.

5.3. Summary

As in Study 1, the results show that the fit index and tests of generalizability at the indi-
vidual level produced systematic differences in the ranking of models and tasks. The Decay-
Reinforcement model (using the LRP adjustment) produced the best fit for the estimated data.
However, the Delta model was more accurate in both tests of generalization at the individual
level. Likewise, the High-Variance task produced poor fit, yet was proven to be the most useful
task for generalization.7 Finally, some differences emerged between the two methods of gen-
eralization at the individual level concerning the ranking of models with and without the LRP
adjustment. This discrepancy is re-examined in the general discussion section below.

6. Can the model parameters improve the ability to predict risky choices?

The learning model parameters are usually interpreted as reflecting different facets of “risky”
choices, such as overweighting gains compared to losses (Busemeyer and Stout, 2002; Wallsten
et al., 2005). However, could it be the case that the parameters estimated in a given task would
improve predictions of risky choices in a different task beyond the risky choices in the initial
task? Theoretically, if the parameters measure consistent predispositions of an individual in the
response to payoffs, and the tendency to select risky choices is due to such predispositions, then
the parameters should be able to predict the choice of risky alternatives in a different task.

To examine the utility of the parameters for predicting risky choices in a different task, we
used the High-Variance task as the source task and the Small-Probability task as the target task.

7 We have previously argued that this task has a slow learning process, and therefore more trial-to-trial adaptation. This
slow learning process also appeared in the current study. Under the Delta model the average of the choice consistency
parameter was 0.73 (compared to 1.39 in the Payoff-Sensitivity task and 2.01 in the Small-Probability task; see Table 6).



388 E. Yechiam, J.R. Busemeyer / Games and Economic Behavior 63 (2008) 370–394
We conducted two regression analyses, one for each study. The predictors were the proportions
of risky choices in the first 100 trials in the High-Variance task and the rank order score of each
parameter estimated in this task using the Delta model. The criterion variable was the tendency
to take risk (or choose the high variance option) in the first 100 trials in the Small-Probability
task. The regression was conducted with the Stepwise Selection procedure.

The results were as follows. In Study 1, the model parameters accounted for 9.2% of the
observed variance, compared to only 4.5% using the choices from the High-Variance task. Risk
taking on the Small-Probability task was associated with high weight to gains (partial r = 0.22;
β = 0.21; t (87) = 2.05, p < 0.05) as well as to some extent with low recency (partial r = 0.18;
β = 0.18; t (87) = 1.71, p < 0.1),8 estimated on the High-Variance task.

In Study 2, the model comprising the weight to gains and recency parameters also achieved
comparable predictions to the risky choice proportion, accounting for 12.0% of the observed vari-
ance compared to 12.7% based on the choice proportion. An examination of specific parameters
reveals again that the weight to gains was the most prominent predictor (r = 0.29; β = 0.30;
t (87) = 3.00, p < 0.01), followed by the recency parameter (r = 0.17; β = 0.20; t (87) = 1.95,
p = 0.05).

In summary, the regression analyses confirm the role of the weighting to gains compared to
losses and the recency parameters as predictors of risky choice in the current tasks. Moreover, in
Study 1 the combined prediction of these two parameters from one task (the High-Variance task)
to a different task (the Small-Probability task) was more accurate than the prediction using the
risky choice proportion. This indicates the potential value of the current modeling approach for
predictive purposes.

7. General discussion

The results of the present two studies indicate that as postulated, superior accuracy does not
guarantee high generablizability and strong parameter consistency at the individual decision
maker level. In particular, the Delta model emerged as a model with a lower accuracy level,
but with better generablizability and consistency across tasks.

Specifically, in Study 1 participants showed similar rankings in two of the parameters of the
Delta model across different tasks: The weight to gains parameter and the recency parameter.
This was partially replicated in Study 2 (see also Appendix B). The findings therefore suggest
that these two parameters are stable across different tasks and may represent internal traits of
individuals. Additionally, in an examination of the ability of different parameters to predict risky
choices in a different task, high weighting to gains was the strongest predictor of risk taking in
both studies.

The weight to gains (compared to losses) parameter may tap a motivational disposition simi-
lar to chronic promotion and prevention focus (Higgins, 1997). Promotion focus denotes greater
concerns with the presence or absence of gains, and prevention focus denotes greater concerns
about the presence or absence of losses. Consistent with Higgins’s (1997) view that stable behav-
ioral strategies are associated with this motivational disposition, high weighting to gains (on the
Iowa Gambling task) was observed in drivers with multiple traffic offenses (Lev et al., in press;

8 An in depth examination of the association between the recency parameter and the tendency to choose option L in the
Small-Probability task reveals a U-shape association. Evidently the tendency to under-weight small probabilities can be
associated with either very high recency (i.e., a hotstove effect; Denrell and March, 2001) or very low recency combined
with discounting of losses compared to gains. For similar findings, see Yechiam and Busemeyer (2006).



E. Yechiam, J.R. Busemeyer / Games and Economic Behavior 63 (2008) 370–394 389
Yechiam et al., in press) and in incarcerated criminals sentenced for theft and drug crimes
(Yechiam et al., in press).

Surprisingly, the current evaluation method, developed for analyzing learning models, was
also useful for evaluating an important related issue: Selecting choice tasks that produce stable
parameters. The High-Variance task yielded better generality at the individual level in both stud-
ies. We have suggested that this was due to the prolonged period of learning and exploration
in this task. However, further research is required in order to pinpoint the exact conditions that
make a task produce stable parameters. The present study is considered to be a preliminary step
in evaluating these models and tasks. Its main goal was to demonstrate that the tests of general-
izability and consistency at the individual level rank models differently than the conventional fit
index; and that this ranking is stable in different conditions (Studies 1 and 2). To fully evaluate
different models and tasks, one should define the relevant task population and sample tasks from
this population (see Roth and Erev, 1995).

Note also that the current studies focused on a specific learning situation where the distri-
butions of payoffs are unknown and stationary, and where the aspiration level of players is ill
defined. In our studies the distribution of payoffs could therefore only be discovered through
sampling and observation. Generalizations to other settings require further research. Yet the prin-
ciples of the current method involving multiple tasks, generalization at the individual level, and
individual parameter consistency are by no means limited to this setting. We end this paper with
a discussion of those principles.

What are the advantages of measuring generalization at the individual level simultaneously
with individual parameter consistency? The demand for generalizability at the individual level
and individual parameter consistency is derived from the theoretical assumption that the para-
meters represent internalized latent constructs of the decision maker. Accordingly, these tests are
relevant when the goal of the scientific investigation is to construct a model that would produce
adequate prediction in a variety of tasks. This is important in applications that seek to predict
choice behavior in new situations and in examinations of individual differences. The test of gen-
eralization at the individual level allows the examination of the overall model, integrating the
specific contribution of each component process; whereas the test of individual parameter con-
sistency enables the evaluation of the generalizability of specific component processes. Taken
together, these two tests provide a diagnostic tool for explaining variations in generalizability
and parameter consistency within individual decision makers (see Table 8).

For example, consider a person playing separate prisoner dilemma games (A and B), each
with a different opponent. Let us assume that the choices of the player in the two games are
heavily dictated by her cooperation and reciprocation (e.g., use of “tit for tat”) levels. Let us also
assume that these two parameters are robust within the player (i.e., they are applied similarly in

Table 8
The general characteristics of the estimated model parameters based on the tests of generalizability at the individual level
and individual parameter consistency

Generalizability at the individual level

Low High

Individual parameter consistency Low Robust parameters not Predictions are not dependent
estimated by the model on exact parameters

High Certain parameters are Robust parameters estimated
task specific or inaccurate by the model
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the different games), and that the model successfully estimates these parameters. In this case,
given the parameters estimated in game A, we can expect that we will be able to predict the
player’s choices in game B as well as obtain consistent levels in the two parameters (e.g., a high
reciprocation/high cooperation player will be characterized as such in both games).

In some cases, however, the two tests are expected to give different results, and this is indica-
tory of specific modeling concerns. One such case is where individual parameter consistency is
high for some parameters but low for others, and where the overall generalizability is impaired
(compared to the example above). This can occur when some of the parameters are estimated in-
accurately or when they are highly task specific. For instance, in the prisoner dilemma example,
if the model succeeds in estimating the cooperation parameter but fails in estimating the recip-
rocation parameter, then the estimated cooperation parameter might still be consistent in the two
games. However, the overall prediction from one game to the other would be impaired.

Yet another possible case is where individual parameter consistency is low but generalizability
at the individual level remains high. In the above example, a model might accurately predict the
player’s choices in game A using certain levels of the cooperation and reciprocation parameters.
Moreover, it might be that this combination of parameters will also produce adequate predictions
on game B. Yet there could still be poor individual parameter consistency in one or both of
the parameters! Assuming that the true parameters are consistent, this interesting state of affairs
implies that while the overall prediction of the model is general, the accurate prediction has been
obtained by a set of parameters that take on a different role when applied to each task separately.
This could happen if the predictions of the model are accurate for a wide range of parameter
values, or in other words, the predictions are insensitive to the exact parameter values. Actually
this is a good property for a model with respect to prediction, but a bad property with respect to
estimating individual differences.

To demonstrate this case, consider the results in Study 2, in which the LRP adjustment
improved the generalizability but impaired the individual parameter consistency. The present
analysis suggests that this is due to the fact that LRP model parameters take on dissimilar roles
in different tasks. One candidate parameter for that is the recency parameter. The LRP model
lacks the weight to gains parameter, and so it could be that the recency parameter mimics this
parameter in tasks involving considerable losses (thereby changing its role in different tasks).9

While further investigation is necessary to discover the exact processes that take place in the LRP
model, the present method is useful in diagnosing the general problem, as indicated by a specific
discrepancy in the two tests of generality at the individual levels and individual parameter con-
sistency.

8. Conclusions and future directions

The present paper describes a new evaluation method for learning models, which focuses on
the generality of models at the individual level. This method opens a new avenue for discov-

9 Specifically, if a player is somewhat loss averse and if losses are pertinent in a certain task (as in the High-Variance
task) then the recency parameter in that task may increase so as to allow quick learning to avoid losses. This would
imply that the recency parameter for the LRP model would be (negatively) associated with weight to gains parameter.
Indeed, this postulation is empirically supported. The Spearman correlation between the recency parameter of the LRP
model and the weight to gains parameter of the original Delta model is −0.31 (p < 0.01), compared to a correlation of
only −0.15 (p < 0.05; Z = 1.96, p < 0.05) between the recency and the weight to gains parameter in the original Delta
model.
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ering models that can make a priori predictions for how individual decision makers learn from
experience. Furthermore, it enables us to select tasks on the basis of their success in eliciting
parameters that are consistent across other tasks and conditions.

Note that while the present study focused on individual decision tasks, the current analysis
is also relevant to repeated games. Learning models have been extensively used for predicting
choices in games with feedback, yet no previous study has examined the generalizability of
model parameters at the individual level. This is a challenging avenue for further research.
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Appendix A. Parametric bootstrap cross-fitting analysis

To rule out potential interactions between the specific tasks used here and parameter variance
we conducted a parametric bootstrap cross-fitting analysis (Efron, 1979; Wagenmakers et al.,
2004) as follows. Ten individuals were randomly selected and data was simulated using their es-
timated parameters on each of the three experimental tasks. We employed two models to generate
this data: the Delta model and the Decay-Reinforcement model. Fifty modeling agents were run
in each task condition with these models’ parameters (a total of 6000 agents).10 After the data
was generated, we estimated the parameters again using the prediction of one-step-ahead method
(as in our main analysis). Each model was run on the data it generated as well as on the data pro-
duced by the other model. We then examined the sampling distribution of the parameters. The
results appear in the table below.

An examination of the sampling variance shows that the Decay-Reinforcement model gen-
erally had smaller parameter variances. Consider for example, the High-Variance task, which
produced the best generalization. When the data was generated by the Delta model, the vari-
ances of the Decay parameters were consistently smaller than those of the Delta model. When
the data was generated by the Decay model, the first Decay model parameter had significantly
smaller variance than the first Delta model parameter, the variances were equal across models for
the second parameter, and the variance was non significantly larger for the Decay as compared
to the Delta for the third parameter. Thus, the success of the Delta model in the generalization
test is not because of a smaller sampling variance in the current tasks. In addition, we also ex-
amined the Mean Square Deviation of the re-estimated parameters from the actual parameters
used to generate the data. The results (appearing in parentheses in the table) show that neither
model dominates the other. The Delta model had smaller MSDs for the Delta model data and
the Decay-Reinforcement model had smaller MSDs for the data produced by this model. One
exception is the Small-Probability task in which the Decay model had somewhat smaller MSDs
even on the data produced by the Delta model. Clearly, the advantage of the Delta model in the
generalization test does not stem from the sampling properties of true (estimated) parameters in
the current tasks.

10 To the extent possible we used the exact same payoffs of the actual players. When the payoffs experienced by the
player “ran out” we used a simulation based on the payoff distributions, as described in Table 1.
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Table A.1
Parametric bootstrap cross-fitting analysis: Standard deviation and MSD (in parenthesis) of the re-estimated parameters
in the three experimental tasks in Study 1 (averaged across 10 individuals and 50 simulations per individual, for a total
of 500 simulations per row)

Task Data Model Weight to
gains (W)

Recency
(φ)

Sensitivity
(c)

Payoff-Sensitivity Delta Delta 0.39 (0.29) 0.22 (0.14) 1.56 (3.87)
Decay-Reinforcement 0.32 (0.42) 0.26 (0.48) 1.77 (6.30)

Decay-Reinforcement Delta 0.35 (0.31) 0.23 (0.36) 1.75 (4.37)
Decay-Reinforcement 0.33 (0.20) 0.24 (0.09) 1.60 (4.53)

Small-Probability Delta Delta 0.29 (0.45) 0.26 (0.58) 2.60 (16.50)
Decay-Reinforcement 0.23 (0.25) 0.24 (0.31) 1.23* (10.79)

Decay-Reinforcement Delta 0.43 (0.35) 0.37 (0.50) 2.63 (6.81)
Decay-Reinforcement 0.37 (0.33) 0.35 (0.21) 2.05 (5.70)

High-Variance Delta Delta 0.36 (0.29) 0.28 (0.24) 2.00 (9.92)
Decay-Reinforcement 0.12* (0.20) 0.28 (0.43) 1.76 (18.92)

Decay-Reinforcement Delta 0.34 (0.46) 0.39 (0.54) 2.90 (8.47)
Decay-Reinforcement 0.07* (0.08) 0.39 (0.51) 3.17 (17.69)

* p < 0.05 (paired t -tests for the average variance of the two models).

Appendix B. Factor analysis of the model parameters

To control for covariance between different parameters, we conducted a Factor Analysis with
Varimax Rotation and Kaiser Normalization for the parameters extracted in all tasks using the
Delta model (total of 9 variables).

In Study 1 the model explained 57.7% of the total variance. Four factors exceeded the cut-
point of Eigenvalue > 1 (see Table B.1; for conciseness only the first three factors are presented).
Factors 1 and 3 were consistently associated with the same parameter across different tasks.
Factor 1 (17.0% of the variance) was associated with the recency parameters estimated in all
three tasks. Factor 3 (14.4% of the variance) was associated with weight to gains parameters
estimated in the Small-Probability task and High-Variance task.

In Study 2 the model explained 78.9% of the variance. Five factors exceeded the cutoff point.
The first factor (24.8% of the variance) was associated with the weight to gains parameter in all

Table B.1
Factor loading for the parameters extracted using the Delta model in the three tasks. Loadings larger than 0.20 appear in
bold font and consistent associations with the same parameter appear in gray background

Task Parameter Study 1 Study 2

1 (17.0%) 2 (15.2%) 3 (14.4%) 1 (24.8%) 2 (16.8%) 3 (13.6%)

Payoff-Sensitivity Weight to gains (W) −0.33 0.48 −0.21 0.31 0.75 0.20
Recency (φ) 0.69 −0.01 −0.18 −0.18 0.38 0.02
Sensitivity (c) −0.17 0.07 −0.05 −0.04 −0.86 −0.09

Small-Probability Weight to gains (W) −0.03 −0.11 0.61 0.86 0.04 0.02
Recency (φ) 0.29 0.61 0.41 0.80 0.20 0.05
Sensitivity (c) 0.03 −0.83 0.08 −0.19 0.22 −0.07

High-Variance Weight to gains (W) −0.01 0.13 0.78 0.23 −0.10 −0.01
Recency (φ) 0.70 0.02 −0.04 0.09 0.16 0.84
Sensitivity (c) −0.46 −0.02 −0.26 0.02 −0.08 −0.86
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three tasks. The second factor (16.8% of the variance) was associated with the recency parameter
in two of the tasks. However, the associations in Factor 2 were much smaller than in the corre-
sponding factor in Study 1 (r < 0.4 in all tasks). Thus, while a major factor was again related to
the weight to gains parameter, there was no clear factor associated with recency.

References

Atkinson, R.C., Shiffrin, R.M., 1968. Human memory: A proposed system and its control processes. In: Spence, K.W.,
Spence, J.T. (Eds.), The Psychology of Learning and Motivation, vol. 2. Academic Press, New York, pp. 89–195.

Barron, G., Erev, I., 2003. Small feedback-based decisions and their limited correspondence to description-based deci-
sions. J. Behav. Dec. Making 16, 215–233.

Bechara, A., Damasio, A.R., Damasio, H., Anderson, S., 1994. Insensitivity to future consequences following damage to
human prefrontal cortex. Cognition 50, 7–15.

Bereby-Meyer, Y., Erev, I., 1998. On learning to become a successful loser: A comparison of alternative abstractions of
learning processes in the loss domain. J. Math. Psychol. 42, 266–286.

Broadbent, D.E., 1958. Perception and Communication. Pergamon, London.
Busemeyer, J.R., Myung, I.J., 1992. An adaptive approach to human decision-making: Learning theory, decision theory,

and human performance. J. Exper. Psychol. General 121, 177–194.
Busemeyer, J.R., Stout, J.C., 2002. A contribution of cognitive decision models to clinical assessment: Decomposing

performance on the Bechara gambling task. Psychol. Assessment 14, 253–262.
Camerer, C., Ho, T.-H., 1999. Experience-weighted attraction learning in normal form games. Econometrica 67, 827–

874.
Cheung, Y.-W., Friedman, D., 1997. Individual learning in normal form games: Some laboratory results. Games Econ.

Behav. 19, 46–76.
Denrell, J., March, J.G., 2001. Adaptation as information restriction: The hot stove effect. Organ. Sci. 12, 523–538.
Efron, B., 1979. Bootstrap methods: Another look at the jackknife. Ann. Statist. 7, 1–26.
Erev, I., Barron, G., 2005. On adaptation, maximization, and reinforcement learning among cognitive strategies. Psychol.

Rev. 112, 912–931.
Erev, I., Rapoport, A., 1998. Magic, reinforcement learning and coordination in a market entry game. Games Econ.

Behav. 23, 146–175.
Erev, I., Roth, A.E., 1998. Predicting how people play games: Reinforcement learning in experimental games with

unique, mixed strategy equilibria. Amer. Econ. Rev. 88, 848–881.
Erev, I., Bereby-Meyer, Y., Roth, A.E., 1999. The effect of adding a constant to all payoffs: Experimental investigation,

and implications for reinforcement learning models. J. Econ. Behav. Organ. 39, 111–128.
Fowles, D.C., 1988. Psychophysiology and psychopathology: A motivational approach. Psychophysiology 25, 373–391.
Fudenberg, D., Levine, D.K., 1995. Consistency and cautious fictitious play. J. Econ. Dynam. Control 19, 1065–1089.
Gluck, M.A., Bower, G.H., 1988. From conditioning to category learning: An adaptive network model. J. Exper. Psychol.

General 128, 309–331.
Gray, J.A., 1994. Personality dimensions and emotion systems. In: Ekman, P., Davidson, R.J. (Eds.), The Nature of

Emotion: Fundamental Questions. Oxford Univ. Press, New York, pp. 329–331.
Higgins, E.T., 1997. Beyond pleasure and pain. Amer. Psychol. 52, 1280–1300.
Hjelle, L.A., Ziegler, D.J., 1981. Personality Theories. McGraw–Hill, Auckland.
Kahneman, D., Tversky, A., 1979. Prospect theory: An analysis of decision under risk. Econometrica 47, 263–291.
Lejuez, C.W., Read, J.P., Kahler, C.W., Richards, J.B., Ramsey, S.E., Stuart, G.L., Strong, D.R., Brown, R.A., 2002.

Evaluation of a behavioral measure of risk taking: The Balloon Analogue Risk Task (BART). J. Exper. Psychol.
Applied 8, 75–84.

Lev, D., Hershkovitz, E., Yechiam, E., in press. Decision making and personality in traffic offenders: A study of Israeli
drivers. Accident Anal. Prevention.

Luce, R.D., 1959. Individual Choice Behavior. Wiley, New York.
Myung, I.J., 2000. The importance of complexity in model selection. J. Math. Psychol. 44, 190–204.
Nelder, J.A., Mead, R., 1965. A simplex method for function minimization. Comput. J. 7, 308–313.
Newell, A., 1992. Unified theories of cognition and the role of soar. In: Michon, J.A., Anureyk, A. (Eds.), Soar: A

Cognitive Architecture in Perspective. Kluwer Academic, Dordrecht, pp. 25–75.
Newman, J.P., Widom, C.S., Nathan, S., 1985. Passive avoidance in syndromes of disinhibition, psychopathy and extra-

version. J. Personality Soc. Psychol. 48, 1316–1327.



394 E. Yechiam, J.R. Busemeyer / Games and Economic Behavior 63 (2008) 370–394
Oberauer, K., Kliegl, R., 2001. Beyond resources—Formal models for complexity effects and age differences in working
memory. Europ. J. Cogn. Psychol. 13, 187–215.

Rieskamp, J., Busemeyer, J., Laine, T., 2003. How do people learn to allocate resources? Comparing two learning theo-
ries. J. Exper. Psychol. Learning 29, 1066–1081.

Roth, A.E., Erev, I., 1995. Learning in extensive form games: Experimental data and simple dynamic models in the
intermediate term. Games Econ. Behav. 8, 164–212.

Rumelhart, D.E., McClelland, J.E., PDP Research Group, 1986. Parallel Distributed Processing: Explorations in the
Microstructure of Cognition, vols. 1 and 2. MIT Press, Cambridge, MA.

Sarin, R., Vahid, F., 1999. Payoff assessments without probabilities: A simple dynamic model of choice. Games Econ.
Behav. 28, 294–309.

Sarin, R., Vahid, F., 2001. Predicting how people play games: A simple dynamic model of choice. Games Econ. Be-
hav. 34, 104–122.

Schwartz, G., 1978. Estimating the dimension of a model. Ann. Statist. 5, 461–464.
Stahl, D., 1996. Boundedly rational rule learning in a guessing game. Games Econ. Behav. 16, 303–330.
Sutton, R.S., Barto, A.G., 1998. Reinforcement Learning: An Introduction. MIT Press, Cambridge, MA.
Thaler, R.H., Tversky, A., Kahneman, D., Schwartz, A., 1997. The effect of myopia and loss aversion on risk taking: An

experimental test. Quart. J. Econ. 112, 647–661.
Wagenmakers, E.J., Ratcliff, R., Gomez, P., Iverson, J., 2004. Assessing model mimicry using the parametric bootstrap.

J. Math. Psychol. 48, 28–50.
Wallsten, T.W., Pleskac, T., Lejuez, C.W., 2005. Modeling a sequential risk-taking task. Psychol. Rev. 112, 862–880.
Yechiam, E., Budescu, D.V., 2006. The sensitivity of probability assessments to time units and performer characteristics.

Risk Anal. 3, 177–193.
Yechiam, E., Busemeyer, J.R., 2005. Comparison of basic assumptions embedded in learning models for experience

based decision-making. Psychonomic Bull. Rev. 12, 387–402.
Yechiam, E., Busemeyer, J.R., 2006. The effect of foregone payoffs on underweighting small probability events. J. Behav.

Dec. Making 19, 1–16.
Yechiam, E., Busemeyer, J.R., Stout, J.C., Bechara, A., 2005. Using cognitive models to map relations between neu-

ropsychological disorders and human decision making deficits. Psychol. Sci. 16, 973–978.
Yechiam, E., Veinott, E.S., Busemeyer, J.R., Stout, J.C., 2007. Cognitive models for evaluating basic decision processes in

clinical populations. In: Neufeld, R. (Ed.), Advances in Clinical Cognitive Science: Formal Modeling and Assessment
of Processes and Symptoms. APA Publications, Washington, DC, pp. 81–111.

Yechiam, E., Kanz, J., Bechara, A., Stout, J.C., Busemeyer, J.R., Altmaier, E.M., Paulsen, J., in press. Neurocognitive
deficits related to poor decision-making in people behind bars. Psychonomic Bull. Rev.


