Three Variable Regression Model

 

Yi = criterion variable for subject i

X1i = first predictor variable for subject i

X2i = second predictor variable for subject i

X3i = third predictor variable for subject i

 

N = total no. of subjects

 

Complete Model:

 

Yi' = b0 + b1X1i + b2X2i + b3X3i     à SSE(Complete)

 

A Restricted Model:

 

Yi' = b0 + b1X1i    à SSE(Restricted)

 

Null Model: Yi' = b0 = My    à TSS

 

SSR = SSE(Restricted)-SSE(Complete)

 

R2 = SSR / TSS

 

dfN = (no. parms complete) - (no. parms restricted) = 2

 

dfD = N-(no. parms complete) = N-4

 

MSR = SSR / dfN = SSR/2

MSE = SSE / dfD = SSE/(N-4)

 

F = MSR/MSE

 

H0:  E[b2] = E[b3] = 0

 

Reject H0 if  F statistic computed above exceeds table F at .05 level

or if  p < 0.5.