Three
Variable Regression Model
Yi
= criterion variable for subject i
X1i
= first predictor variable for subject i
X2i
= second predictor variable for subject i
X3i
= third predictor variable for subject i
N =
total no. of subjects
Complete
Model:
Yi'
= b0 + b1X1i + b2X2i + b3X3i à SSE(Complete)
A
Restricted Model:
Yi'
= b0 + b1X1i à SSE(Restricted)
Null
Model: Yi' = b0 = My à TSS
SSR
= SSE(Restricted)-SSE(Complete)
R2
= SSR / TSS
dfN
= (no. parms complete) - (no. parms restricted) = 2
dfD
= N-(no. parms complete) = N-4
MSR
= SSR / dfN = SSR/2
MSE
= SSE / dfD = SSE/(N-4)
F =
MSR/MSE
H0: E[b2] = E[b3]
= 0
Reject
H0 if F statistic computed above
exceeds table F at .05 level
or
if p < 0.5.