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A B S T R A C T

Savage’s rational axiom of decision making under uncertainty, called the ‘Sure Thing’ principle,
was purportedly falsified in a two-stage gamble paradigm by Tversky and Shafir (1992). This
work revealed that participants would take a second-stage gamble for both possible outcomes of
the initial-stage gamble, but would significantly depress this choice when no information was
available on the outcome of the initial-stage gamble. Subsequent research has reported difficulty
to replicate this Disjunction Effect in the two-stage gamble paradigm. We repeated this simulated
two-stage gamble paradigm in an online study (N = 1119) but adapted the range of payoff
amounts, and controlled the order of the blocks of two-stage gambles with, respectively without,
information on the outcome of the first-stage gamble. The main empirical contributions of this
study are that more risk averse participants produced (i) a reliable order effect in relation to the
Disjunction Effect and the violation of the Law of Total Probability, and (ii) a novel inflation
effect on gambling in the Unknown outcome condition analogous but opposite to the Disjunction
Effect when Unknown outcome conditioned two-stage gambles precede the Known outcome
conditioned ones. By contrast, we found that less risk averse participants produced neither of
these effects. We discuss the underlying choice processes and compare the effectiveness of a
logistic model, a Markov model and a quantum-like model. Our main theoretical findings are (i) a
standard utility model and a Markov model using heuristic linear utility, contextual influence and
carry-over effect cannot accommodate the present empirical results, and (ii) a model based on
quantum dynamics, matched in form to the Markov model, can successfully describe all major
aspects of our data.

1. Introduction

At the core of the question of people’s rationality when choosing between risky alternatives is Savage’s truism: should you choose
to do something in a given circumstance and also choose to do so when that circumstance does not occur, then you should definitely
take that action even when no information about that circumstance is available (Savage, 1954). This seemingly straightforward
normative rule is known as the Sure Thing Principle, and unexpectedly not withstanding its name nor mundanity, there have been
numerous reports on the violation of this principle in the literature (Tversky & Shafir, 1992; Shafir & Tversky, 1992; Croson, 1999;
Busemeyer, Matthew, & Wang, 2006; Lambdin & Burdsal, 2007; Pothos & Busemeyer, 2009; Pothos, Perry, Corr, Matthew, &

https://doi.org/10.1016/j.cogpsych.2019.101262
Received 2 July 2019; Received in revised form 5 November 2019; Accepted 5 December 2019

⁎ Corresponding author.
E-mail address: jbbroeka@indiana.edu (J.B. Broekaert).

Cognitive Psychology 117 (2020) 101262

Available online 20 December 2019
0010-0285/ © 2019 Elsevier Inc. All rights reserved.

T

http://www.sciencedirect.com/science/journal/00100285
https://www.elsevier.com/locate/cogpsych
https://doi.org/10.1016/j.cogpsych.2019.101262
https://doi.org/10.1016/j.cogpsych.2019.101262
mailto:jbbroeka@indiana.edu
https://doi.org/10.1016/j.cogpsych.2019.101262
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cogpsych.2019.101262&domain=pdf


Busemeyer, 2011; Busemeyer & Bruza, 2012). Our focus will be on a choice between risky prospects in a controlled environment,
namely the two-staged gamble paradigm of the seminal paper of Tversky and Shafir (1992). In that paradigm each participant is
exposed to three conditions of a choice between risky prospects. In each of the three scenarios the gamble was the same: even odds to
win $200 or lose $100. Tversky and Shafir offered the participant to take the gamble or stop it, just after having taken that identical
gamble. More specifically, they proposed three scenarios for that repeated gamble: one with a Win outcome of the initial gamble, one
with a Lose outcome of the initial gamble, and a third scenario in which the outcome of the initial gamble was not disclosed. In this
third scenario the initial stage gamble outcome was therefore Unknown to the participant. Their study fascinatingly showed that the
probability of taking the second gamble was high at .69 and .59 when the first-stage gamble had been Won, respectively Lost, while a
significant depression to.36 was observed for the probability when the outcome of the first-stage gamble was Unknown (Table 1).
Tversky and Shafir argued their participants were inclined to take the second-stage gamble under Win condition, and also under Lose
condition, but would not take the second-stage gamble under Unknown previous outcome condition. They reasoned this was a
violation of the Sure Thing Principle, and named the occurrence of this depressed gamble probability in the Unknown previous
outcome condition a Disjunction Effect. Since their original accomplishment, the corroboration of the Sure Thing Principle in the two-
stage gamble paradigm has been rather uncertain. Kühberger, Komunska, and Perner (2001) replicated the two-stage gamble ex-
periment but found no significant indication of the Disjunction Effect, neither when using the original payoff scheme (the equivalent
in Austrian Shilling), nor when using lower payoffs (both executed in between-participants design), and nor for lowered payoff in a
within-participants design, nor when real monetary payoff was used. Later Lambdin and Burdsal (2007) reported that the outcome
results on the Disjunction Effect by Kühberger et al. (2001) may still be significant, by arguing that only the within-participants
design should be considered relevant and that only those participants that play on Win and play on Lose should be retained to test the
Sure Thing Principle. We are critical of the latter claim since it erroneously identifies such outcome patterns as deterministic cog-
nitive responses to the proposed gamble instead of stochastically realised outcome responses (Section 1.1). To clarify our discussion
of the relation between the Sure Thing Principle (STP), the Disjunction Effect (DE) and the Law of Total Probability (LTP) we expound
the definition for each explicitly.

First, the Sure Thing Principle (STP) is the rational rule that a decision that is made under the assumption of either of two
mutually exclusive and exhaustive events should then also be made when no information is available on these complementary
situations. In particular, winning or losing the gamble are the disjoint and exhaustive outcomes that make up the full event space of
the first-stage gamble.

Second, the Law of Total Probability (LTP) expresses the principle that the marginal probability of an event is the weighted
average of the conditional probabilities of the event on disjoint conditions. Again, since winning or losing the initial-stage gamble
make up all the disjoint conditions, the marginal gamble probability satisfies

= +p gamble W or L p W p gamble W p L p gamble L( ) ( ) ( ) ( ) ( ), (1)

where the weights for both disjoint conditions satisfy + =p W p L( ) ( ) 1. One needs to heed that the cognitive representation of the
Unknown condition may not fully conform to the formal disjunction W or L, of the cognitive Win representation and the Lose
representation. The semantics of the chosen formulation of the Unknown condition could cause the observed conditional probability
relations to be at variance with the Law of Total Probability, Eq. (1). Due to this issue, in our study we have meticulously formulated
the description of the Unknown condition in the two-stage gamble, Section 2, to express it exactly as the disjunction, ‘or’, of the Win
and Lose condition. In this article every mention of the ‘violation of the LTP’ should more carefully be understood as the ‘violation of
a prediction derived from the LTP’.

Third, the Disjunction Effect (DE) is a statistical pattern in the empirical conditional gamble probabilities. The Disjunction Effect
can be expressed as

< <p gamble W or L p gamble W X p gamble W or L p gamble L( | ) ( | , ) and ( | ) ( | ). (2)

The Disjunction effect is essentially the finding that the marginal probability p gamble( ), which is formally equal to p gamble W or L( ),
is not bounded between the conditional probabilities, p gamble W( ) and p gamble L( ). Therefore the Disjunction Effect is a violation of
a prediction derived from the Law of Total Probability.

Notice that Tversky and Shafir considered the Disjunction Effect to be the statistical pattern in which a majority of participants
take the decision to gamble in the Known cases, but most participants reject the gamble in the Unknown case;

>p gamble W p gamble L{ ( | ), ( | )} . 5 and <p gamble W or L( | ) . 5 (Tversky & Shafir, 1992, p.306). We have defined the Disjunction

Table 1
Tversky and Shafir (1992) observed average two-stage gamble probabilities for Known
outcome and Unknown outcome conditions. Within-participants version: Win condition,
followed by the Lose condition and finally the Unknown condition with respectively 7 and
10 days in between. The between-participants version shows closely matching results.

Within-subject Between-subject
(N = 98) (N = 3∗71)

Win .69 .69
Lose .59 .57

Unknown .36 .38
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Effect, Eq. (2), more generally as any deflative violation of the LTP. Our definition of the DE encompasses the specification by Tversky
and Shafir, while allowing us to use the designation for the exact same statistical anomaly in empirical gamble probabilities occurring
for any particular payoff size – as we will show to be the case in our observations.

It is clear that the Sure Thing Principle and the Disjunction Effect are phenomena that are not necessarily related, as was pointed
out by Lambdin and Burdsal (2007) and which we will further discuss in Section 1.1.

One key objective of the present work is to provide a thorough examination of the Disjunction Effect that resolves the above
ambiguities, partly by extending the original paradigm by incorporating factors which might offer insight regarding the incon-
sistencies in related empirical work. Notably, we aim to examine whether the Disjunction Effect might be dependent, (i) on the size of
the gamble payoff, (ii) on the order of presentation of the second-stage gambles with Win, Lose and Unknown previous outcome
conditions, (iii) on the context brought about by how second-stage gambles are conditioned in a particular block and, (iv) on the risk
attitude of the participant. In order to realize these additional manipulations, as well as ensure variability regarding the pertinent
individual characteristics of participants, we decided for a large sample, online implementation of our main experiment (which
follows a smaller exploratory one). This type of approach – using ‘Mturk’ (Amazon Mechanical Turk) and a short time constraint on
the experiment – required us to use a design with a small number of choices provided by each participant, so that an emphasis on
analysis by grouped data was built-in into our method.1 However a partitioning of participants by risk attitude (and by set of played
gamble patterns, SM 4) will still allow a more granular analysis of individual differences among participants.

In brief, our study did find a Disjunction Effect which depends on the risk attitude of the participant and on the order of
presentation of the two-stage gambles with Known or Unknown previous outcome conditions, Section 3. Remarkably, for more risk
averse participants we even found that the direction in which the prediction derived from the law of total probability is violated is
directly related to the order of Known outcome and Unknown outcome second-stage gambles. No evidence however was found for the
violation of the Sure Thing Principle itself.

From a theoretical perspective we found that the model of Tversky and Shafir (1992) based on Prospect Theory – the original
explanation they offered for the Disjunciton Effect – cannot properly explain the observed data from our present study, Section 4 (and
Appendix B). Previously empirical observations with ‘non-classical’ probability structure – as in the present two-stage gamble ex-
periment – have been modeled using quantum probability theory (Pothos & Busemeyer, 2009; Accardi, Khrennikov, & Masanori,
2009). But neither of these models for the two-stage gamble paradigm covered the order effects which we observed at present.

We address this theoretical challenge by developing two stochastic models, premised on an assumption that any choices are
probabilistic functions of latent, dynamically evolving belief-action states informed by outcome conditions and payoff values. Both
these models are decision process models, one based on the classical framework of Markov dynamics and the other on quantum
dynamics.

The Markov dynamical process model we employ is based on the Kolmogorov differential equation to describe the dynamics and
adheres to classical probability theory (Sonnenberg & Beck, 1993; Busemeyer, Wang, & Lambert-Mogiliansky, 2009). This is formally
related to a diffusion model (for example, Ratcliff’s model, Smith & Ratcliff (2015)). A diffusion model is also a Markov process which
uses the Kolmogorov differential equation. The difference between our Markov model and a diffusion model is that we are using a
discrete state Markov model and the diffusion model is a continuous state model. Both models finally produce a predicted probability
of making a response. We use that predicted probability to calculate the likelihood of the observed response (Section 4.2). Note,
empirical results – superficially at least – at odds with the prediction derived from the Law of Total Probability may undermine our
expectations of the suitability of a classical model. Nevertheless it is possible that violations of the predictions derived from the Law
of Total Probability could be classically accounted for in a Markov model – for example through the inclusion of noise in the mapping
between belief-action states and decisions.

The quantum model was designed in an analogous way to the Markov model. It is also a dynamic process model. Its dynamics is
based on the Schrödinger differential equation. A quantum-like model is motivated by the observation of classically ‘irrational’ choice
behaviour. A quantum-like model is based on logical rules alternative to those from Boolean logic, allowing for events to be order
dependent (noncommutative) and context dependent (non-distributive). In full deployment, quantum-like models are both prob-
abilistic and dynamic, and as such can reflect the stochastic process of decision making, Section 4.3.

For both the Markov and the quantum model, dynamical processes were driven by mathematical objects embodying parameters
relevant to the psychology of the problem (e.g., heuristic utility, contextuality, carry-over and belief mixing), which produce a state of
probabilities for different choices. Crucially, the quantum model represents an alternative philosophy in how the dynamics of a
decision evolve: with a Markov model, at any given point in time there is a definite value to the internal state that will ultimately
drive the response. With the quantum model it is impossible to assign a specific value to the internal state, prior to a response. That is,
the response ‘collapses’ the inherent uncertainty in the quantum state; in quantum theory, a decision/response/measurement brings
potentiality into being. This special kind of quantum uncertainty is the key characteristic of the theory which leads to the emergence

1 A Bayesian cognitive model based on the idea that each participant has a prior probability of gambling (which can change from experienced wins
or losses) is complicated by the fact that a simple updating scheme cannot cover the observed inflation and deflation of probabilities in the Unknown
condition nor the order effect. Should an updating scheme provide a change of a prior probability to gamble depending on the first-stage outcome
condition - up on W, down on L and neutral on U - then a net approximately zero effect would result over the block of Known-outcome gambles. No
deflation nor inflation of the Unknown-outcome gamble probability would therefore result from this updating scheme. Moreover, a basic Bayesian
cognitive model does not a priori offer an implementation for order effects, and requires supplementary events describing the order of choices
(Trueblood & Busemeyer, 2011).
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of interference effects (see also, Busemeyer, Wang, & Townsend (2006)).
For both the Markov and the quantum-like models, we solve the dynamical differential equations up to a certain time point to

compute the predicted probability of a response at that time point, which can be used to calculate the likelihood of the observed
responses. Note, we did not collect response times. In past work on the disjunction effect, no one has looked at response times.
Modeling data on response times is something to look at in future research. As a final note, regarding how a response is generated
from predicted probabilities, we assume that if the model produces a state which indicates e.g. =p gamble( ) .7, a response is
sampled by a Bernoulli process producing either of the responses ‘gamble’ or ‘stop’ with probabilities .7 and .3 respectively.
Therefore, no additional mechanism is required to go from probabilities to responses and model probabilities translate directly to
predictions about choice proportions. Note, diffusion models are always applied to choice proportions in exactly the same way.

Finally, a third model is included as a comparison baseline to the dynamical process models, Section 4.4. The baseline model is
essentially a Logistic regression which, as in latent trait modeling, will relate heuristic utility to theoretical gamble probabilities and
which is further parametrized to mimic contextual and carry-over features shared by the two dynamical decisions models, Section
4.4.

1.1. The Sure Thing principle, the Disjunction Effect and the Law of Total Probability

The Disjunction Effect and the violation of the Sure Thing Principle are not necessarily related. In principle the aggregation of
individual gamble strategies could mask the violation of the Sure Thing principle, and vice versa, a dominant strategy of violation of
the Sure Thing principle should not necessarily lead to a Disjunction Effect in the aggregate data. Tversky and Shafir asserted a strong
relation between the occurrence of the violation of the Sure Thing principle and the Disjunction effect. In support of this they
observed that when the Disjunction Effect occurred the dominant gamble pattern followed by their participants was ‘gamble - gamble
- stop’, where the notation order of the decisions always follows the fixed order ‘Win - Lose - Unknown’ of the conditions. We will use
a letter notation to denote these choices as g W g L s U( | , | , | ), where ‘g’ stands for ‘do the gamble’ while ‘s’ stands for ‘stop the gamble’. In
this notation adhering to the STP by replying ‘gamble - gamble - gamble’ corresponds to the pattern g W g L g U( | , | , | ). In their study
precisely 26 out of 98 participants (Table 2, col. TS92) violated the STP by performing pattern g W g L s U( | , | , | ), while by the same
token 14 out of 98 abided to the STP by performing g W g L g U( | , | , | ). Assessing the validity of the STP by a frequency comparison treats
each outcome gamble pattern as composed of three logically correlated – consequentially evaluated– rational decisions. We assert
that each gamble decision, hence each gamble triplet, should be considered a stochastic realisation of a latent trait.

What choice patterns then lie at the origin of the Disjunction Effect? In terms of gamble patterns, how does a violation of the Law
of Total Probability come about? Strictly the Law of Total probability can be violated in two ways, the gamble probability under
Unknown outcome condition either undershoots or overshoots the span of the probabilities for gambling under Known outcome
conditions.

The occurrence of these violations is related to the frequency of specific gamble patterns.2 With three conditions in the two-stage
gamble paradigm there are eight possible gamble patterns in total, Fig. 1. Each conditional gamble probability can be expressed as the
marginal of the joint probabilities identified by their corresponding gamble patterns

Table 2
Observed gamble patterns with notation order Win-Lose-Unknown in two-stage gamble experiments. TS92 is the original Tversky and Shafir study
with consecutive delayed presentation of conditions(Tversky & Shafir, 1992). KKP-Exp3 is the within-participants (‘third’) experiment of Kühberger,
Komunska, and Perner with random order juxtaposed conditions (Kühberger et al., 2001). LB-Coin is the coin experiment of Lambdin and Burdsal
with random order juxtaposed conditions (Lambdin & Burdsal, 2007). BBP-Exp1 is extracted from our Experiment 1 study for payoff parameter

=X 2, with randomly ordered conditions. BBP Exp2KtoU are the extracted =X 2 results from our Experiment 2 study with blocked Win and Lose
outcome conditioned gambles preceding the block of Unknown outcome gambles. BBP Exp2UtoK has the blocked conditions in reverse order.
Dominant patterns are tagged with an asterisk.

W L U TS92 KKP-Exp3 LB-Coin BBP-Exp1 BBP Exp2KtoU BBP Exp2UtoK
N = 98 N = 35 N = 55 Natt = 94 Natt = 407 Natt = 415

g g g .14 .29 .22 .23 0.371∗ 0.323∗
s g g .06 .0 .04 .24∗ 0.194 0.195
g s g .11 .11 .11 .07 0.076 0.113
s s g .04 .03 .02 .06 0.032 0.070
g g s .27∗ .09 .16 .05 0.081 0.065
s g s .12 .0 .05 .14 0.086 0.068
g s s .17 .31∗ .15 .10 0.076 0.077
s s s .08 .17 .25∗ .11 0.084 0.089

2 A single binary response pattern to gambles neither indicates a violation of nor consistency with the LTP. The intrinsic probability – the
individual’s probability to gamble, given some conditions (e.g., payoffs) – generates binary random variable responses. That is, a priori any in-
dividual pattern is not a reliable indicator with respect to putative violations of the LTP nor the STP. The intrinsic probabilities produce binary
choices that lead to choice proportions when averaged across participants and a law of large numbers assures the convergence of observed choice
proportions to the intrinsic probabilities.
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= + + +p g W p p p p( | ) ,ggg gsg ggs gss (3)

= + + +p g L p p p p( | ) ,ggg sgg ggs sgs (4)

= + + +p g U p p p p( | ) .ggg gsg sgg ssg (5)

From which it is clear that e.g. an increased presence of the g W g L s U( | , | , | ) pattern could push the span of p g W( | ) and p g L( | ) above
p g U( | ) to create a DE. But it is also clear that a few other patterns could cause this to happen. A Disjunction Effect expressed as a
deflative violation of the LTP, Eqs. (2), can be expressed as

>p p p p ,ggs ssg sgg gss (6)

>p p p p ,ggs ssg gsg sgs (7)

where we substituted the marginal expressions using Eqs. (3)–(5). These inequalities show that the Disjunction Effect has no tie to the
frequency of the Sure Thing Principle pattern, g W g L g U( | , | , | ), itself. It is contrary to the original analysis based on the frequencies of
patterns g W g L g U( | , | , | ) and g W g L s U( | , | , | ) by Tversky and Shafir (1992) and some of the corresponding subsequent work (Lambdin
& Burdsal, 2007). Instead we remark that all of the gamble patterns g W g L s U s W g L s U( | , | , | ), ( | , | , | ) and g W s L s U( | , | , | ) will contribute
to deflation, while all of s W s L g U s W g L g U( | , | , | ), ( | , | , | ) and g W s L g U( | , | , | ) contribute to inflation of the gamble probability under
Unknown outcome condition. That is, except for the neutral patterns g W g L g U( | , | , | ) and s W s L s U( | , | , | ), each gamble pattern con-
tributes to the average gamble probability under Unknown outcome towards either inflative (‘upward’) or deflative (‘downward’)
effect on p g U( | ) with respect to p g W( | ) or p g L( | ), and potentially average to a violation of the Law of Total Probability in either sense
(see SM 3). In a more detailed elaboration of participant behaviour we will use the inflative/deflative potential of each gamble
pattern to characterise participants (SM 8).

2. Material and methods

The application of an experimental gamble paradigm to evaluate Expected Utility Theory goes back to Edwards (1954) and
Samuelson (1963). The specific method to probe the Disjunction Effect in our study stays close to the Tversky and Shafir (1992) two-
stage gamble paradigm. The major difference consists of examining whether the Disjunction Effect might be dependent on the size of
payoff of the proposed gamble, on the order in which the Win, Lose and Unknown outcome conditioned two-stage gambles are
presented, on the context of other two-stage gambles in which a gamble is taken and on whether participants are more or less risk
averse. Also the fact that the participants were crowdsourced with Mturk and the short time frame in which all the gambles were
performed will be considered in the interpretation of the results.

In order to understand the potential factors that lead up to the Disjunction Effect we also control for between-participants and
within-participants variation of the study design. From the between-participants design for conditions {W, L, U} of the first-stage
outcome we could infer whether the Disjunction Effect would emerge even if each participant is exposed to only one specific level of
outcome condition. We have detailed in Section 1.1 however that an analysis of the Sure Thing Principle itself is not possible in a
between-participants design since it needs to be interpreted as a consequential and rational decision at the level of the individual
participant and so requires exposure to the three outcome conditions. In a within-participants design a participant will be exposed to
all three conditions, which would in principle allow us to analyse the Sure Thing Principle over and above the Disjunction Effect. But
at the same time a within-participants design may suppress the Disjunction Effect – and also the STP– or, on the other hand this
design may altogether induce these effects by cross-correlating the participant’s decisions over the different conditions. To assess
these issues we have explored both within- and between-participants designs in our study, as well as considered other key factors
which may inform our understanding of the DE, across Experiments 1 and 2.

Experiment 1 essentially tested the gamble paradigm (i) in a within-participants design for all outcome conditions randomly
mixed and, (ii) in a between-participants design for Win and Lose first-stage gamble outcome conditions in comparison with

Fig. 1. Gamble patterns in WLU notation order. The Sure Thing Principle pattern g W g L g U( | , | , | ) is violated by the Disjunction Effect pattern
g W g L s U( | , | , | ), denoted respectively as STP+ and DE−. The index + indicates that the gamble is accepted under U, while the − index indicates it is
not accepted. The decision-mirrored Sure Thing Principle pattern s W s L s U( | , | , | ) is violated by the mirror Disjunction Effect pattern s W s L g U( | , | , | ).
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Unknown first-stage gamble outcome conditions. Contrary to Experiment 1, in Experiment 2 we explored the impact of ordering of
first-stage gamble outcome conditions. This was done using a design in which either the first-stage Win and Lose outcome gambles
preceded the first-stage Unknown outcome gambles, or the other way round with the first-stage Unknown outcome gamble block
preceding the first-stage Win and Lose outcome gamble block.

For both experiments the script of the task was developed in Qualtrics and transferred to MTurk for online data gathering. The
participants taking the survey were MTurk Workers located in the US and received $.90 for their participation. Participants needed to
be at least 18 years of age and have a good command of the English language. Precautions against bot responses included an upfront
Captcha test –a ‘Completely Automated Public Turing test to tell Computers and Humans Apart’, and post hoc checking of known
GPS-location anomalies (multiple location repetitions or locations documented for bot fraud). Participant engagement was monitored
by the inclusion of ‘hidden’ attention tests. These tests were presented as a normal second-stage gamble but had one sentence inserted
that indicated that the present gamble was in fact an attention test and that the participant needed to respond in a specified manner.

All participants were informed that all amounts won or lost in each gamble needed to be imagined, there would be no monetary
implication in reality. There were four types of gamble; the second-stage gambles conditioned on Win, Lose, Unknown and, the
single-stage (unconditional) gamble.

Participants saw the following text for the various kinds of gambles: 3

Second-stage gamble, Win [Lose] condition, with payoff parameter X in {.5, 1, 2, 3, 4}
You just played a new game that gave you a chance
to win $ X100 on heads and to lose $ X100 /2 on tails.
You tossed the coin and won $ X100 [ lost $ X100 /2].
You are now offered an identical gamble:
– On heads, you win $ X100 .
– On tails, you lose $ X100 /2.
Will you toss the coin or not?

(8)

Second-stage gamble, Unknown condition, with payoff parameter X in {.5, 1, 2, 3, 4}
You just played a new game that gave you a chance
to win $ X100 on heads and to lose $ X100 /2 on tails.
You tossed the coin but you will not know whether
you have won $ X100 or lost $ X100 /2 until you make your next decision.
You are now offered an identical gamble:
– On heads, you win $ X100 .
– On tails, you lose $ X100 /2.
Will you toss the coin or not?

(9)

The single-stage gamble consisted of a gamble without any information that would result from a previous gamble. In practice it
was presented as the last four lines of the Known-outcome second-stage gamble but with the word ‘identical’ replaced by ‘new’.
Notice there are five levels of payoff, the gamble with lowest value of the payoff parameter =X .5 corresponds to Win $50 or Lose
$25, while at its highest value =X 4 the gamble corresponds to Win $400 or Lose $200.

First Experiment 1 was carried out to compare gamble decisions in a between and within-participants design of the first-stage
gamble outcome conditions, as closely replicating Tversky and Shafir (1992) as possible, but with the addition of multiple, variable
payoff amounts. Experiment 1 had three participant groups assigned to three different tasks. One group was assigned to the Win and
Lose conditions for all values of the payoff parameter X and also took the single-stage gambles, all in random order of outcome
conditions and payoff amounts (N = 118). This group received 10 second-stage gambles, of which 5 were Win-conditioned and 5
were Lose-conditioned. They also received 5 single-stage gambles. Out of 168 participants 118 passed the attention test. For the entire
task, participants required a median time of s461 . The mean age of the participants was y35.2 while the random assignment of
participants produced a gender skewed participant cohort, =m 0.60gender (male = 1, female = 0). A second group was assigned to the
Unknown outcome condition for all values of the payoff parameter X and also took the single-stage gambles, all in random order of
outcome conditions and payoff amounts. This group of participants also received 5 single-stage gambles, while, regarding second-
stage gambles, participants received only the 5 Unknown gambles, Out of 134 participants 114 passed the attention test. For the
entire task, participants required a median time of s460 . The mean age of the participants was y36.5 , again the cohort was slightly
gender skewed, =m 0.44gender .

3 We note that the wording “stop playing”, to mean “do not gamble on this particular gamble” would not appear ambiguous to participants.
Participants were first exposed to three explained gambles and practiced three gambles. All of these used the same wording and clearly showed that
“stop playing” did not exit them from the survey, and did not apply to some set of gambles, but instead completed the consideration of the current
gamble and allowed participants to proceed to the next gamble. Additionally, each new second-stage gamble would always begin with the sentence
“You just played a new game that […]”, which also emphasizes that “stop playing” only applies to the present gamble.
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The third group took the two-stage task in all three outcome conditions and for all values of the payoff parameter X, all in random
order. This group of participants received 5 Win, 5 Lose and 5 Unknown conditioned second-stage gambles, but did not take any
single-stage gambles. Out of 126 participants 94 passed the attention test. For the entire task, participants required a median time of

s512 to finish the task. This group had a mean age of y35.1 , and a mean gender of 0.44.
Experiment 1 had a single a attention check and those participants who failed it were eliminated from the analysis. This check

appeared as a normal second-stage gamble but had a supplementary sentence towards the end of the text on the screen that informed
that this particular game (with high payoff) was an attention test and that the participant had to respond mandatorily by clicking the
gamble button.

Note, surveying the results of Experiment 1, an indication for a violation of the LTP by a probability discrepancy about the size 0.1
was estimated from the data (see below and Fig. S5 in Supplementary Materials, SM 9). For Experiment 2 the number of required
participants was estimated accordingly. With a hypothetical average gamble probability of p .5 and targeted standard error of
SE 0.025 the size of the sample, using =N p p SE·(1 )/ 2, was N 400. With about 1 in 3 participants missing the attention test, for
each between-participants condition – corresponding to the ordering of the Known outcome gambles relative to the Unknown
outcome ones – we would require about 600 participants, and for the full experiment twice as many participants would be needed.

In Experiment 2 the task progression was structured by grouping trials in blocks of specifically conditioned gambles. One block
contained randomly ordered Win and Lose conditioned second-stage gambles, and also single-stage gambles. The other block con-
tained randomly ordered Unknown outcome conditioned second-stage gambles and again single-stage gambles (see diagram Fig. 2).
All these gambles appeared in five variations, based on the five values of the payoff parameter X. The participants had to reply by
clicking the radio button under “toss the coin” or “stop playing”, after which a new screen appeared with a new gamble.

In Experiment 2, the examination of the DE is within-participants for the W L U{ , , } conditions, but it is between-participants for the
key manipulation of order, that is, whether participants first saw the second-stage gambles with a known outcome for the first-stage
gamble or they saw first the second-stage gambles with an unknown outcome for the first-stage gamble. All participants received 15
second-stage gambles, composed of 5 Win, 5 Lose and 5 Unknown gambles. They further received 10 single-stage gambles; 5 of these
single-stage gambles were presented together with Known second-stage ones and 5 of these with Unknown ones. In total the block
with Known outcome conditions - Win or Lose - thus had fifteen gambles, while the block with Unknown outcome conditions had ten
gambles.

Each participant was randomly assigned to an ordering of first-stage outcome conditions: either first the Known block and then
the Unknown block, or first the Unknown block and then the Known block. These two ordering conditions will be referred to as the
‘K-to-U’ flow and ‘U-to-K’ flow respectively. Notice that each flow order stands as a within-participants design evaluation of the
Disjunction Effect. A comparison of ‘K-to-U’ and ‘U-to-K’ order effects occurs between participants.

Out of N = 1230 participants having taken the survey for Experiment 2, the response data of 65 participants needed to be
eliminated because the task ordering information was not recorded and data from 46 more participants were deleted because the
response records were not complete in the Win, Lose or Unknown fields. This left N = 1119 complete participant records divided
over both gamble order conditions, of which N = 822 passed the attention tests. Experiment 2 included two attention checks, both
presented in the format of second-stage gambles (one task was in the Known context and the other in the Unknown one). The specific
format of the attention checks was as above. Participants that failed to correctly respond to these attention tasks were eliminated from
the analysis. The choice behaviour of participants that failed the attention test (N = 297) is discussed in more detail in the
Supplementary Materials section, (SM 11). The gamble probabilities of these participants show indifference to payoff amounts, even
for the ‘More risk averse’ group where a strong dependence on payoff is expected, see SM 4. This payoff indifference shows the
implemented attention test correctly identifies participants that engage only superficially with the gamble descriptions and warrants
their removal from the main analysis.

Finally we remark that, separated by order condition, the demographics were sufficiently similar over both order conditions. The
‘K-to-U’ flow received 407 participants who took a median time of s562 to finish the task. Their median age was y34 and mean gender
.543. The ‘U-to-K’ flow received 415 participants who took a median time of s539 to finish. Here the median age was y35 and the mean

Fig. 2. Blocked conditions and flow order of the two-stage gamble Experiment 2: participants were randomly assigned to the ‘U-to-K’ or ‘K-to-U’
flow. In the U-to-K flow participants first took all five second-stage gambles with Unknown outcome information, and then proceeded to take all ten
second-stage gambles with Known outcome information. In the K-to-U order, the order of the two blocks was reversed. In each block each parti-
cipant also took five single stage gambles and was exposed to an attention test. Each flow order leads to a within-participants design for the
evaluation of the Disjunction Effect. The evaluation of the order effect occurs in a between-participants design.
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gender was .489. A non-significant gender bias was present in the random assignment of participants in the U-to-K vs K-to-U flows.4

We point out that in our experiment no actual rewards were being given nor were true monetary risks being taken by the
participants. Only a flat fee for participation to the task was given to each participant. There is no evidence that true monetary
rewards would produce less random performance in this paradigm. The pioneering study of Tversky and Shafir (1992), which showed
a strong DE, did not involve real monetary risks, and the same applies to most subsequent replications. An exception is the work of
Kühberger et al. (2001) who used real monetary risks in one of their conditions. Specifically, their procedure involved tricking
students into risking their proper money first and then surprise remitting their debts at the end. 5 At face value, such a procedure
should encourage more attentive behavior. However, Kühberger et al. (2001) did not find any differences in behavior between the
condition with real monetary risks and a condition with gambles on hypothetical money. Such a powerful null result casts doubt on
the effectiveness of (small) monetary risks and rewards in affecting participants’ behavior in the two-stage gamble paradigm. This
conclusion is consistent with the general impression that small monetary incentivization is not effective in biasing behavior. For
example, Camerer and Hogarth (1999) concluded that “there is no replicated study in which a theory of rational choice was rejected
at low stakes in favor of a well-specified behavioral alternative and accepted at high stakes” (p.23).

3. Experimental results.

3.1. Experiment 1

The within-participants segment of Experiment 1 showed no indication for a Disjunction Effect at any of the payoff values of X
(see Fig. S5 in SM 9). We recall that contrary to the approach of Tversky and Shafir (1992) we distinguish between the violation of the
LTP and the violation of the STP, Section 1.1. The aggregate probability to take the second-stage gamble in the Unknown previous
outcome condition consistently satisfied the LTP over the payoff range. Also the gamble pattern distributions showed no indication
for STP violation, which should have been apparent through the statistical dominance of gamble pattern g W g L s U( | , | , | ) (the dis-
tribution data corresponding to =X 2 are included in Table 2).

In the between-participants segment of Experiment 1 we found a marginally significant inflative violation of LTP for lower values
of the payoff variable X, most clearly at =X .5 with = =p g W p g L( | ) 0.68, ( | ) 0.71 and =p g U( | ) 0.87. Based on contingency counts a
left-tailed Fisher test for increased association of Gamble/Stop by Win/Unknown at pay-off at =X .5 showed a significance of

=p .0176, with odds ratio 0.45 and CI = [0.22, 0.91] for = .05. Applying the Holm-Bonferroni correction for the five measurements
over the payoff range renders the inflative effect of p g U( | ) at X=.5 non-significant (uncorrected p-values over the X-range:
{.02, .22, .85, .96, .92}).

Finally we remark that in both the within-participants and the between-participants design the participants clearly distinguished
the Lose outcome and Win outcome condition such that a larger preference was given to taking the gamble under Lose outcome
condition than under Win outcome –an observation which runs counter to reported data on the two-stage gamble experiment
(Tversky & Shafir, 1992; Kühberger et al., 2001; Lambdin & Burdsal, 2007; Surov, Pilkevich, Alodjants, & Khmelevsky, 2019).

3.2. Experiment 2

The full participant group was subdivided by condition flow order in Experiment 2. This allows an observation of a major effect
on choice probability due to the block ordering, Fig. 3. In the flow order when the Unknown conditioned block precedes the Known
conditioned block the LTP is violated over the whole X-range in an inflative manner =p e6.25 06, (N = 415), by Wilcoxon signed
rank test. The Wilcoxon signed-rank test was used to assess the paired differences –Lose conditioned outcome response versus
Unknown conditioned outcome response– from repeated measurements on a single sample. The test allows to compare the effect of
two conditions on paired outcomes –here in particular to test whether the participants gamble more on Unknown vs Known outcome
conditions. It is a non-parametric test which does not assume a normally distributed population (the data range from 0 to 1 in
fractions 1/5), nor does it require equal variance, and independence of the errors. For each participant the X-averaged score under
Lose and Unknown outcome conditions was compared and tested for H0 hypothesis that <p g U X p g L X( | , ) ( | , )X X .

On the contrary, in the flow order where the Known block precedes the Unknown block the LTP is satisfied over the whole X-range
(N = 407), Fig. 3. The decreasing tendency to gamble under increasing payoff and the differing reaction of participants to second-
stage gambles conditioned on W or L are observed in both gamble order conditions.

The design and sample size of Experiment 2 allowed us to analyse the gamble probabilities for different categories of participants.
In the first instance we looked at the observed gamble probabilities for the full group by flow order, in the next sections we partition
those two flow ordered groups by risk attitude –more vs less risk averse. 6

4 Based on contingency counts a Fisher test for non-random association between flow order and gender showed =p .13 (two-tailed), with odds
ratio 0.81 and confidence interval CI = [0.61, 1.06] for = .05.

5 Note, such a procedure may introduce a sampling bias, since the participants who decide to take part in such a study would be expected to be
more risk seeking.

6 A further partitioning by gamble pattern range, based on ID-score, eq. (S3), is provided in the Supplementary Materials, SM 4.
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3.2.1. More versus less risk averse participants
Considering that it is behavior relative to gambles that is at stake, it seems a shortcoming in both the original Tversky and Shafir

(1992) work and later extensions that the risk aversion of participants has not been taken into account. In order to operationally
characterise the risk aversion of participants their choices in the single-stage gambles were used. We recall the single-stage gambles are
the same as the condition-free first stage of the two-stage gamble. By experimental design in Experiment 2 each participant is twice
presented with all the single-stage gambles, once in the Known block and once in the Unknown block. We use the sum total of the
instances a participant accepts the initial gamble as the operational measure of risk attitude. In our design this ‘single-gamble score’
can vary from 0 to 10. A high single-gamble score indicates a participant who frequently chooses to gamble, despite the potential loss,
hence expressing low risk aversion. A low single-gamble score indicates a participant with higher risk aversion since these partici-
pants do refrain more often from a risky choice with potential loss.

Fig. 3. Experimental gamble probabilities, on the left for participants in K-to-U order, on the right for U-to-K order. In the U-to-K order an inflative
Disjunction Effect occurs. The payoff parametrised by X [1, 5]Level appears on the x-axis. Error bars represent the standard error of the mean.
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From Fig. S3, we observe that a substantial fraction of the participants obtained a single-gamble score of 10. Participants that
always take the initial gamble, regardless the payoff, can be considered more risk-seeking than participants that will not always take it.
This criterion warrants a partitioning of the sample by either obtaining a single-gamble score less than 10 or the maximum of 10,
resulting in a ‘More risk averse’ group (N = 429) and a ‘Less risk averse’ group (N = 393) which are approximately of the same size.7

A first overall observation of the second-stage gamble probabilities separated along our criterion for risk attitude, Fig. 4 confirms
some basic expectations. The defined ‘More risk averse’ group is indeed more risk averse than the defined ‘Less risk averse’ group,
since all gamble probabilities for all payoff values X and for all outcome conditions are lower in the ‘More risk averse’ group in
comparison to the same gambles taken by the ‘Less risk averse’ group. Moreover, the ‘More risk averse’ participants have a faster
diminishing motivation to take the second-stage gamble for increasing payoff X when the first-stage gamble outcome was Lose or
Unknown. However, when the first-stage gamble outcome was Win, this diminishing motivation to gamble over X remains the same
for both groups. The ‘Less risk averse’ participants also show a significant distinction between gamble choices under W and L
condition, while the ‘More risk averse’ participants hardly discriminate between these two conditions.8

A major and rather surprising observation for the ‘More risk averse’ group is the strong flow-order with outcome-condition cross-
over interaction (Fig. 4, right panel). Remarkably the ‘More risk averse’ participants show a tendency for a Disjunction Effect in K-to-
U order and a significant inflative violation of the LTP in U-to-K order. Notice that this is a between-participants effect of flow order.
A mixed ANOVA with unbalanced design (N = 207/N = 222) and with a dependent variable gamble probabilities (averaged across
all payoffs X) and independent variables first-stage gamble outcome condition {W, L, U} and order {‘K-to-U’, ‘U-to-K’} revealed a
significant interaction, = =F p e(2, 1281) 12.78, 3. 20 06 .

By contrast, there were no main effects for either first-gamble outcome condition or order in the ‘More risk averse’ group. That is,
surprisingly, there appears to be no effect on choice behavior from whether the first-stage gamble was indicated as Won or Lost.

The ‘Less risk averse’ participants do not show any tendency for a Disjunction Effect in the order K-to-U, while in the U-to-K order
a non-significant tendency for an inflative violation of the LTP occurs. A mixed ANOVA with unbalanced design (N = 200/N = 193),
testing for factors of condition {W, L, U} and order {‘K-to-U’, ‘U-to-K’}, revealed a significant main effect of condition {W, L, U}

= =F p e(2, 1173) 43.88, 4. 2 19 . Therefore, in this group a substantial difference in gambling probability is observed, depending
on whether the first-stage gamble was Won or Lost.

In the U-to-K order the ‘More risk averse’ participants are mostly indifferent to choice under the Win or Lose first-stage gamble
outcome condition, therefore the inflative violation of the LTP has to be tested with respect to both choices of the two Known
outcome conditions. To test the statistical significance of the violation of the LTP the Wilcoxon test for repeated measurements on a
single sample was applied. The test was used to assess the paired difference from measurements on Known and Unknown conditions
for each participant. The Wilcoxon test shows a significant violation of the LTP, with p = 1.7e-06 (N = 222) for H0 that

<p g U X p g L X( | , ) ( | , )X X and =p .0002 (N = 222), for H0 that <p g U X p g W X( | , ) ( | , )X X .
In the K-to-U order the ‘More risk averse’ participants show a small but consistent diminished choice probability under Win in

comparison to the Lose first-stage gamble outcome condition. In this case therefore the Disjunction Effect is tested between the
choices in the Unknown and Win outcome conditions only. The Wilcoxon test shows a significant Disjunction Effect, with =p .045
(N = 207), for H0 that >p g U X p g W X( | , ) ( | , )X X . Since this result seems marginally significant, we also applied the Pratt
correction to the Wilcoxon test (by modification of Matlab code in Cardillo (2006)). The Pratt correction is required for samples with
frequent ties, which typically occur in discrete distributions like in our present data set where the compared X-averaged gamble
response values are fractions ranging from 0/5 till 5/5. While the Wilcoxon test eliminates all zero differences of measurement
outcomes, the Pratt correction keeps the zero differences in the ranking procedure of the statistical test (Pratt, 1959). Using the Pratt
correction, the Disjunction Effect for ‘More risk averse’ participants in the K-to-U order is marginally not statistically significant
anymore at =p .062 (N = 207).

The size of the sample allows insight in decision patterns besides aggregate gamble probability. In particular we can consider the
prevalence of particular gamble strategies expressed as WLU gamble patterns, Fig. 5. Three gamble patterns have a deflative effect on
the average gamble probability under Unknown condition – g W s L s U s W g L s U( | , | , | ), ( | , | , | ) and g W g L s U( | , | , | )– and three have an
inflative effect – g W s L g U s W g L g U( | , | , | ), ( | , | , | ) and s W s L g U( | , | , | ), Table S1. The probability distribution over the patterns causes the
occurrence of either a Disjunction Effect or an inflative violation of the Law of Total Probability. It is therefore important to analyse
the distribution of the gamble patterns over the spectrum of payoff parameter X, Fig. 5.

A remarkable difference between the pattern distribution of the ‘Less risk averse’ and ‘More risk averse’ participants occurs over
the range of increasing payoff X. In ‘Less risk averse’ participants the modal strategy remains ‘always play’, g W g L g U( | , | , | ),
throughout the X range. In the ‘More risk averse’ participants the modal pattern changes from ‘always play’ at the lowest payoff to
‘never play’, or s W s L s U( | , | , | ), at the highest payoff.

7 The demographics for the ‘Less risk averse’ group with respectively =N 200KU and =N 193UK participants revealed respective gender means
=m 0.61gender and =m 0.52gender , while the ‘More risk averse’ group had =N 207KU and =N 222UK participants, with respective gender means
=m 0.48gender and =m 0.46gender . Therefore a small gender bias was present due to our risk-aversion partitioning, ( =p .006, two-tailed) where the

odds ratio is 0.68 and the confidence interval CI = [0.52, 0.89] for = .05.
8 In SM 10, we analyse the effect of informing the participant about the Unknown outcome of the first-stage in a two-stage gamble by comparing

the probability of taking the single-stage gamble p g( ) (thus without any condition set by an earlier stage gamble) and the second-stage gamble
p g U( | ) (in which the participant is informed that the outcome is Unknown). This analysis is done for ‘more risk averse’ participants, since for ‘less
risk averse’ participants =p g( ) 1 for all X, hence further analysis is not pertinent for the latter participant group.
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The pattern s W g L g U( | , | , | ) (‘only stop on Win’ strategy) is the second most common pattern over the X range for ‘Less risk averse’
participants. In the ‘More risk averse’ participants, the patterns with ‘stop on U’ strategy become more frequent only for higher values
of X (reflected in the decreasing of p g U X( | , ) with increasing X). In general we observe that ‘More risk averse’ participants resort to a
larger variety of gamble patterns when X increases. In the ‘Less risk averse’ group the near inflative p g U X( | , ) originates mainly from
the probability mass in the pattern s W g L g U( | , | , | ), in both flow orders.

In sum, in the ‘More risk averse’ group the marginally significant DE in the K-to-U order emerges due to the empirical pre-
ponderance of all patterns with deflative effect over patterns with inflative effect, while in the U-to-K order the inflative violation of
the LTP emerges through the preponderance of all patterns with inflative effect over the deflative patterns. The Disjunction Effect and
the inflative violation of the Law of Total Probability are therefore not caused by their purported association to g W g L s U( | , | , | ) or
s W s L g U( | , | , | ) patterns. This still leaves open the question of whether some individual participants might adhere to specific deflative
or inflative strategies over the X-range of payoffs, and whether these tendencies are masked by the aggregation of data (Estes, 1956).
This issues is addressed in Supplementary Materials Section SM 3.

To end this section we discuss the concern that these participants whom we labeled ‘less risk averse’ would simply ‘click through’
the experiment rather than informedly choose to always play a single-stage gamble. To avoid the possibility that this type of ‘lazy
responding’ effect could take place, in our survey code in Qualtrics we implemented a random Display Order of the gamble button
and the stop button. The gamble button could appear on either of two locations, on the left or the right of the screen. With each new
gamble, it was randomly determined whether the gamble button was on the right or on the left. A lazy participant would be expected
to click through at the same location, which would lead to equivalent proportions of gamble and stop decisions. By contrast, the ‘less
risk averse’ participants would need to hunt the gamble button, at the different screen locations where it would appear, in order to
adhere to an ‘always gamble’ strategy. This commitment is not in line with laziness for it requires attention and takes more time to
perform than robotically clicking the same button appearing randomly below their cursor. In fact the average task duration for ‘Less

Fig. 4. Observed gamble probabilities for sample partitions into ‘Less risk averse’ (left panel), and ‘More risk averse’ (right panel). Within each
panel, on the left are the observations for the K-to-U order, on the right the U-to-K order. The ‘More risk averse’ participants show a significant
inflative violation of the Law of Total Probability in U-to-K order, and a marginally significant Disjunction Effect, or deflative violation of the Law of
Total Probability, in K-to-U order. The payoff parametrised by X [1, 5]Level appears on the x-axis. Error bars represent the standard error of the
mean.

J.B. Broekaert, et al. Cognitive Psychology 117 (2020) 101262

11



risk averse’ participants is indeed somewhat longer than for ‘More risk averse’ participants, =M s652duration Lra, while
=M s621duration Lra, . 9

Additionally, from the perspective of Expected Value the choices made by the ‘less risk averse’ participants make sense. This is
because all these gambles have an Expected Value which exceeds not playing the gambles by an amount of X25 (see SM 12).
Therefore it makes sense to always play the single-stage and even to always play the second-stage gambles as well.10

Another relevant point is that participants defined as ‘less risk averse’ do not always play all gambles and show a decreasing
tendency to take the second-stage gambles for higher pay-offs (see Fig. 4). They meaningfully (i.e., on the basis of a non-random
pattern) change their choices depending on outcome condition and payoff size (less so on order).

Finally, it is worth bearing in mind that participants that always play single-stage and second-stage gambles have no influence in
creating inflation nor deflation of the probability P g U( | ). The g W g L g U( | , | , | ) pattern contributes equally to each gamble probability.
So, the small percentage of true always takers have a perfectly neutral effect on the ordering of the probabilities (their elimination
would scale up the small inflation effect in the U-to-K flow for the less risk averse participants).

Fig. 5. Experimental gamble pattern probabilities in the WLU order arranged from s W s L s U( | , | , | ) to g W g L g U( | , | , | ); in the left panel we show ‘Less
risk averse’ participants, in the right panel ‘More risk averse’ participants. The patterns have been ordered in WLU order with 1 for ‘gamble’ and 0 for
‘stop’. The patterns for payoff parameter =X .5 is shown at the top and increasing to =X 4 at the bottom. The four ‘gamble-on-U’ patterns (XYg) are
grouped to the right on the X-axis, the four ‘stop-on-U’ patterns (XYs) are grouped to the left. The probabilities for the K-to-U order appear on the left
(pink color) and for U-to-K on the right (teal color). For comparison the yellow markers in the =X 2 panel indicate the pattern probabilities of
Tversky and Shafir (1992). In the right panel for ‘More risk averse’ participants one observes the probability mass shifting from XYg to XYs patterns
for increasing payoff, corresponding to the decreasing gamble probability p g U X( | , ) with increasing X. Error bars represent the standard error of the
mean.

9 A two-sample t-test for the null hypothesis that the task duration in ‘less risk averse’ and ‘more risk averse’ players have equal means and equal
but unknown variances accepts the null hypothesis; p = .4, CI = [-45.9, 107.0], t = 0.79, df = 820, sd = 558.

10 A quote of the voluntary feedback of one of the ‘true’ always takers reveals this participant’s motivation: “I’m not usually a gambler but unless I
misunderstood the directions, it was always monetarily wise to flip the coin again. If you win, you have a chance to win again and if you lose you only lose half
the amount and have a better chance of winning on the next.” Similarly ‘never takers’ can act by consistent strategy as well, even if it is against the
expected value of each gamble. It is of interest to quote the voluntary feedback of two of those ‘never players’: “I think gambling is foolish. I would
never put money at risk”, and “My parents are addicted to gambling so I really don’t like to gamble myself.”
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In sum, these arguments show the defined ‘less risk averse’ participants properly engage with their task and show rational
behaviour in their decisions. Their behaviour does not warrant elimination from the participant pool.

4. Theoretical analysis

Prospect Theory, for risky decision making under uncertainty, was set forth by Kahneman and Tversky (1979), (Kahneman &
Tversky (1979), Tversky & Shafir (1992)). Essentially their theoretical approach provides Expected Utility theory of losses and gains
with shifting reference values. We first shortly expose how Prospect Theory provides a theoretical interpretation for the Disjunction
Effect, after which we will show why this model is problematic with respect to our observations.

In order not to commit our discussion to a specific formal expression of utility we will denote the expected utility of the second-
stage gamble respectively as EU X W EU X L( | ), ( | ) and EU X U( | ) for the three first-stage gamble outcome conditions Win, Lose and
Unknown, and payoff value X. The expected utility is weighted on the utility of wealth, U X( )w , given a won monetary amount
parametrized by X, and on the utility of debt,U X( )l , given a lost monetary amount parametrized by X. The choice to take the second-
stage gamble is motivated by comparing the expected utility of accepting the second-stage gamble with the utility of stopping the
gamble and settling with the outcome of the first-stage gamble. In both Known outcome cases of the first-stage gamble, the expected
utility compounds the possible future outcomes with the imparted Win X of the first-stage according to the gamble payoffs, texts (8),
(9)

= +EU X W U X U X( | ) .5 (2 ) .5 ( /2), ‘Win casew w (10)

or the incurred Loss X/2 of the first-stage

= +EU X L U X U X( | ) .5 ( /2) .5 ( ). ‘Loss casew l (11)

In the Unknown outcome case of the first-stage gamble however the uncertain payoff is shifted to zero in the evaluation of the utility
of the second-stage gamble

= +EU X U U X U X( | ) .5 ( ) .5 ( /2). ‘Unknown casew l (12)

The argument goes that the loss of acuity due to conflicting rationales in the Unknown first-stage outcome condition impedes the
evaluation of the present bankroll. Therefore in evaluating the utility difference between taking the second-stage gamble and
stopping, the uncertain payoff of the first-stage Unknown outcome gamble has its utility shifted to zero

= +EU X U U X U X( | ) 0 .5 ( ) .5 ( /2) 0. ‘Unknown casew l (13)

In the Known outcome cases of the first-stage gamble the utility difference that motivates taking the second-stage gamble for an
incurred Win X of the first-stage gamble is given by

= +EU X W U X U X U X U X( | ) ( ) .5 (2 ) .5 ( /2) ( ), ‘Win casew w w w (14)

and for an imparted Loss X/2 of the first-stage gamble by

= +EU X L U X U X U X U X( | ) ( /2) .5 ( /2) .5 ( ) ( /2). ‘Lose casel w l l (15)

Applying a power law for utility and the principle that ‘losses loom larger than gains’, Tversky and Shafir (1992) elegantly showed
that Prospect Theory predicts the utility to take the second-stage gamble in both Known outcome cases to be larger than in the
Unknown outcome case and hence the choices made by participants would violate the STP. Prospect Theory therefore provided a
theoretical framework and principle to understand the Disjunction Effect.

Our present observations of the choice probabilities in the two-stage gamble experiment evidence violations of a prediction
derived from the Law of Total Probability both in deflative and inflative sense. Clearly the framework of Prospect Theory cannot be
maintained to cover our present study. Moreover we show that the approach of Tversky and Shafir (1992) predicts an increasing
probability to take the second-stage gamble when the payoff X increases, (Appendix B). In fact, empirically we observe the opposite,
Fig. 4. In the present context it will therefore not be correct to express utility of money amount x by its commonly used power law
form xa, with <a 1. In Appendix B, we show that neither logarithmic utility nor exponential utility can remedy this payoff de-
pendence of the gamble probability. Lacking an effective alternative form of utility we did not pursue any further the Prospect
Theoretic approach of our study.

The inadequacy of prospect theory in covering our empirical results (and as we shall later see likewise for a static logistic
regression model) in part motivates the adoption of more sophisticated modeling frameworks, which derive from assumptions about
the dynamics of the decision process. As noted earlier, we developed two such models. In one approach we will apply elements from
quantum probability theory, since such an approach has proven effective in covering non-classical probability results in experimental
paradigms involving uncertainty, ordering and contextuality (Busemeyer, Pothos, Franco, & Trueblood, 2011; Busemeyer & Bruza,
2012; Pothos & Busemeyer, 2013; Wang, Busemeyer, Atmanspacher, & Pothos, 2013; Wang, Solloway, Shiffrin, & Busemeyer, 2014;
Broekaert, Aerts, & D’Hooghe, 2006; Aerts & Aerts, 1995; Khrennikov, 2010; Atmanspacher & Filk, 2013; Fuss & Navarro, 2013;
Asano, Khrennikov, Ohya, Tanaka, & Yamato, 2015; Kvam, Pleskac, Yu, & Busemeyer, 2015; Martínez-Martínez & Sánchez-Burillo,
2016; Broekaert, Basieva, Blasiak, & Pothos, 2016) In the second dynamic model we base the stochastic process on continuous-time
Markov chain theory. Both the quantum and Markov dynamic models can describe the change of a participant’s belief-action state
over time as they process the different stages of the gamble. Recall that, in order to assess the effectiveness of the process dynamical
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approaches a third model is included which will serve as a baseline comparison. This baseline model will mimic the context effects
and carry-over features of the two dynamic models, but will produce the gamble probabilities through a logistic function of a
heuristic utility function.

4.1. Shared features of the theoretical models

The cognitive process for decision making involves the perception of cues, judgement based on this information, correlation with
prior beliefs and rumination about consistency or change and its implications, to finally lead up to a decision. Making a decision is
therefore a dynamic process that involves the participant’s belief-action state. Both the Markov model and the quantum-like model
focus on the description of the evolving belief-action state. These models implement a principle of stochasticity in the cognitive
process of decision making, implying that responses of the participants are considered as probabilistic outcomes of the process. The
belief-action states will convey the support for specific choices in probabilistic terms. In both models the information embedded in the
cue –the description and previous outcome of the gamble– will inform the specific composition of the operator that drives the change
of the participant’s belief-action state. In Markov theory this core operator is the transition rate matrix or ‘intensity’ matrix and, in
quantum theory this operator is the Hamiltonian. In both modeling approaches these ‘generators of change’ implement the high-level
cognitive process of the decision making. As we have mentioned in Section 1 the Markov and quantum-like approach also differ
fundamentally, notwithstanding close formal resemblance (see Appendix A for a concise explanation). The essential difference be-
tween the two approaches in the present application is the respective probability theory to which the models abide, namely classical
and quantum probability theory (Busemeyer et al., 2009).

The comparative baseline model is a Logistic model which, as in latent trait modeling, relates the observed gamble probabilities to
heuristic utility, Eq. (16), and is parametrized to mimic the contextual features we implemented in the two dynamical decisions
models, Section 4.4.

The core features that are shared by the dynamical models and are mimicked by the baseline model are directly related to the
experimental two-stage gamble paradigm;

— The decision to take the second-stage gamble is driven by its utility which depends on the W, L and U first-stage outcome
condition and on the payoff X of the gamble, according to the heuristic linear expression

= + = +u X X u X X( ) · , ( ) ·W W W L L L0 1 0 1 (16)

where …X [.5, 1 4].
— The decision to take the second-stage gamble is influenced by the context of the outcome condition block.
— Within a gamble block the participant regains an initial ‘averaged’ belief-action state before each newly presented second-stage
gamble.
— The flow order of condition blocks will lead to a carry-over effect on the belief-action state (Hogarth & Einhorn, 1992).
We will first develop the Markov model as it is a more conventional approach to dynamical modeling in decision making
(Sonnenberg & Beck, 1993; Busemeyer et al., 2009). Its formal structure closely resembles the formalism of quantum mechanics
and as such it will be easier to understand particularities of the quantum-like model subsequently (see also Appendix A).

4.2. The Markov model

In a Markov model the probabilities for specific beliefs are represented in a vector which encompasses the appropriate features of
the paradigm at hand. In our paradigm the minimal representation requires crossing the Win or Lose condition of the first-stage
gamble with the Gamble or Stop decision of the second-stage gamble. The belief evaluations Win and Lose crossed with the action
potential for the decisions Gamble and Stop make up the full event space. The expression pWG is defined as the probability that the
participant’s belief is Win first stage and take gamble on second stage. Similarly defined expressions p p,WS LGand pLS and inter-
pretations apply. The probabilities of the full event space add up to unity:

+ + + =p p p p 1WG WS LG LS (17)

These four joint probabilities are the components of the belief-action state in the Markov model,

= p p p p( , , , )WG WS LG LS (18)

where for simplicity of notation, we write the column vector as a row vector with the transpose operation . The probability for the
participant to take the second-stage gamble is obtained by adding the two components ‘Gamble in the second-stage and Won-first-
stage belief’ and ‘Gamble in the second-stage and Lost-first-stage belief’

= +p g p p( ) .WG LG (19)

The belief-action state changes by a process based on the available information and is formally controlled by the transition rate
matrix K. The specific composition of this matrix causes the transfer of probability between the different belief state components. A
main source of transfer in the belief state is the gamble outcome information. Given the belief for ‘Win’ a re-distribution of ‘Gamble’
or ‘Stop’ components will result, and an analogous redistribution will occur given a belief for ‘Lose’. Within the subspace of Win this
re-distribution requires a transition rate sub matrix KW , and within the subspace for Lose a transition rate sub matrix KL
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= =K K
1

1 ,
1

1W
W

W L
L

L (20)

0, and where in each column all rows need to add up to zero for the conservation of probability. Depending on the magnitude of
, these transition rate matrices will either increase action potential for Gamble ( > 1) or increase action potential for Stop
( < 1).11

=K

1 0 0
1 0 0
0 0 1
0 0 1

W L

W

W

L

L

&

(22)

which acts separately on each of the subspaces since the upper left matrix quadrant only engages the two first W probability
components of a vector to produce the first two components of the output vector and similarly, the lower right matrix quadrant only
engages the last two L probability components of a vector to produce the two last components of the output. Under such a transition
matrix Win-related and Lose-related belief changes are fully independent.

The rate of transfer, parameter , between the vector components is made to depend on the utility, Eqs. (16) of the gamble by a
logistic function

= + = +s e s e·(1 ) , ·(1 )W
u X

L
u X( ) 1 ( ) 1W L (23)

where …X [.5, 1 4] is the parameter for the size of the payoff. The parameter s controls the sensitivity to the linear utility expression,
s 0.

The assumed cognitive process mixes the W and L beliefs under all first-stage gamble outcome conditions, but most extensively so
under Unknown first-stage outcome condition. In the latter case the uncertainty about being inflicted a loss or endowed a win
engenders an uncertainty about Gambling or Stopping, but also in the Known first-stage outcome gambles mixing of Win and Lose
beliefs will occur as a contextual effect. Therefore a mixing operator was implemented to cause an attention switching between Win
and Lose and concurrently switching the decision between Gambling and Stopping. In practice, this operator thus transfers action-
potential from ‘Gamble on Win’ (pGW ) to ‘Stop on Lose’ (pSL) and, from ‘Stop on Win’ (pSW ) to ‘Gamble on Lose’ (pGL). These two re-
distributions are respectively implemented by the two matrices

= +K
1 0 0 1

0 0 0 0
0 0 0 0
1 0 0 1

0 0 0 0
0 1 1 0
0 1 1 0
0 0 0 0

Mix

(24)

in which the first matrix causes a transfer between pWG and pLS and the second matrix a transfer between pWS and pLG. The magnitude
of the mixing process is monitored by the parameter .

The full transition rate matrix K, which implements the cognitive process for Win, Lose and Unknown condition is then composed
of all four matrices together

=K

1 0
1 0
0 1

0 1

W

W

L

L (25)

The time evolution driving matrix for the belief-action state under the transition rate K is the transition matrix T, which is a solution
of the Kolmogorov Forward equation (Busemeyer & Bruza, 2012):

=T t e( ) Kt (26)

The belief-action state at time t and under condition C of the initial stage gamble outcome is then given by

=t T t C( ) ( ) (0, ).C (27)

From the belief-action state at the moment of decision the probability for taking the second-stage gamble is then obtained by selecting
and adding the gamble components, Eq. (19). This can be operationally expressed using the selection matrix MGamble

11 For a two-dimensional Markov model with transition matrix, Eq. (20), the propagator T t( ), Eq. (26), can be easily calculated analytically

= +
+

+T t K e1( )
1

(1 ).t(1 )
(21)

One can verify that independent of the initial belief-action state the time-asymptotic state is + +( /(1 ), 1/(1 )) . Hence for > 1 the first
component (Gamble) dominates the second (Stop), and vice versa for < 1.The encompassing transition matrix for Win and Lose is given by
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=M
1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

Gamble

(28)

to produce the gamble probability

=p gamble X Cond M T C( , ) | ( /2) (0, )| ,gamble 1 (29)

where · 1 is shorthand notation for summing of the (absolute) values of the vector components. We have fixed the time of measurement to the
conventional choice =t /2, which is a standard procedure that is also applied in the quantum-like model as well (Busemeyer & Bruza, 2012). This
procedure –of setting a conventional time of measurement– is typically applied in a Markov dynamical approach in order to avoid independence of
the final belief-action state on the initial belief-action state. (One can easily check this independence from initial conditions at larger time scales, Eq.
(21).)

For each of the two periods for decision making in each flow order (K-to-U and U-to-K in Fig. 2) a separate evolved belief-action
state will be obtained. Each of these evolved states will differ due to their respective initial belief-action states. Therefore, even if the
transition rate matrix K is the same in both flow orders and for all outcome conditions, the theoretical gamble probabilities will be
different.

In the first period, the initial belief-action state on a Win and Lose condition of the first-stage outcome are formally given by the
vectors;

= =
2

,
2

, (1 )
2

, (1 )
2

, (1 )
2

, (1 )
2

,
2

,
2W L0, 0, (30)

where is a weight parameter, 0 1. Should = 1 then the states W0, and L0, are precisely allocated to their Win and Lose
components respectively, while at the same time for both states a uniform probability to Gamble or Stop is assumed. Due to the
context effect from the other gambles in the block, regulated by , these belief-action states respectively express that Win or Lose
information only partially determines the belief state in the block where the outcome is Known. This ambiguous belief-action state
reflects incompletely registered information notwithstanding unambiguous Win, or Lose, information in the gamble description. This
belief-action state occurs because of its embedding in the mixed context of the Win-outcome and Lose-outcome block. It implements
an effect of contextual anchoring which leads to compounding information of the present gamble outcome condition and outcome
conditions of previously taken gambles within the same block.

The initial belief-action state –in first period– on Unknown outcome of the first-stage gamble is

= 1
4

, 1
4

, 1
4

, 1
4U0, (31)

which expresses the belief-action state with uniformly weighted Win and Lose outcomes and is similarly indifferent to either Gamble
and Stop decisions due to lack of previously experienced gambles. The state is caused by the uncertainty due to missing information
on the first-stage outcome in the Unknown-outcome condition in first period.

In the second period similar effects of context are at play, but now due to the carry-over effect the initial state in the second
period will depend also on the participant’s history of gambling in the first period. The initial belief-action states for Win and Lose
first-stage outcome conditions will also contain residual belief support for the opposite condition. The magnitude of the context effect
will be changed by the carry-over effect

= =µ µ µ µ µ µ µ µ
2

,
2

, (1 )
2

, (1 )
2

, (1 )
2

, (1 )
2

,
2

,
2W L00, 00, (32)

where µ is a weight parameter, µ0 1. The weighting parameter µ in the second period differs from in first period.
Because of previous exposure to Known outcome conditioned first-stage gambles, the initial belief-action state on Unknown

conditioned first-stage gambles is not uniform anymore

= +( ) (1 ) ( ).U W L00, 0, 0, (33)

This is a belief-action state weighted by , 0 1, on Win and Lose states of the first period, which is caused by a carry-over effect
of the belief tendencies about the two possible outcomes of Win and Lose in first period.

The Markov model processes the belief-action state for each outcome condition, payoff and period by evolving from the ap-
propriate initial state. Each time a new second-stage gamble is proposed the participant will thus first regain a dedicated initial belief-
action state. In our experimental paradigm, the participant is assumed to do so, Eqs. (32) and (33), for each of the five payoff values
and for each of the three types of first-stage outcome condition W L U{ , , }. During the experiment each participant thus produces
fifteen final belief-action states which lead up to the appropriate gamble decisions according to the first-stage gamble outcome
condition, payoff size and flow order.

Parametrization. The Markov model requires four dynamical parameters for the utility expression of the second-stage gambles.
Two parameters - intercept and slope - for each condition of Win and Lose express the different motivational utility of the two
conditions, denoted by { , }W W0 1 and { , }L L0 1 . The effect of this utility difference on the decision is controlled by the sensitivity
parameter s{ } in the logistic form, Eqs. (23). The ‘coupled-switching’ dynamics that implements the attention switching from Win to
Lose and its reversal of related Gamble or Stop decision is controlled by the strength of the mixing parameter { }. The context effect on
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the belief-action state is implemented by the weight parameters µ{ , } on the Win and Lose states, for first and second period
respectively.

Finally the carry-over effect from first to second period on the U condition belief-action state is implemented by the weight
parameter { }.

The Markov model therefore relies on 9 parameters to cover the process dynamics and the initial beliefs in both flow orders, both
periods and all payoffs, amounting to providing theoretical values to 30 data points. In the Supplementary Materials section (SM 1)
the full temporal evolution description of the belief-action state is provided for the full sample of participants who passed the
attention test.

4.3. The quantum-like model

The quantum-like model applies a state vector to represent the belief-action state of the participant but instead of having
probability components like in the Markov approach, it has probability amplitude components. These components can be complex
valued and only lead to probabilities after taking the squared norm. In Appendix A, an elementary introduction to the application of
the quantum formalism in cognition is given, which also provides an exposition of its close resemblance to the Markov formalism.

The similarity with the Markov model allows a fairly straightforward formulation of the quantum-like model that runs parallel to
the previous section on the Markov model and only requires some clarification for a few distinct features.

The minimal representation of the gamble paradigm crosses the conditions for Win or Lose and the decision to Gamble or Stop.
The associated belief-action state will be denoted as

= ( , , , ) ,WG WS LG LS (34)

where the amplitude components represent the respective belief support for first-stage gamble outcome condition combined with
action-potential for different gamble decisions in the second-stage gamble. In the quantum-like model the probability for the par-
ticipant to take the second-stage gamble is obtained by adding the modulus squared of the components for ‘Gamble in the second-
stage and Won-first-stage belief’ and ‘Gamble in the second-stage and Lost-first-stage belief’

= +p g( ) ,WG LG
2 2 (35)

In general, since the belief-action states covers the full event space for the decisions Gamble and Stop and categories Win and Lose,
the corresponding probabilities add up to unity:

= + + +1 .WG LG WS LS
2 2 2 2 (36)

which is the normalization of the belief-action state vector. In the quantum-like model the belief-action state at the moment of
decision is realized through a measurement operation. In particular the outcome state for the decision to gamble is obtained through
the corresponding projector MGamble for the question ‘Take the second-stage gamble?’ and the projector MStop for ‘Stop the second-
stage gamble?’.12

= =M M
1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

,
0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1

.Gamble Stop

(37)

Notice that formally this projection matrix is identical to the selection matrix in the Markov model, Eq. (28). The modulus square of
the projected vector for the measurement ‘Take the second-stage gamble?’ then gives the gamble probability, Eq. (35).

In the quantum-like model the process of change of the belief-action state occurs at the level of the probability amplitudes. The
transforming effect of incoming information is controlled by the Hamiltonian operator H. Now the specific parameter positions in this
matrix will cause the transfer of probability amplitude between the different vector components of the belief-action state. In the
quantum-like case - due to the original relation of the Hamiltonian operator to the real-valued ‘energy’ of a system - the operator for
change has to be Hermitian. This means the component Hij for transferring probability amplitude from vector component with index j
to i has to be complex conjugated with respect to the component Hji, which transfers probability amplitude from component i to j. The
Hermiticity requirement is expressed as =H H†. In the two stage gamble paradigm the main factor of transfer in the belief-action
state depends on the condition of the outcome of the initial gamble. This information will re-distribute the Gamble or Stop com-
ponents in the Win subspace and also the Gamble or Stop component in the Lose subspace. The transformation within the subspace of
Win and subspace of Lose requires the two respective Hamiltonian sub matrices –satisfying the Hermitian condition;13

12 Note that a projector is any matrixM which is idempotent, =M M2 . The projection occurs on the span of its eigenvectors. See also (Appendix A)
for an elementary introduction to quantum modeling.

13 A two-dimensional quantum-like model with Hamiltonian matrix, Eq. (39), allows to analytically calculate the unitary propagator U t( ), Eq.
(44), Broekaert et al., 2016),

= + +
+

U t t i t H( ) cos( 1 ) sin( 1 )
1

2
2

2 (38)
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= =H H1
1 , 1

1W
W

W
L

L

L (39)

where . The encompassing Hamiltonian, with HW in the upper left matrix quadrant and with HL in the lower right quadrant, acts separately on
the subspaces for Win and Lose

=H

1 0 0
1 0 0

0 0 1
0 0 1

W L

W

W

L

L

&

(40)

This type of Hamiltonian would keep Win-related and Lose-related belief amplitudes fully independent.
Similarly as in the Markov model the magnitude of the transfer process will depend on the utility of the second-stage gamble. In

contrast to the driving parameters in the transition rate matrix of the Markov process, Eq. (23), in the Hamiltonian the driving
parameters can be positive or negative valued. More generally we could also parametrise the Hamiltonian with complex valued
parameters while assuring Hermiticity. To accommodate both signs, the parameters are modeled by a hyperbolic tangent (version of
the logistic) function of the linear utility expression:

= + = +( ) ( )s e s e·(2 1 1), ·(2 1 1)W
u X

L
u X( ) 1 ( ) 1W L (41)

with …X [.5, 1 4] and with scaling parameter s.
The assumed cognitive process –similar as to the Markov model– will mix the W and L beliefs under all first-stage gamble outcome

conditions. In the Unknown first-stage outcome condition the uncertainty about loss or win engenders an uncertainty about Gambling
or Stopping, but also in the Known first-stage outcome gambles mixing of Win and Lose beliefs will occur due to a contextual effect in
the block. The mixing operator will cause attention switching between Win and Lose beliefs to happen concurrently with switching
decisions for Gambling or Stopping. In practice the mixing Hamiltonian thus transfers action-potential from ‘Gamble on Win’ ( GW ) to
‘Stop on Lose’ ( SL) and, from ‘Stop on Win’ ( SW ) to ‘Gamble on Lose’ ( GL). The mixing dynamics corresponds to an explorative
attention switching between potential outcomes of the gamble in which a switch between Win and Lose belief always correlates with
a switch in the decision between to Gamble and to Stop in the second-stage gamble. These two correlated attention switching
processes are implemented by

= +H
0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0

0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0

Mix

(42)

in which the first matrix controls the transfer between WG and LS and the second matrix controls transfer between WS and LG, and
where monitors the magnitude of the mixing process.

The full Hamiltonian matrix H, which implements the cognitive process for Win, Lose and Unknown condition is then composed
of all four matrices together

=H

1 0
1 0

0 1
0 1

.

W

W

L

L (43)

The temporal change of the belief-action state is produced by the unitary evolution operator U, and is itself driven by Hamiltonian
operator H. The unitary operator satisfies the Schrödinger equation (Busemeyer & Bruza, 2012), in accordance with the dynamics of
quantum theory

=U t e( ) .iHt (44)

In the quantum-like model, the belief-action state at time t and under condition C of the initial stage gamble outcome is given by

=t U t C( ) ( ) (0, ).C (45)

The probability for taking the second-stage gamble under condition C is then obtained from the evolved belief-action state at the time
of measurement, by projecting with Mgamble for ‘taking the second-stage gamble’ and taking the modulus square of that outcome

=p gamble X Cond M U( , ) || ( /2) || .gamble C0,
2 (46)

The time of measurement is fixed to the conventional choice =t /2, corresponding to the choice of measurement time in the Markov
model, Eq. (29). Since the time-scale of the evolution, Eq. (45), for the cognitive realm is undefined and since no response time
observations are involved, a designated time of measurement can be fixed by convention. Notice too that both in the Markov model

(footnote continued)
In contrast to the Markov propagator, the oscillatory evolution of the quantum-like propagator requires a choice of measurement time that

remains within the system’s period.
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and in the quantum-like model the optimized parameter fitting will be adapted to this conventional time choice.
For each of the two periods for decision making in each flow order (K-to-U and U-to-K) a separate final belief-action state will be

obtained. These final states will differ due to their respective initial belief-action states. Since the quantum-like model uses vectors of
probability amplitudes - that require modulus squaring for probabilities - it is more transparent to write the 4-dimensional vectors as
a tensor product of two 2-dimensional vectors, the first one for category Win/Lose and the second one for decision Gamble/Stop (see
Supplementary Materials, Eq. (A2) for details).In the first period, the initial belief-action states on Win, respectively Lose, outcome
condition of the first-stage gamble are formally given by the vectors;14

= =1 , 1 ,W L0, 2

1
2

1
2

0,
2

1
2

1
2

where is a weight parameter, 0 1. Should = 1 then these respective states are precisely allocated to the Win and Lose
components, while the probability to Gamble or Stop for each of them is uniformly .5, as can easily be verified by squaring the entries
in the Gamble/Stop vector. In the block with Known outcome conditions the participant is exposed to both Win and Lose outcome
gambles. These two conditions create a mutual context for each gamble. The context effect will be present when < 1 and expresses
the idea that the information on the condition of the first-stage gamble is only partially integrated into the belief-action state.

The initial belief-action state –in first period– in the Unknown outcome case of the first-stage gamble is expressed as

=U0,

1
2

1
2

1
2

1
2 (47)

which reveals that the belief support for Win or Lose is uniform and also the action-potential for the Gamble or Stop decision is
indifferent due to lack of any prior experience with gambles. The state is caused by the uncertainty due to missing information on the
first-stage outcome in the Unknown-outcome condition.

In the second period the context effect is modified by the carry-over effect, hence the initial state now depends on the block’s
gamble condition as well as on the participant’s history of the first period. The initial belief-action states for Win and Lose conditions
will reflect residual belief support for the opposite condition modified by the carry-over from the previous period

= =
µ

µ
µ

µ1 , 1 .W L00, 2

1
2

1
2

00,
2

1
2

1
2 (48)

Since the initial belief-action state in the second period is influenced by the first block’s condition, in the Unknown condition the
belief-action state will be a superposition of the two states for the possible outcome conditions W and L of the Known outcome
conditioned gambles block. In particular, the quantum-formalism allows to weight both conditions equally but also to include a
relative complex phase between the two states for Win and Lose. The sign and amplitude of this phase allows for constructive or
destructive interference between the two states and thus brings about a subjective tendency towards either of the known outcome
beliefs

= + e( ( ) ( ))/ ,U W
i

L00, 0, 0, N (49)

where the normalization of the initial state requires = +2 4 1 cos2N . From the quantum-like perspective, the potential for
interference of belief-action states indicates a susceptibility for an amplifying or reducing relation between beliefs. In the event of
‘decoherence’ between these belief-action states –by their reduction to separate contexts– interference between them will be di-
minished or impeded. In the second period the probability for taking the second-stage gamble under either of conditions W L U{ , , } is
again obtained according to Eq. (46), by projecting the evolved belief-action state using Mgamble, the projector for ‘taking the second-
stage gamble’, and taking the modulus squared.

In the Supplementary Materials, (SM 2), a graph of the time development of the probability of the decision process for the second-
stage gamble shows the build up of the gamble probabilities emerging from each of the initial belief-action states.

Parametrization. The quantum-like model requires a parametrization that closely resembles the parametrization of the Markov
model. It requires the four dynamical parameters for the driving utility difference of the second-stage gamble for the two conditions
of Win and Lose, namely { , }W W0 1 and { , }L L0 1 . Also the effect of the utility difference on the decision is controlled by a sensitivity

14 The tensor product notation is used here to distinguish more easily the effect of the parameter on the belief support in the Win/Lose evaluation.
The two dimensional vector for Win/Lose appears as the left factor of the tensor product, the right factor is the two dimensional vector for Gamble/
Stop. Both subspace vectors can be blended into the four dimensional vector according to the usual rule

= ( ) ( )
ac
ad
bc
bd

a
b

c
d .
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parameter s{ }, however this parameter is now monitoring a hyperbolic tangent version of the logistic function, Eqs. (41). A similar
‘coupled-switching’ dynamics, controlled by a mixing parameter , is implemented for the attention switching from Win to Lose
correlated to switching between Gamble or Stop decision. The mixing Hamiltonian, Eq. (42), and the Markov intensity rate mixing,
Eq. (24), are structured differently due to Hermeticity instead of probability conservation requirements. In the gamble block with Win
and Lose outcome conditions the context effect is implemented by the weight parameters µ{ , } for first period and second period
respectively.

In the quantum-like model the carry-over effect from first to second period is implemented differently in the belief-action state for
the Unknown condition; instead of weighting two components the parameter { } now causes an interference between the two
components by implementing a relative complex phase.

The quantum model, just like the Markov model, relies on 9 parameters to cover the process dynamics and the initial belief-action
states in both flow orders, both periods and all payoffs amounting to theoretical values for 30 data points. The Supplementary
Materials section, (SM 2) provides more details on the temporal evolution in this model.

4.4. Logistic model

In order to compare the performance of the Markov and quantum-like process models, we devised a third model which aims to
heuristically reproduce the observed gamble probabilities. Similarly to the Markov and quantum-like models, this baseline model is
also made context and order sensitive but does not comprise a dynamic process for the belief-action state. Instead the baseline model
implements for each gamble condition ad hoc weightings of the two utilities for Win outcome and Lose outcome, Eqs. (16). The
gamble probability is then simply obtained from a logistic function of the heuristic utility

=
+

p gamble X Cond
e

( | , ) 1
1

,s U X Cond· ( , ) (50)

where the parameter s functions as a sensitivity parameter. In the first period, the utility of taking the second-stage gamble in the Win
and in the Lose condition will be set according to

= + = +U W u u U L u u( ) (1 ) , ( ) (1 ) ,KU KU W KU L KU KU W KU LK K K K (51)

where KUK is a weight parameter, 0 1KUK , expressing the participant’s inclination towards Win and Lose beliefs. Hence also in
the Logistic model we allow for partial adherence to the information in the outcome condition, but now this occurs on the level of
utility instead of belief probability amplitude. It can be argued that each presented gamble is embedded between Win-outcome and
Lose-outcome games, and this engenders residual utility-based support.

In the first period the utility of the Unknown outcome of a first-stage gamble is

= +U U U W U L( ) ( ) (1 ) ( )UK UK UK UK UKU U (52)

which expresses the resulting utility is a weighting of Win and Lose conditioned utility assessments, by the parameter UKU .
In the second period the context effect is now modified by the carry-over effect, which changes the weighting in the utility of the

Win and Lose outcome gambles

= + = +U W u u U L u u( ) (1 ) , ( ) (1 )UK UK W UK L UK UK W UK LK K K K (53)

in which the weight parameter now is UKK .
In the Unknown first-stage outcome gamble the utility weighting, KUU , is now changed because of the carry-over effect

= +U U U W U L( ) ( ) (1 ) ( )KU KU KU KU KUU U (54)

with 0 1KUU .
Parametrization. In contrast to the Markov and quantum-like models, the Logistic model does not rely on belief-action states but

rather on heuristically adapted utility functions. For each condition of Known or Unknown outcome, gamble payoff and period a
dedicated utility weighting drives a logistic function to render the probabilities for the second-stage gamble. The logistic model
requires the same four dynamical parameters for the driving utility difference as in the two dynamical models, namely { , }W W0 1 and
{ , }L L0 1 . The effect of the utility difference on the decision is controlled by a sensitivity parameter s{ } on a logistic function, Eq. (50).
In the logistic model the carry-over effect and the context effect are covered by four ad hoc weighting parameters,
{ }, , ,KU KU UK UKK U K U .

Like the Markov and the quantum-like model, the logistic model uses 9 parameters to produce the gamble probability for both
flow orders, both periods and all payoffs amounting to theoretical values for 30 data points.

5. Theoretical model performance

The three models have been parametrized for maximum likelihood statistical estimation on the data set. With three initial gamble
outcome conditions and the five variable payoff amounts the survey produces fifteen observed proportions for each block ordering.
For each model the objective function G for the parameter optimalisation is
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i
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i1

15

1

15

(55)

where NKU and NUK are the number of participants for each flow order, the oi and ei are the observed and expected probabilities, and
the sums cover the order condition ‘K-to-U’ and ‘U-to-K’ respectively. The G statistic expresses the lack of fit of the model predictions
with the observed values. The numerical optimization was executed in Matlab using a 39 grid for the initial parameter vectors
(Supplementary materials, SM 8).

The model performance is compared using the Bayesian Information Criterion. The BIC penalizes a model for complexity through
the number of free parameters. With = +BIC G p Nln , and the three models sharing the same number of parameters and data points
the BIC comparison reduces to a G value comparison.

5.1. Model comparison for risk attitude partitioning.

In the sample partitioning approach by risk attitude the observed gamble proportions are separated along ‘Less risk averse’ and
‘More risk averse’ attitude. The BIC comparison favours the quantum-like model as the best fit for the risk partitioned observations.
For the Logistic model G = 123.15, for the Markov model G = 123.73 and for the quantum-like model G = 42.19 (Table 3). In this
partitioning of participants both the Markov model and the Logistic model perform equally unsatisfactorily (Figs. 6 and 7).15 This is in
the line with expectation since both the Logistic and the Markov models are abiding by classical logical constraints on the prob-
abilities which prevent these models from providing inflative or deflative Disjunction Effects.

Table 3
G-statistic for lack of fit test for the Markov, quantum-like and Logistic model fitted to the partitioning of less and more risk averse participants.

‘Less risk averse’ ‘More risk averse’

group Markov quantum-like Logistic Markov quantum-like Logistic

all 70.96 18.96 62.15 52.77 23.23 61.00

Fig. 6. Observed and theoretical gamble probabilities for Less risk averse participants, for each of the three models Markov, Quantum and Logistic
for K-to-U (left) and U-to-K (right) flow orders. The payoff parametrised by X [1, 5]Level appears on the x-axis. Error bars represent the standard
error of the mean.

15 The more fine-grained partitioning using the played gamble patterns of each participant, Supplementary Materials Section SM 5, reveals the
Markov model performs better than the Logistic model only in four out of eight subgroups, namely for ‘More risk averse’ attitude in the ID-ranges
[-2,2], [0,0] and [-1,0] and ‘Less risk averse’ attitude in the ID-range [-2,2] (the ID-ranges are defined in Table S2). This analysis also shows that the
two subgroups with pronounced contributions to the violation of the Law of Total Probability are the ones best modeled by the quantum model
(namely for ‘More risk averse’ attitude in the ID-ranges ]-2,2] for UK and [-2,2[ for KU).

J.B. Broekaert, et al. Cognitive Psychology 117 (2020) 101262

21



6. Discussion

We defined the Disjunction Effect as a deflative violation of the Law of Total Probability, an effect which appears at a level of
aggregate probabilities. We pointed out that the Sure Thing Principle and its violation can contribute to the Disjunction Effect but it
does not significantly do so in the data of our present study on the two-stage gamble.

Our study revealed some new empirical findings, set forward some theoretical issues and provided model solutions in the two-
stage gamble paradigm. The two main empirical contributions concern ‘more risk averse’ participants. For these participants, we
found a reliable order effect in relation to the Disjunction Effect and the violation of the Law of Total Probability. Also a novel
inflation effect on gambling in the Unknown outcome condition was observed, analogous but opposite to the Disjunction Effect when
Unknown conditioned two-stage gambles precede the Known outcome conditioned ones. We found that ‘less risk averse’ participants
did not produce either of these effects.

Specifically our replication of the two-stage gamble experiment, with variation of the payoff amount and the blocking and
ordering of outcome conditions, showed a significant inflative violation of a prediction based on the Law of Total Probability for
‘More risk averse’ participants when the block of gambles with Unknown outcome conditions preceded the block of gambles with
Known outcome conditions. The classical deflative Disjunction Effect was observed with only marginal statistical significance for this
same group of ‘More risk averse’ participants when the grouped gambles with Known outcome conditions preceded the grouped
gambles with Unknown outcome conditions. The factors of gamble outcome condition and condition-block ordering showed a strong
cross-over interaction in the gamble probability for this ‘More risk averse’ group.

The group of ‘Less risk averse’ participants did not show any indication for the deflative Disjunction Effect in Known to Unknown
outcome order, and only a very weak indication for an inflative Disjunction Effect in Unknown to Known order.

We mention that in the conclusion of their paper Tversky and Shafir (1992) comment on an additional test (N = 87) in which the
Unknown outcome gamble case appears on the same page just after Win outcome and Lose outcome. This showed an ‘inflative’
violation of the Law of Total Probability (see also Kühberger et al. (2001), p. 256). Tversky and Shafir (1992) argued the concurrent
presentation allows participants to realize that they accept the repeated gamble in both Known outcome cases compelling them to
accept the repeated gamble in the Unknown outcome case. Their observation is at odds with our present results of a similar inflative
effect occuring when participants have not previously made decisions on Known previous outcome gambles.

In sum, the factors of previous gamble outcome condition and condition-block ordering showed a strong cross-over interaction in
the gamble probability of the ‘More risk averse’ group. In contrast to the Tversky and Shafir (1992) result our observation shows the
Disjunction Effect –and its inflative variant– is fully dependent on the order in which the outcome conditions are cued to the
participant and moreover only appears in ‘More risk averse’ participants. In none of the cases was Tversky and Shafir’s signature
gamble pattern for the Disjunction Effect –to play the gamble on Win outcome and on Lose outcome but to stop the gamble on
Unknown outcome– a significant contribution to the effect. Therefore the violation of the Sure Thing Principle –through the named
signature gamble pattern– did not contribute to the Disjunction Effect in our observations.

Tversky and Shafir argued their participants were inclined to take the second-stage gamble under Win condition for one reason,
e.g. ‘house money’, (Thaler & Johnson, 1992), and also under Lose condition for another reason, e.g. ‘make up for a loss ’, but would

Fig. 7. Observed and theoretical gamble probabilities for More risk averse participants, for each of the three models Markov, Quantum and Logistic
for K-to-U (left) and U-to-K (right) flow orders. The payoff parametrised by X [1, 5]Level appears on the x-axis. Error bars represent the standard
error of the mean.
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not take the second-stage gamble under Unknown previous outcome condition because they lost their acuity to process the differing
reasons. By contrast, in our study we clearly found that individual participant risk attitude and first-stage gamble outcome order
condition play a crucial role in the occurrence of the deflative and inflative violation of the Law of Total Probability. This shows prior
experience of Winning and Losing gambles can carry over into a Disjunction Effect, but lacking such prior experience on the contrary
can still lead to a violation of the Law of Total Probability.

In relation to the general sample characteristics it may be important to note that our participants were recruited among MTurk
workers, taking on this task in a short duration of time and for a small monetary compensation. The lowered probability to gamble on
Win and the relatively increased probability to gamble on Lose indicates these participants are conservative with respect to risk;
keeping for sure what was gained and risking to regain what was lost. The gamble strategies may thus well be influenced by socio-
cultural traits besides general risk attitude (Surov et al., 2019).

In Experiment 2 we observed the intriguing pattern of results that ‘more risk averse’ participants are less likely to accept the
second-stage gambles under Unknown conditions in the K to U order, than ‘less risk averse’ participants. A plausible (but currently
speculative) explanation is that in the U to K order, decisions about second-stage gambles are informed vaguely from first-stage
gambles, since there was no experience of gain or loss; participants were just told that a gamble was played, but the outcome of the
gamble was Unknown. By contrast, in the K to U order, participants would be offered a more direct experience of loss and gain. ‘More
risk averse’ participants are likely to be disproportionately influenced by the experience of loss than the experience of gain, in the K to
U order, compared to ‘less risk averse’ participants, depressing the relative tendency for accepting a second-stage gamble under
Unknown conditions in the K to U order for such participants.

From a theoretical point of view we presented two dynamical models for the decision process and provided one static logistic
utility model that mimicked relevant decision features in an ad hoc manner. More specifically, the underlying principles of the
decision process are (i) a utility drive which is condition dependent both on a gamble outcome and payoff size, (ii) a context influence
of the conditioned gamble block causing partial acceptance of the Win or Lose information, (iii) an assumption to regain an effective
initial belief-action state prior to each second-stage gamble, and (iv) a carry-over influence on the belief-action state due to the
ordered flow of condition blocks.

All these –cognitively very plausible– features can be incorporated in formally very similar ways in both the Markov and the quantum-
like model, but the latter was shown clearly superior in most participant groups. The Markov and the quantum-like models were formally
matched carefully, so that their difference essentially concerned the use of classical probability principles in the former and quantum ones
–like superposition of states belief-action states– in the latter. Our results clearly show that, at least in some cases, the alternative probabilistic
principles of quantum theory are required for a satisfactory explanation of decision behavior. The carry-over effect from first to second period
in the Unknown condition was implemented by using quantum superposition. This principle causes a belief and action potential interference
between the two Known outcome components, and reflects the ambiguous belief in the Unknown condition. It is this aspect of the quantum-
like approach that makes it an appropriate and efficient formalism to capture aspects of ‘irrationality’ in human decision making.
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Appendix A. Introduction to quantum modeling

To implement a quantum-like process in cognitive modeling an adaptation and simplification of the quantum mechanical
formalism is required (Busemeyer & Bruza, 2012; Khrennikov, 2010; Yearsley, 2017; Yearsley & Busemeyer, 2016). In practice the
dimensions and features of the model are set by the measured properties, the operational order of the experimental paradigm and
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theoretical presuppositions. A participant’s belief-action state is assumed to be probabilistic over its potential realisations - quite
similar to a Markov approach. In the quantum-like approach a participant’s response is a realisation of one of its potentials, in a
Markov approach there is no difference between the realised and inherent state. In a quantum-like model the belief-action state is
represented by a vector in a Hilbert space, which is a regular vector space - of any dimension - with an inner product and a
completeness property that assures limits will exist.

In most models this space will just be the finite dimensional complex valued space n, and its points = … …( )j n1 represent a
belief-action state for n properties. Typically this state will be written as a column vector , or complex-transposed as a row vector .

When different properties are combined in the belief-action state, it becomes more practical to describe each property by its own
vector and then combine these vectors using the tensor product. This will result in an encompassing vector in which each entry is the
joint probability amplitude of outcome values for the different features. In our model we have used this tensor decomposition to
emphasize the dynamics that deploys in each feature, separately from the ‘mixing’ dynamics which engages between different fea-
tures. For instance we take the action-potential for Gambling and Stopping as a vector for the decision, and the belief supporting a
Win or Lose state as a vector for the category.

= =,G S
G

S
W L

W

L
, ,

(A1)

The overall vector for this model becomes

= = =W L G S

W G

W S

L G

L S

WG

WS

LG

LS

, ,

(A2)

Notice that the tensor product is not commutative, and that the choice of order must be maintained for the propagators of this
encompassing belief-action state.

The response of a participant is the realisation of a binary outcome –‘gamble’ or ‘stop’– for a given property, which occurs by a
measurement enacted by a measurement operator, say M. The outcome state of the measurement by M –e.g. ‘Do you take the
gamble?’– is one of the eigenvectors of the operator M. The probability pj of a given outcome value j is obtained by projecting the
belief-action state | on the corresponding eigenvector of M and taking the norm squared. With Mj being this projector on the
eigenstate, the probability for outcome value j is thus given by:

= =p M M|| | || | |j j j
2 (A3)

This is the conventional Born’s rule for outcome probabilities in quantum mechanics.
Most importantly the belief-action state | of a participant changes over time by cognitive input through the cues in the ex-

perimental paradigm. In our present work we use the Schrödinger equation to capture the temporal evolution of the dynamic process
of cognition. This approach needs temporal constraining since by its nature a finite dimensional and energetically closed system will
be periodical. Alternatively open system dynamics with Lindblad evolution have been used (Asano, Ohya, Tanaka, Khrennikov, &
Basieva, 2011; Khrennikova, Haven, & Khrennikov, 2014; Martínez-Martínez, 2014; Martínez-Martínez & Sánchez-Burillo, 2016) but
require additional parametrization to fit the experimental paradigm.

In other ‘time-less’ quantum-like models that emphasize complementarity of features this evolution is abstracted and ad hoc
unitary matrices are used to propagate the belief-action state Aerts (2009). These models would render a change of belief-action state
by changing the base of the Hilbert space. These changes of basis correspond to changes of ‘cognitive perspective’ on the decision. For
example, to change the perspective from Win to Lose, a Win base { }eWj and Lose base { }eLk would be related according to:

= =e e e e e e e| | | | | |W j
k

Lk Lk W j
k

Lk W j Lk
(A4)

Then

= =U e e U U| , withjk Lk W j
† (A5)

In the Schrödinger approach a temporal parameter, ‘time’, orders the subsequent belief-action states, and evolves them according to
the Hamiltonian operator:

=i d
dt

t H t( ) ( ) (A6)

where we have replaced the partial differential towards time with its the total derivative. Also Planck’s constant, which is the unit of
action, was set equal to 1. This renders both the ‘energy’ and ‘time’ into dimensionless variables. This simplified Schrödinger equation
is solved easily

= =t U U e( ) (0), with .t t
iHt

Central to developing a quantum-like model is the construction of the Hamiltonian operator. Only the Hamiltonian components that
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express the transport of probability amplitude in line with cognitive theoretical principles need to be implemented. Formally the
Hamiltonian needs to fulfill the Hermitian property =H H† , a property related to its original function as the energy operator, with
real-valued energy eigenvalues.

Table A1.

Appendix B. Prospect Theory and formal Utility functions

The motivation for taking the second-stage gamble is quantified by the utility difference between taking the second-stage gamble
and stopping the gamble after the first-stage gamble, Eqs. (14), (15), (13). In the Prospect Theory approach by Tversky and Shafir
(1992) the utility function is given the formal expression of a power law. The utility expression xa, with <a 1, expresses the di-
minished utility of monetary value due to risk aversion with respect to gains. Similarly for the utility of losses x b, with <b 1,
expressing risk seeking, and with <b a, implementing the principle that losses loom larger than gains. Using this power law utility
expression, and anchoring the outcome of the first-stage gamble in Unknown condition to zero, Tversky and Shaffir provided a
theoretical argument for how a participant’s choices would produce a violation of the STP.

Besides the observation of both an inflative and deflative violation of the LTP, our study also shows systematic decreasing
tendencies to take the second-stage gamble when the payoff increases. In this section we show that this observed decreasing tendency
is not only at odds with the power law form of the utility function (Tversky & Shafir, 1992), but also with the logarithmic utility form
and the exponential utility form.

Power law Utility.
A gain x is evaluated with utility xa and a loss x at xb ( >x b a0, 0 1). The motivation to take the second-stage

gamble is expressed by the difference of Expected Utility and utility of stopping the gamble, Eqs. (14), (15), (13):

= +EU X W U X x x x( | ) ( ) .5(2 ) .5( /2) ,w
a a a (B1)

= +EU X L U X x x x( | ) ( ) .5 ( /2) .5 ( /2) ,l
a b b (B2)

=EU X U x x( | ) 0 .5 .5( /2) 0.a b (B3)

One can easily show that this approach predicts increasing probability to take the second-stage gamble when the payoff x increases
(loss x/2 decreases). Moreover this is the case for both Known previous outcome conditions W and L. The derivatives of the utility
differences in the W and L condition are

= +EU X W U X a x( ( | ) ( ))
2

(2 1) ,w
a

a
a

1

1
2

(B4)

= ++EU X L U X a x bx( ( | ) ( ))
2

1
2

1
2

.l
a

a
b

b

1

1
1

(B5)

Both expressions are non negative, which indicates increasing motivation to take the second-stage gamble with increasing payoff X.
According to the Prospect Theoretic approach (Tversky & Shafir, 1992) the probability to take the second-stage gamble should thus
increase with payoff, for the W and L condition.

For the U condition the derivative of the utility motivation is

=EU X U ax b
a

x( ( | ) 0) .5 1
2

a
b

b a1
(B6)

Table A1
Comparison of main model features in Markov and Quantum-like approach.

Markov Schrödinger

State vector
=

p1 = 1

Vector components probabilities, probability amplitudes,
Entity’s state (0 1 0)j ( )r e r e r ei j i j N i N1 1

“always at some single j” “at j only after pos. meas. for j”
Normalization =p 1j j = 1j j

2

Propagator =T t e( ) Kt =U t e( ) iHt

=T 1i ij =U U I†

Change operator Transition rate matrix K Hamiltonian H
=K K0, 0i ij ij , i j =H H†

Dynamics =t T t( ) ( ) (0) =t U t( ) ( ) (0)
Measurement for j component selector Mj for j subspace projector Mj for j
Probability for j M t( )j 1 M|| ||j 2
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in this case we find the probability to take the gamble will decrease for payoffs x larger than the constant a
b

2b
b a , which thus allows in

principle for a decreasing gamble probability.
Our observations of the gamble probabilities, Figs. 4 and 3, show a persistent trend of diminished playing for higher payoffs.16

Logarithmic utility.
A gain x is evaluated at logarithmic utility = +U X x b( ) log( ), with >b 0. The motivation to take the second-stage gamble in the

Win condition is evaluated by the difference of Expected Utility and utility of stopping the gamble, Eq. (14),

= + + + +EU X W U X x b x b x b( | ) ( ) .5 log(2 ) .5 log( /2 ) log( ).w (B8)

The first derivative towards payoff X is

=
+ + +

+EU X W U X b
x b x b x b

x b( ( | ) ( ))
4(2 )( /2 )( )

( ),w (B9)

which can produce in principle decreasing probabilities with increasing payoff for larger X.
For a loss <x 0 the logarithmic utility is evaluated at = +U x x c( ) log( ), with >c 0. For continuity of the utility function

over the domains of loss and gain we can set =b c. The motivation to take the second-stage gamble in the Lose condition is evaluated
by the difference of Expected Utility and utility of stopping the gamble, Eq. (14),

= + + + +
= + +
EU X L U X x b x b x b

x b x b
( ( | ) ( )) .5(log(| |/2 )) .5 ( log(| | )) ( log(| |/2 )),

1.5log(| |/2 ) .5log(| | ).
l

(B10)

The first derivative towards payoff X is

=
+

+
+

EU X L U X
x b x b

( ( | ) ( )) 1.5
2

.5 ,l (B11)

which is negative and thus shows the utility increases with x , and larger losses should lead to a higher probability to gamble. Thus
the logarithmic utility expression contradicts the observed gamble probabilities as well, Fig. 4.

Exponential utility.
A gain x is evaluated at exponential utility =U X e a( ) (1 )/ax , with >a 0. The motivation to take the second-stage gamble in

the Win condition is evaluated by the difference of Expected Utility and utility of stopping the gamble, Eq. (14),

= +EU X W U X e e e
a

( | ) ( ) .5 .5 .w
a x ax ax2 /2

(B12)

The first derivative towards payoff X is

= + = +EU X W U X e e e e e e( ( | ) ( )) .25 ( .25 1).w
a x ax ax ax ax ax2 /2 /2 (B13)

The latter expression is a third-degree polynomial in eax/2. It has three real-valued roots, one negative and two positive. The derivative
has therefore two zero-points. One can easily see from the sign of the bracketed expression, that the first derivative will be positive for
payoffs >x a2/ .

x 0 a1/ a2/

EU X W U X( ( | ) ( ))w + − +

Again we conclude larger payoffs will lead to a higher probability to gamble. The exponential utility expression thus also con-
tradicts the observed gamble probabilities, Fig. 4.

Appendix C. Supplementary material

Supplementary data associated with this article can be found, in the online version, at https://doi.org/10.1016/j.cogpsych.2019.
101262.

16 Our observations show that the probability to take the second-stage gamble on Lose is larger than on Win, Fig. 4. This feature is correctly
predicted by Prospect Theory of Kahneman and Tversky (1979), and by Reyna and Brainerd (1991) in their fuzzy-trace theory. One can easily see
that by Prospect Theory, Eqs. (B1) and (B2), for a given payoff x the gamble under L has more utility than under W:

= + <EU X W U X EU X L U X x x( ( | ) ( )) ( ( | ) ( )) (2 1) (.5 (.5) ) 0,w l
a a b b1 (B7)

since b a0 1 both summands are negative. Notice that the gamble probabilities in the original experiment of Tversky and Shafir (1992) do
not adhere to this ordering, Table 1.
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