Quantum Cognition and Decision Notes

 

Life is complex, it has both real and imaginary parts. (Anonymous)

 

Tutorial power points are based on material presented at Cognitive Science 2007 – 2016.

 

Research is based upon work supported by NSF SES-1560554 and AFOSR FA9550-15-1-0343

                                                        Stanislaw Ulam,  Richard Feynman, John Von Neumann

Content

Introduction Chapters

Published Papers

Collaborators

References

Links

Pictures

Meeting

Computer Programs

 

 

WHAT IS QUANTUM COGNITION,

AND HOW CAN IT BE USED TO MODEL BEHAVIOR IN COGNITIVE SCIENCE?


Cognitive scientists face some of the same types of problems that forced physicists to abandon classical dynamics. Their measurements are often incompatible, and the first measurement may disturb a second measurement. Thus only partial information about a complex system can be obtained at any point in time.  Combining partial information about a system into a coherent understanding of the entire system is the hallmark of quantum theory. Quantum theory provides a fundamentally different approach to logic, reasoning, and probabilistic inference. For example, quantum logic does not always follow the distributive axiom of Boolean logic; quantum probabilities do not always obey the Kolmogorov law of total probability; quantum reasoning does not always obey the principle of monotonic reasoning.  The tutorial papers listed below present the basic assumptions of classic versus quantum information processing theories. These basic assumptions are examined, side by side, in a parallel and elementary manner. Classic theory emerges as a possibly overly restrictive case of the more general quantum theory. The fundamental implications of these contrasting assumptions for modeling cognition are examined.

 

  

Book:

Busemeyer, J. R. & Bruza, P. D. (2012) Quantum Models of Cognition and Decision. Cambridge University Press

 

Introductory Chapters and Articles:

Yearsley, J. , & Busemeyer, J. R. (2016) Quantum Cognition and Decision Theories: A Tutorial

Journal of Mathematical Psychology, 74, 99-116.

 

Bruza, P. D., Wang, Z., & Busemeyer, J. R. (2015) Quantum cognition: A new theoretical approach to psychology. Trends in Cognitive Science, 19 (7), 383-393

 

Pothos, E. M., & Busemeyer, J. R. (2013). Can quantum probability provide a new direction for cognitive modeling?  Behavioral and Brain Sciences, 36, 255-274. (Target Article).

 

Busemeyer, J. R. (2012). Introduction to quantum probability for social and behavioral scientists. In Rudolph, L. (Ed.), Qualitative mathematics for the social sciences: Mathematical models for research on cultural dynamics. New York, NY: Routledge. (pp.  

 

Busemeyer, J. R., Kvam, P. D., & Pleskac, T. J. (2020) Comparison of Markov versus quantum dynamical

models of human decision making. Wiley Interdisciplinary Reviews: Cognitive Science.

 

Pothos,E.M., Busemeyer, J. R. (2022) Quantum Cognition. Annual Review of Psychology, 73, 749-778

 

Power Points :

 

From Prior Cognitive Science workshops

 Introduction to Tutorial

Quantum Probability Power Point

Quantum Dynamics Power Point

Quantum Compositionality

 

From Mathematical Psychology workshop


Computational tools for Quantum Modeling of Cognition

 

 

Articles published in Busemeyer Lab:

 

 

Pothos, E. M., & Busemeyer, J. R. (2009). A quantum probability model explanation for violations of rational decision theory. Proceedings of the Royal Society, B, 276 (1665), 2171-2178)

 

 

Busemeyer, J. R., Pothos, E., Franco, R., & Trueblood, J. S. (2011). A quantum theoretical explanation for probability judgment errors.  Psychological Review, 118, 193-218.  

 

Trueblood, J. S., & Busemeyer, J. R. (2011). A quantum probability account for order effects on inference. Cognitive Science, 35, 1518-1552 

 

Pothos, E. M., Busemeyer, J. R., & Trueblood, J. S. (2013). A quantum geometric model of similarity. Psychological Review, 120 (3), 679-696

 

Busemeyer, J. R., Wang, Z., & Shiffrin, R. S. (2015). Bayesian model comparison favors quantum over standard decision theory account of dynamic inconsistency. Decision, 2, 1-12.

 

Kvam, P. D., Pleskac, T. J., Yu, S., & Busemeyer, J. R. (2015) Interference Effects of Choice on Confidence. Proceedings of the National Academy of Science.

 

 

Pothos, E. M., Yearsley, J., Shiffrin, R. M. & Busemeyer, J. R. (2017). The rational status of quantum cognition. Journal of Experimental Psychology, 146(7), pp. 968-987. doi: 10.1037/xge0000312

 

Busemeyer, J. R. & Wang, Z. (2018) Hilbert space multidimensional theory.

         Psychological Review. 125 (4), 572-591

 

Busemeyer, J. R., Kvam, P. D., & Pleskac, T. J. (2019) Markov versus quantum dynamic models of belief change 

           during evidence monitoring. Scientific Reports, 9, 18025

 

Broekaert, J. B., Busemeyer, J. R., and Pothos, E. M. (2020) The Disjunction Effect in two-stage

            simulated gambles. An experimental study and comparison of a heuristic logistic, Markov and

            quantum-like model.  Cognitive Psychology. 117,  

 

Kvam, P, Busemeyer, J. R., & Pleskac, T. (2021) Temporal oscillations in preference strength provide evidence

             for an open system model of constructed preference. Scientific Reports, 11, 8169

 

Rajagopal, K., Zhang, Q., Balakrishnan, S. N., Fakhari, P., & Busemeyer, J. R. (2021). Quantum amplitude amplification for reinforcement learning. In K. G. Vamvoudakis (Ed) Handbook on Reinforcement Learning and Control.  Springer Studies in Systems, Decision and Control

 

 

 

For Other Publications in Quantum Cognition, see these links

 

Diederick Aerts

 

Harald Atmanspacher

 

Reinhard Blutner

 

Peter Bruza

 

Andrei Khrennikov

 

Lian Gabora

 

Catarina Moriera

 

Tim Pleskac

 

Emmanuel Pothos

 

Jennifer Trueblood

 

Andreas Wichert

 

James Yearsley

 

V. I. Yukalov

 

Computer Code for HSM Model

 

Hilbert Space Model Programs

 

 

References:

Busemeyer, J. R. & Bruza, P. D. (2012) Quantum models of cognition and decision. Cambridge.

Feynman, R. P., Leighton, R. B., & Sands, M. (1966) The Feynman Lectures on

 Physics: Volume III.  Reading MA: Addison Wesley.

Griffiths, R. B. (2003) Consistent quantum Theory. Cambridge.

Gudder, S. (1998) Quantum probability theory. Academic Press.

Hughes, R. I. G. (1989) The structure and interpretation of Quantum mechanics.

      Cambridge, MA: Harvard University Press.

Khrennikov, A. (2010) Ubiquitous quantum structure. Springer

Nielsen, M. A. & Chuang, I. L. (2000) Quantum computation and Quantum

      information. Cambridge, UK: Cambridge University Press.

Sakurai, J. J. (1994) Modern quantum mechanics. Pearson Education Inc.

Peres, A. (1995) Quantum theory: Concepts and methods. (Fundamental theories of

physics, Vol. 72).  DordRecht: Kluwer.

Susskind, L. and Friedman, A. (2015) Quantum mechanics: The theoretical minimum.  Basic Books

Isham, C. J. (1989) Lectures on quantum theory. World Scientific.

 

Links

 

Physics

 

http://plato.stanford.edu/entries/qt-consciousness/

 

http://arxiv.org/list/quant-ph/new

 

http://www.cs.caltech.edu/~westside/quantum-intro.html

 

http://wwwcdf.pd.infn.it/~loreti/science.html

 

https://www.youtube.com/playlist?list=PLQrxduI9Pds1fm91Dmn8x1lo-O_kpZGk8

 

 

Cognition and Decision

 

Quantum Decision Theory:

 http://www.le.ac.uk/ulsm/research/qdt/index.html.

 

Quantum cognition

http://www.quantum-cognition.de/

 

Brain and Cognition

  

http://www.nonlocal.com/hbar/qbrain.html

 

Hammeroff's web site on consciousness

 

 

Pictures

Quantum Workshop Filzbach Switzerland, 2012.  From left to right, Peter beim Graben, Jerome Busemeyer, Sandro Sozzo, Reinhard Blutner, Harald Atmanspacher (Organizer), Emmanuel Pothos.

 

Meetings

See Quantum Interaction web site

 http://www.quantuminteraction.org/