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The generally prescribed procedure for choosing a decision strategy from a decision tree employs a

backward induction analysis that entails 3 fundamental consistency principles: dynamic, consequential,

and strategic. The first requires the decision maker to follow through on plans to the end, the second

requires the decision maker to focus solely on future events and final consequences given the current state

of events, and the third is the conjunction of the first 2. Five experiments were reported to test these

principles using different subject populations, different procedures for estimating consistency, and

different factors for manipulating the attractiveness of the gamble at the final stage of the tree. The main

findings were that strategic and dynamic consistency principles were violated at rates that exceeded

choice inconsistency.

Most real-life decisions involve multiple stages, that is, a se-

quence of actions and events resulting in a series of consequences

over time. Strategic decisions in business, medical, military, and

foreign policy all require planning across multiple-stage future

scenarios. During the past 30 years, decision researchers have

learned a great deal about the basic principles of single-stage

decisions. We are beginning to understand the general conditions

under which rational principles such as transitivity or indepen-

dence break down using single-stage gambles (see Luce, 2000, for

a recent comprehensive review). However, very little is known

about the principles of multistage decision making, and the pur-

pose of this article is to test some basic assumptions about the way

human decision makers plan strategies across multiple stages.

Decision Trees

Multistage decisions are usually described in terms of a graph-

ical representation of the problem called a decision tree (cf.

Keeney & Raiffa, 1976; Raiffa, 1968; Von Winterfeldt & Ed-

wards, 1986). Figure 1 is a textbook example adapted from a

popular book on decision analysis (Beta & Vaupel, 1982, pp.

281-293).

In this example, a 40-year-old woman is considering the possi-

bility of bearing a child. Rectangular boxes, [ ], represent decision

nodes (the decision maker picks the next move); ellipses, (),
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represent event nodes (nature picks the next move), and the solid

dots, •, represent terminal nodes (final consequences). Branches,

—, connecting decision and event nodes form a path for a possible

future scenario. Each decision node defines a new stage in the

decision tree, and the maximum number of stages along a path

defines the decision or planning horizon.

This particular decision tree involves three interdependent de-

cision stages: Stage 1, whether or not to get pregnant; Stage 2,

whether or not to take an amniocentesis test if pregnant; and

Stage 3, whether or not to have an abortion if the test is positive

(indicating a birth defect). The nodes at the very end of the tree are

the final consequences. For example, the final consequence labeled

C6 represents a consequence such as "not aborting a birth defected

baby." A decision strategy is a plan that specifies each action that

will be taken at each stage as the woman travels down a path of the

tree from the root to a terminal node. For example, considering

Figure 1, one strategy would be to plan to get pregnant, take the

test, and abort if it's positive; another strategy would be to plan to

get pregnant, but not take the test.

Backward Induction

The generally prescribed procedure for choosing a decision

strategy from a decision tree is called backward induction analysis

(also known as dynamic programming or the "averaging out and

folding back" method; see Bertsekas, 1976; DeGroot, 1970;

Keeney & Raiffa, 1976; Raiffa, 1968; Von Winterfeldt & Ed-

wards, 1986). For over 30 years, medical, business, and manage-

ment schools have taught backward induction analysis to their

students as an unquestionable method for improving planning and

decision making (see, e.g., Clemen, 1996; Weinstein & Fineberg,

1980).

The analysis can be summarized briefly as follows. First, each

terminal node, •, is assigned a real number representing the utility

or worth of the final consequence to the decision maker. For

example, in Figure 2, consequence C6 is assigned a number sym-

bolized as «6 representing the utility of "not aborting a birth
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Abort

Test

Not Preg

Not Adopt

Figure 1. A decision tree involving three interdependent decision stages: Stage 1, whether or not to get
pregnant (preg); Stage 2, whether or not to take an amnioeentesis test if pregnant; and Stage 3, whether or not
to have an abortion if the test is positive (indicating a birth defect). Neg = negative.

defected baby." Second, each event node is assigned a real number
called the expected utility of the node, which represents the
weighted average utility of the event node. For example, the event
node (4) is assigned a utility denoted «(4) computed by multiply-
ing the utility ug by its probability ps, multiplying the utility Kg by
its probability p9, and summing the two products. Third, each
decision node, U, is assigned a real number computed by taking
the maximum value of the nodes that branch out of the decision
node. For example, the decision node [4] is assigned a utility «[4]
equal to the maximum of the utilities a(3) and u(4) corresponding
to event nodes (3) and (4).

Finally, the decision maker selects a strategy by working back-
ward. First plan the action at decision node [4]: If abortion is
planned, that is, u(4) > «(3), then cut off the bottom branch after

I . Assign utilities to end nodes •,

2. Apply MIX operator at chance nodes ( )

3. Apply MAX operator at decision nodes []

if«(3)>«(4)then
«[4]=MAX[u(3)X4)]=«<3)

if KI > «2 then

4. Follow Maximum Path Working Backwards

If «(3) > «(4) then move [4) to (3)
If u(2) > H(l) then move [3] to (2)
If ll[3] > H[2] then move [1] to [3]

Figure 1. Outline of backward induction analysis.

node [4] and plan to move from decision node [4] to event node
(4). Second, plan the action at decision node [3] using the tree
(rimmed by the first plan: If the test is taken, that is, u(2) > u(l),
then cut off the bottom branch after node [3] and plan to move
from [3] to (2), Finally, choose the action at node [1] using the tree
trimmed by the second plan: If the decision to get pregnant has
higher utility, then move from the root node [1] to node [3], Thus,
the key idea is to trim off unwanted branches starting at the end of
the tree and working backward to the beginning.

The above backward induction analysis entails three fundamen-
tal consistency principles: dynamic, consequential, and strategic
consistency (Hammond, 1988; Machina, 1989; Sarin & Wakker,
1998). Intuitively, dynamic consistency requires the decision
maker to follow through on plans to the end. This is required for
the working-backward planning strategy. Consequential consis-
tency requires the decision maker to focus solely on the future
events and final consequences given the current state. This is
required for the estimation of utilities at each node. Strategic
consistency results when both dynamic and consequential consis-
tencies are satisfied. More rigorous operational definitions used to
test these principles are provided below.

Empirical Tests of Consistency Principles

The principle of dynamic consistency requires that two different
types of choices produce consistent preferences. For the first
choice, suppose the woman is currently at the root, node [1], of the
decision tree, but she is planning ahead about what to do if she
reaches the decision at node [4], and suppose that she plans to
abort. For the second choice, suppose the same woman does get
pregnant, takes the amnioeentesis test, and the test is positive, so
that she has traveled down the tree and finally reaches the final
decision at node [4]. To be dynamically consistent, she must
follow through on her plan and cany out the abortion. If the
woman violates dynamic consistency by changing her mind after
taking the test and now decides not to abort regardless of the test
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outcome, then the cost and information of the test is wasted, and

the initial decision is no longer justified.

Although the decision tree in Figure 1 is a socially relevant

example, it is less than ideal for providing pristine and uncontro-

versial tests of dynamic consistency. For this purpose, we have

devised a more highly controlled decision task, illustrated in

Figure 3.

This example is a four-stage decision tree, but the number of

stages can be easily manipulated. At the root of the tree, located at

the lower left node [1], the decision maker must choose to either

stop the trial early and take a monetary payment, denoted t, or pay

a trivial price to work up the tree toward an attractive final stage.

If the up branch is chosen at node [1], then the decision maker

faces an event node (1), which may end the trial with no gain or

loss (with some known probability 1 - p) or continue the trial and

allow the decision maker to keep working up the tree (with known

probability p). If the up branch occurs at this event node, then the

decision maker once again has to decide whether to pay a trivial

price to continue working up the tree or stop the trial and receive

the payment t. This process continues until the decision maker

reaches the final stage [D], at which point he or she is faced with

a choice between a sure thing, s, or a gamble (G). If the gamble is

chosen, then there is a .50 probability of winning a monetary

reward, R, or suffering a punishment, P (perform a tedious and

boring arithmetic task that was designed to produce negative

emotional affect).

The decision illustrated in Figure 3 is an abstraction of real-life

decisions that entail working toward a higher goal under risks of

failure or temptations of quitting early. For example, this can be

Figure 3. Decision tree used in Experiments. The first decision at node

[1] is a choice between stopping the trial and taking a sure payment,

denoted t, versus paying a small amount to try to work up the tree toward

a final gamble. If the decision maker chooses to pay to go up on the first

decision, then he or she faces an uncertain event. With some known

probability, 1 - p, the event may go down, in which case the trial ends and

the decision maker receives no payment; or with probability p the event

may go up, in which case the decision maker faces another decision. If the

decision maker finally achieves the last stage [D], then be or she faces a

choice between a sure thing, denoted s, or a gamble. If the gamble is

chosen, then the decision maker can win a reward of money, denoted /?, or

suffer a punishment, denoted P.

considered an abstract representation of the plight of a graduate

student working toward a PhD degree or an athlete working toward

an Olympic medal.

Dynamic consistency is tested in this task by asking the decision

maker to make two choices: A planned choice is made while the

decision maker is still waiting at node [1] by asking him or her to

make & planned choice for the final node [£>]. This planned choice

is automatically carried out later by the computer if and when the

decision maker reaches the final stage. A final choice is made on

another trial that the decision maker actually travels up the tree to

node [D] and makes the decision directly facing node [D]. Dy-

namic consistency requires the same action to be taken on both the

planned and final choices. Note that the only difference between

the planned and final decisions is that the former is based on

planned series of events and the latter is based on the actual

realization of these same events.

Consequential consistency is a logically independent property,

which entails a different pair of choices: The first choice is an

isolated choice, in which node [D] is clipped off (by the computer)

and presented by itself as a single-stage gamble and the decision

maker is asked to make a choice between the sure thing versus the

gamble in isolation. The second choice is identical to the final

choice described above. Consequential consistency requires the

same action to be taken on both the isolated and final choices. Note

that the only difference between the final and isolated decisions is

that the former occurs after experiencing a series of events and the

latter omits this experience.

Strategic consistency is defined in terms of another pair of

choices: The first choice is identical to the planned choice de-

scribed above, whereas the second choice is identical to the iso-

lated choice described above. Strategic consistency requires the

same action to be taken on both the planned and isolated choices.

Note that dynamic consistency implies that the planned choice

equals the final choice and consequential consistency implies that

the final choice equals the isolated choice. Simultaneously, they

imply that the planned choice equals the isolated choice.

In sum, the decision-tree paradigm outlined in Figure 3 provides

tests of three different types of consistencies: dynamic, consequen-

tial, and strategic. A fourth type of consistency also needs to be

considered. Decision makers frequently change their preferences

even when they are presented with exactly the same choice on two

different occasions. For example, exactly the same planned choice

may be presented on two different trials. Choice consistency

requires the same action to be taken on both replications. Choice

consistency provides a baseline rate for comparisons with the other

three types of consistency rates.

The empirical status of the dynamic consistency principle is a

critical issue for decision theorists. Expected utility theory requires

dynamic, consequential, and strategic principles to be satisfied

(Hammond, 1988; Machina, 1989; Sarin & Wakker, 1998). Back-

ward induction may be used without consequential consistency,

but dynamic consistency is still required (Machina, 1989; Sarin &

Wakker, 1998). Dynamic consistency also provides the foundation

for working-backward search procedures that underlay planning

heuristics used in problem solving (see Nilsson, 1980). Backward

induction analysis is difficult to justify for individuals that inten-

tionally reject the dynamic consistency principle. In particular,

backward induction may be unsuitable for emotionally laden de-

cisions such as the one illustrated in Figure 1.



DECISION TREES 533

Despite the importance of these consistency principles for plan-

ning and decision-making theory, only a single experiment has

ever examined them empirically. A seminal study by Cubitt,

Starmer, and Sugden (1998) tested these principles using a

between-subjects design, in which each participant made a single

choice between a pair of gambles displayed in one of the three

forms—planned, final, or isolated (similar to that described

above). Although this design did not permit direct estimates of

consistency rates, it did permit indirect tests by comparing choice

probabilities produced by exactly the same pair of gambles across

the different choice displays. Cubitt et al. (1998) found a signifi-

cant difference between the choice probabilities produced by

planned versus final decisions and a marginally significant differ-

ence between choice probabilities produced by planned versus

isolated decisions, but they found no significant difference be-

tween the choice probabilities produced by the final versus isolated
decisions.

One purpose of this article is to generalize and extend the

landmark findings of Cubitt et al. (1998) by using a within-subject

design. The advantages of using a within-subject design are that it

provides both indirect tests based on choice probabilities, as well

as direct tests based on inconsistency rates (i.e., the probability that

participants change their preference across a test pair). A direct test

is performed by comparing the inconsistency rate of each principle

(dynamic, consequential, strategic) to the base rate of choice
inconsistency.

Valence Magnitude

Decision Node

Figure 4. Application of the goal-gradient hypothesis to the decision tree

illustrated in Figure 3. The horizontal axis indicates the decision nodes in

the tree, where node [1] is at the beginning of the tree and node [D] is the

final decision leading to potential gains or losses. The vertical axis repre-

sents the valence magnitude produced by the anticipated gains and losses.

The steeper curve represents the avoidance gradient produced by the

potential losses, and the flatter curve represents the approach gradient

produced by the potential gains. When the decision maker is making a plan

for node [£>] at node [1], he or she is many stages away from the future

consequences, and the approach gradient exceeds the avoidance gradient.

Later when the decision maker finally arrives at node [D] and is faced with

immediate consequences, the avoidance gradient exceeds the approach

gradient.

Empirical Tests of Decision Field Theory

A second purpose of this article is to test a set of theoretical

predictions derived from a psychological theory of decision mak-

ing called decision field theory (DPT; Busemeyer & Townsend,

1993; Townsend & Busemeyer, 1989). DFT is one of the few

psychologically based theories that make formal a priori predic-

tions concerning violations of the previously discussed consistency

principles. It is shown below that DFT predicts systematic viola-

tions of dynamic and strategic consistencies, but DFT predicts that

consequential consistency will be satisfied for this experimental
paradigm.

DFT is a formal application of earlier approach-avoidance the-

ories of conflict (Miller, 1944; Lewin, 1935) to decision-making

research. One of the main assumptions incorporated into DFT from

earlier approach-avoidance theories is the concept of the goal

gradient. Following Lewin's (1935) and Miller's (1944) original

conflict theories, attention to the final consequences of a decision

are assumed to increase as one gets closer to becoming committed

to these final consequences. Fjnpirical evidence supporting the

goal-gradient hypothesis has been found with human decision

makers using laboratory tasks with money (Losco & Epstein,

1977) as well as field studies of sport parachuting (Fenz & Epstein,

1967).

Figure 4 illustrates two goal gradients, and in this case, the

avoidance gradient decreases with distance more rapidly than the
approach gradient Applying this idea to decision trees, we assume

that the planned decision (made at node [1]) is psychologically

further away from commitment to the final consequences than the

final decision (made at node [D]). At the root of the tree, node [1],

when the decision maker is far removed from the final conse-

quences, the approach gradient is stronger than the avoidance, and

the attractive aspects of the gamble are preferable to the sure thing.

But at the final stage, when the decision maker is at node [D] and

directly facing the consequences, the avoidance gradient now

exceeds the approach, and the aversive aspects of the punishment

become more salient. This change in gradients causes the decision
maker to reverse his or her preference: initially planning to take the

gamble but later rejecting the gamble at the final stage, thus

violating the dynamic consistency principle.

Figure 4 illustrates the most common case where the slope of the

avoidance gradient is steeper than the slope of the approach

gradient (see Fenz & Epstein, 1967; Losco & Epstein, 1977).

However, for some individuals, the opposite may be true, and the

slope of the approach gradient may be steeper than the slope of the

avoidance gradient. In this alternative case, the change in gradients

causes the decision maker to reverse his or her preference in the

other direction: initially planning to reject the gamble but later

taking the gamble at the final stage, once again violating dynamic

consistency. The critical point is that hi either case, the goal-

gradient hypothesis predicts violations of dynamic consistency.

Furthermore, the goal-gradient hypothesis predicts that isolated

choices and final choices should be the same. This prediction

follows from the fact that the decision maker directly faces a

commitment to identical consequences under final and isolated

choice conditions. Thus, the goal-gradient hypothesis predicts no

violations of consequential consistency in this decision-tree
paradigm.

More formally, if we apply DFT to the simple-choice problem

shown in Figure 3, then probability of choosing the gamble over

the sure thing will be an increasing function of the mean valence

difference between the gamble versus the sure thing. For the

planned-choice condition, the mean valence difference can be
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written as follows (cf. Equations 6a and 6b from Busemeyer &

Townsend, 1993):

8p,.n = [(.5)gs(3)u(«) - (.5)g,(3)«GP)] - gB(3)«(S), (Plan)

where «(/0, u(P), and u(S) represent the subjective evaluations for

the reward, punishment, and certain consequence; and gB(3) and

gp(3) represent the weights for the approach and avoidance gra-

dients at a distance of three stages away from the final conse-

quences. For the final choice condition, the difference in mean

valence is written similarly:

Sri,,., = [(.5)gB(0)«(K) - (.5)gP(0)«(P)] - gMu(S), (Final)

where gK(0) and gffO) represent the weights for the approach and
avoidance gradients at zero distance from the final consequences.

For the isolated choice condition, the mean valence difference is

exactly the same as that for the final choice,

a,,,,.,*, = [(.5)gf(0)u(R) - (,5)gP(0)u(P)] - gs(0)"(S)

= Spinal- (Isolated)

This is because the distance is exactly the same (zero) for both the

isolated and the final choices. Therefore, DFT predicts systematic

violations in dynamic consistency (8plan ^ 8pjnll) and strategic

consistency (Sp,,,,, ^ S,̂ .,̂ ) but no systematic violations of

consequential consistency (Spinal = SfcoiaKd)- No(e mat mese Pre-
dictions hold regardless of specific parameters used for the goal

gradients, gR(D) and gP(D). In other words, these predictions

follow for both the cases — when the avoidance slope exceeds the

approach slope and when the approach slope exceeds the avoid-

ance slope.

More specific predictions are possible, contingent on individual

differences in the goal gradients. If the avoidance gradient exceeds

the approach gradient, then payoff values can be selected that
satisfy the inequality

[u(R) - ) > gs(0)/g,,(0). (1)

In this case, the probability of planning to choose the gamble will

exceed .50, but the probability of finally choosing the gamble will

fall below .50. If the approach gradient exceeds the avoidance

gradient, then payoff values can be selected that satisfy the reverse

inequality

. (2)g*(0)/gP(0) > [u(R) - 2u(S)Vu

In this case, the probability of planning to choose the gamble will
fall below .50, but the probability of finally choosing the gamble

will exceed .50. Finally, if the approach and avoidance gradients

are equal, so that gK(D) = g^D) = g(D), then choice probabilities

for planned and final choices will still differ systematically. This
follows from the assumption that g(3) < g(0) so that

|8Flna,. (3)

In other words, the mean valence difference must be smaller in

magnitude for planned compared with final choices. In this case, it

is difficult to discriminate between the gamble and sure thing

during planning, but the strength of preference changes at the final

choice, becoming clearer and stronger. Consequently, the proba-

bilities must be less extreme for planned compared with final

choices.
In summary, the experiments provide a priori and parameter free

tests of predictions derived from DFT. Choice probabilities ob-

tained from planned choices are predicted to differ systematically

from those obtained from final and isolated choices, and the latter

two are predicted to be equal. Furthermore, dynamic and strategic

inconsistency rates are predicted to exceed choice inconsistency

rates because of changes in goal gradients with distance between

planned and final or planned and isolated choices, respectively.

But consequential inconsistency rates are not expected to exceed

choice inconsistency rates because the isolated and final choices

used in the test of consequential consistency are both at the same

(zero) distance. These predictions do not depend on any specific

assumptions about the direction of differences in approach and

avoidance gradients.

More specific predictions can also be made contingent on the

direction of differences between approach and avoidance gradi-

ents. For the most common case where the avoidance gradient

exceeds the approach, choice probabilities will change from plan-

ning to take the gamble toward finally rejecting the gamble. For

the less common case where the approach gradient exceeds the

avoidance, choice probabilities will change from planning to reject

the gamble toward finally taking the gamble. If there are no

differences between approach and avoidance gradients, then the

choice probabilities are predicted to be less extreme for planned

compared with final choices.

Experiments

Overview

Five experiments are reported using a within-subject design and

the decision-tree task illustrated in Figure 3 to estimate dynamic,

consequential, strategic, and choice consistency measures. The

attractiveness of the gamble was parametrically manipulated to test

for reversals of preference between planned and final choices as

predicted by decision field theory. Across the five experiments, we

varied participant populations, procedures for testing consistency,

and factors for manipulating preferences.

First, the experiments used two different participant popula-

tions. Experiments la and Ib used participants from Purdue Uni-

versity composed of students that were 24 years old on average,

and the modal student was a male (65%), Asian (56%), graduate

(56%) student from engineering, a hard science, or management

(77%). Experiments 2a, 2b, and 3 used participants from Indiana

University composed of students that were 20 years old on aver-

age, and the modal student was a female (65%), Caucasian (86%),

undergraduate (100%) student from humanities and social sciences

(62%).

Second, the experiments used two different procedures for test-

ing consistency. Experiments la, 2a, and 3 used what we call a

between-trial test of consistency. For example, we tested dynamic

consistency by comparing a planned choice taken from an early

trial with a final choice taken from a later trial but using die same

decision problem for both trials. This test places a large number of

distracting problems in between the two test pairs, making it

difficult to recall previous choices for the same decision problem.

Experiments Ib and 2b used what we call a within-trial test of
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consistency. This procedure allowed a more stringent test of dy-

namic consistency by asking participants to make a plan at the

beginning of a tree and then make a final choice at the end of the

same tree within a single trial. Although this test has the drawback

of making it easier to recall a previous choice, it permits an

examination of changes in preference without interference from

other extraneous decision problems.

Third, the experiments manipulated the attractiveness of the

final gamble relative to the sure thing at node [D] in two different

ways. This manipulation was designed to test the predictions from

DFT that preferences for planned and final choices should reverse

at some intermediate level of gamble's attractiveness relative to

the sure thing. For Experiments 1 and 2, we manipulated the

punishment level and provided feedback after each trial. For Ex-

periment 3, we manipulated the sure-thing value rather than the

punishment level, used larger stakes for the final gamble, and

withheld all payoffs until the end of the experiment.

The results of each experiment are organized into two parts.

First, we report the proportion of trials that the gamble was chosen

at node [D] as a function of the experimental factor (punishment or

sure-thing value) and display type (planned, final, isolated). These

choice proportions provide an opportunity to replicate Cubitt et al.

(1998), as well as test predictions derived from decision field

theory.

Second, we report the comparisons between each type of con-

sistency rate (dynamic, consequential, strategic) with the baseline

choice consistency. Statistical tests of these comparisons are sum-

marized at the end of all three experiments to maximize statistical

power and minimize Type I error rates. These tests provide the first

attempt ever to directly test whether or not violations of each

consistency principle significantly exceed the rate expected by

choice consistency alone. The theoretical implications of the re-

sults for decision field theory and other alternative explanations

are examined in the General Discussion section.

Methods for Experiments la and Ib

Participants. There were 40 participants in Experiment la and 40

participants in Experiment Ib from Purdue University. All participants

were students who volunteered for payment contingent on their perfor-

mance. Each student participated in one session that lasted about 1.5 hr and

earned about $8.00 on average depending on their performance (as de-

scribed below).

Between-trial procedure. Each session began with detailed general

instructions presented by the computer and extensive practice with a

computer simulated spinner that was later used to represent the event nodes

in Figure 3. Although the probabilities associated with event nodes were

always displayed directly on each decision tree, we wanted to make sure

that participants understood that the events were randomly sampled. So the

computer gave them 30 practice trials with the spinner, with the spinner

probabilities fixed at .25, .50, and .75 for 10 trials each.

Following the general instructions and spinner practice, participants

received 11 practice problems with decision trees displayed in a form very

similar to that shown in Figure 3. This practice gave participants experi-

ence with various numbers of stages, spinner probabilities, rewards, and

punishments. During the practice problems, participants did not win any

money. However, it was important to give participants experience with the

punishments, and so they experienced punishments ranging from 0 to 60

arithmetic problems on any given practice trial, where each problem

required correctly adding a pair of two digit numbers.

For the between-trial test trials, participants then received 30 decision

trees, once again displayed on the computer in a format similar to that

shown in Figure 3. On these 30 trials, they actually won money or received

a punishment. We used 10 trials to present a five-stage tree with a planned

choice at node [1] (and the computer executed the plan if the participant

happened to reach node [D]). We used 10 trials to present a five-stage tree

that permitted the participant to make the final choice (if the participant

happened to reach node [D]). We used the remaining 10 trials to present a

single-stage tree with node ID] presented in isolation.

The following specific parameters were used on each five-stage tree: At

all decision nodes except the final stage, participants chose between paying

$.01 to move up and receiving a payment ( = $.04 to stop the trial; the

probability that the event node would move up was displayed on the top

branch from each event node as p = .84 (the probabili ty of four "up" events

was therefore .844 = .50). For all trees, the reward for the final gamble was

fixed at R = $1.20; the sure thing was fixed at s = $.50. Participants made

choices by clicking a branch on the displayed decision tree using a mouse,

and we used a spinner to display the outcomes of the event nodes on the

same screen as the decision tree. Thus, participants observed their choice,

the random events, and the final payments as they progressed up the

decision tree on each trial. If the trial ended with a punishment, then the

computer would present arithmetic problems and record the participant's

answer, and the next trial would not begin until the required number of

arithmetic problems was correctly completed.

The punishment was varied across trials, and on each trial one of the five

levels (P = 10, 20, 30, 40, 50 arithmetic problems) was presented. The

punishment level was crossed with the type of choice trial (planned, final,

isolated) to produce a 5 (punishment) X 3 (choice type) factorial design.

Each participant experienced two replications of each cell of this design to

produce the 30 experimental trials. The orders used to present these 30

trials are shown in the Appendix.

This procedure provided a between-trial consistency test using a pair of

separated trials for each punishment level, where each member of the pair

was separated by at least 15 trials (or about 30 min). For example, a

planned choice for a five-stage tree with a punishment level of 30 problems

was presented on trial 7; 19 trials later, the final choice for exactly the same

tree and punishment level was presented on trial 26, and this pair of trials

was used to form a test of dynamic consistency.

Within-trial procedure. The following changes were made for the

within-trial test of consistency. The first 11 trials were practice trials as

before, and 20 experimental trials were used. Ten of these experimental

trials were single-stage decisions where node [D] was presented in isola-

tion; five trials were plan-final choices concerning node [£>], and the

remaining five trials were plan-plan choices concerning node [D]. The

orders used to present these 20 experimental trials are also shown in the

Appendix.

The plan-final choice trials used a five-stage tree with a planned choice

at node [1], but the participant was allowed to change his or her mind if the

participant later happened to reach node [D]. (Contrast this with the

between-trial procedure, in which the computer automatically carried out

the plan on the trials that the computer requested a planned choice.) With

this procedure, participants made an initial plan, and after working up

through four stages, participants were asked to make another choice at the

final stage within the same trial. In this case, participants were informed

that the computer would randomly select either the planned choice or the

final choice with equal probability to determine the payoff at node [D]. We

used the pair of plan and final choices obtained within the same trial to

perform a within-trial test of dynamic consistency.

The plan-plan trials also used a five-stage tree but with a planned choice

requested twice at node [1] within the same trial. In between these two

planned choices, the participant waited and observed the random outcomes

of four spins of the spinner. After the second planned choice, the partici-

pant would move up the tree, and if the participant happened to reach the

final node, the computer would automatically carry out one of the planned
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Figure 5. Probability of choosing the gamble plotted as a function of the punishment level (Purdue and

Indiana-P experiments) or sure-thing value (Indiana-S experiment) separately for each of the type of choice

display. Indiana-P = Experiment 2 participants; Indiana-S = Experiment 3 participants.

choices. In this case, the participants were told that the computer would

randomly select either the first or the second planned choice with equal

probability to determine the payoff at node ID]. With this procedure, a

within-trial measure of choice consistency was obtained for planned

choices, with approximately the same time and events between the two

choices as was required to make the plan-final choice.

The within-trial procedure also provided between-trial tests of consis-

tency (although with fewer intervening trials between pairs than was

possible with the between-trials procedure). For example, an isolated

choice with a punishment level of 30 problems was presented on Trial 3,

then a plan-final choice with the same punishment level was presented on

Trial 8, and the isolated and final choice from this pair of trials formed a

between-trial test of consequential consistency.

Results for Experiments la and Ib

Proportion of gamble choices. For the Purdue population, the

gamble was preferred over the sure thing at node [D], but this

preference was less extreme for the planned choices compared

with isolated or final choices (latter two were almost identical).

The overall proportions of gamble choices were .62 (N = 1,000)

for planned, .66 (AT = 800) for isolated, and .67 (N = 255) for final

choices. The difference between the isolated- and final-choice

proportions was not statistically significant (Z = —0.29, p > .10).

The difference between the planned-choice proportion versus the

pooled average of the isolated- and final-choice proportions is

statistically significant (Z = -2.00, p < .05).

The left panel in Figure 5 shows the proportion of trials that the

gamble at node [D] was chosen as a function of the punishment

level, broken down by decision type for the Purdue population.
The results were collapsed across participants and collapsed across

the between- and within-trial experiments. (No significant differ-

ences resulted from this procedural change.)

As expected, this preference decreased as the punishment level

increased. More interesting, the rate of decrease was greater for

single as opposed to planned choices, with the final choices zig-

zagging in between.1 We performed statistical tests of the main

and interaction effects by using categorical data analysis models

(the standard option in the Statistical Analysis System [SAS]

procedure CATMOD was used). For the Purdue population, the

main effects of decision type, ̂ (2, N = 2,055) = 7.03, p < .05,

and punishment level, x*(4, N - 2,055) = 71.09, p < .01, and

their interaction, ^(8, N = 2,055) = 19.31, p < .05, were

significant.

Inconsistency rates. An inconsistency occurs whenever a par-

ticipant changes his or her preference across a pair of test trials.

Table 1 shows the inconsistency rates for Experiment la under the

Purdue column, collapsed across punishment levels and partici-

pants. All of the inconsistencies in Table 1 were based on the

between-trial procedure. The first column indicates the type of

comparison: P, stands for the first encounter of a particular

planned-choice tree, P2 stands for the second encounter of the

same planned-choice tree, Fl and F2 stand for the first and second

encounters of a particular final-choice tree, and /, and /2 stand for

the pair of encounters of a particular isolated-choice tree. Using

1 Each single-choice proportion in Figure 1 was based on 160 trials, each

planned choice was based on 200 trials, and each final choice was based on

approximately 50 trials. The reason for the reduced number of trials for the

final choices is that participants either chose to drop out or the computer

dropped them out when the downward branch was selected. The smaller

sample size for the final choices caused these results to be less reliable,

which explains why the curve fluctuates more for the final compared with

the single or planned choices in Figure 1.
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Table 1

Between-Trial Inconsistencies for Experiments la, 2a, and 3

Pair Type

Purdue Indiana-P Indiana-S

M SD M SD M SD

p, -
FI -
/, -
/, -
p

Pl-

p,
F-,

F,
/,

f'l

Choice
Choice
Choice
Consequential
Strategic
Dynamic

.23

.18

.26

.23

.33

.31

200
39

200
84

200
84

.31

.28

.32

.32

.44

.45

210
25

210
71

210
71

.29

.20

.29

.31

.40

.37

245
80

245
273
490
273

Note. Final choice frequencies are reduced by failures to reach node [D].
1 = isolated choice, P = planned choice, F = final choice. Indiana-P =
Experiment 2 participants; Indiana-S = Experiment 3 participants.

this notation, Pl - P2, Fl - F2, and /, - I2 symbolize choice

inconsistency pairs for planned, final, and isolated choices; 7, —

F2, Pj — 12, and P, — F2 symbolize consequential, strategic, and

dynamic inconsistency test pairs.

The dynamic inconsistency rate (.31) and the strategic inconsis-

tency rate (.33) were similar, and both were higher than the choice

inconsistency rates for either final (.18) or planned (.23) choices.

However, the consequential inconsistency rate (.23) fell below the

choice inconsistency rate for isolated choices (.26). (Note: Statis-

tical tests of inconsistency rates are presented in the summary

section after all three experiments.)

Table 2 shows the inconsistency rates for the within-trial exper-

iment displayed under the Purdue column hi a manner similar to

Table 1. The two rows at the top of Table 2 show the results for the

within-trial tests of dynamic inconsistency. The within-trial dy-

namic inconsistency rate for Purdue students only slightly ex-

ceeded the corresponding choice inconsistency rate.

The five rows of the bottom of Table 2 show the results for the

between-trial tests from this same experiment. Both dynamic and

strategic inconsistency rates exceeded the choice inconsistency

rates for the Purdue populations. The consequential inconsistency

rate was only slightly higher than the choice inconsistency rates. In

general, the between-trial test results in Table 2 for the Purdue

students replicate the pattern of results from the between-trial test

shown in Table 1 for the Purdue students.

Discussion of Experiments la and Ib

The Purdue students generally favored taking the gamble across

all of the conditions. However, the probabilities based on planned

choices were less extreme compared with the probabilities based

on either isolated or final choices, and the latter two differed by

very little. This pattern of results provides moderate indirect evi-

dence for systematic violations of dynamic and strategic consis-

tency principles, and no evidence for violations of the consequen-

tial consistency principle, in accord with Cubitt et al.'s (1998)

previous findings.

The present experiment also provides new direct evidence for

these two conclusions on the basis of the between-trial estimates of

consistency. These results indicated that the dynamic and strategic

inconsistency rates exceeded the choice inconsistency rate, but the

consequential inconsistency rate did not. However, the results

obtained from the within-trial test failed to show much evidence

for dynamic inconsistency over and above that expected by choice

inconsistency. The latter result is not too surprising given that it is

more difficult to observe any inconsistencies at all using the

within-trial test procedure. This is because it is easier for partici-

pants to recall their previous choice when plan and final choices

are made within the same trial. The between-trial test places a large

number of distracting problems in between the two test pairs,

making it more difficult to recall previous choices for the same

decision problem. Given the theoretical significance of the consis-

tency principles being tested, and the paucity of research on this

issue, and the unusual characteristics of the Purdue population, it

was imperative to replicate these findings with a new participant

population, experimenter, and laboratory setting.

Methods for Experiments 2a and 2b

There were 42 participants in Experiment 2a and 37 participants in

Experiment 2b from Indiana University. All participants were students who

volunteered for payment contingent on their performance. Each student

participated hi one session that lasted about 1.5 hr and earned about $8.00

on average depending on their performance (as described earlier). Exper-

iments Ib used the between-trial test procedure, and Experiment 2b used

the within-trial test procedure for testing consistency. The remaining de-

tails are the same as for Experiments la and Ib.

Results for Experiments 2a and 2b

Proportion of gamble choices. For the Indiana population,

participants preferred to Gamble at node [D] for planned decisions,

but they changed preferences and chose not to gamble on isolated

or final decisions (the latter two were almost identical). The overall

proportions of gamble choices were .56 (N = 975) for planned, .43

(N = 790) for isolated, and .48 (N = 193) for final choices. The

difference between the isolated- and final-choice proportions is not

statistically significant (Z = -1.25, p > .05). The difference

between the planned-choice proportion versus the pooled average

of the isolated- and final-choice proportions is statistically signif-

icant (Z = 5.32, p < .01).

The middle panel in Figure 5 shows the proportion of trials that

the gamble at node [D] was chosen as a function of the punishment

Table 2

Within- and Between-Trial Inconsistencies for Experiments Ib

and 2b

Purdue Indiana

Pah- Type M

Within

PI- P*
P,~F,

Between

/ ,-/2PI -p*
/ , -Fj

P,-I!
Pi-Pi

Choice
Dynamic

Choice
Choice
Consequential
Strategic
Dynamic

.22

.23

.28

.29

.32

.38

.35

200
96

200
200
190
800
192

.19

.27

.34

.29

.36

.43

.39

185
56

185
185
112
740
112

Note. Final choice frequencies are reduced by failures to reach node [£>].
For the between-trial comparisons, only the first of the two planned choices
from the plan-plan trials was included in the analyses. / = isolated choice,
P — planned choice, F = final choice.
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level, broken down by decision type for the Indiana students in

Experiments 2a and 2b. The results were collapsed across partic-
ipants, and collapsed across the between- and within-trial experi-

ments. (Once again, no significant differences resulted from this

procedural change.)

As expected, preference for the gamble decreased as the pun-

ishment level increased. Note, however, that at the intermediate

level (30) of punishment, planned choices still favored the gamble

(60%), but isolated and final choices both switched to favor the

sure thing (39% and 45%, respectively). We performed statistical

tests of the main and interaction effects using categorical data

analysis models (the standard option in the SAS procedure

CATMOD was used). For the Indiana population, the main effects

of decision type, x*(2, N = 1,958) = 25.03, p < .01, and punish-

ment level, )?(4, N = 1,958) = 29.71, p < .01, were significant,

but the interaction failed to reach significance, x2(8,

N = 1,958) = 12.31, p > .05.

Inconsistency rates. Table 1 also shows the inconsistency rates

for Experiment 2a under the Indiana-P column, collapsed across

punishment levels and participants. All of the inconsistencies in

Table 1 were based on the between-trial procedure, and the rows

are interpreted in the same way as they were defined earlier during

the description of the results for Experiment la.

Once again, the dynamic inconsistency rate (.45) and the stra-

tegic inconsistency rate (.44) were similar, and both were much

higher than the choice inconsistency rates for either final (.28) or

planned (.31) choices. Also, the consequential inconsistency rate

(.32) did not differ from the choice inconsistency rate (.32) for

isolated choices. (Note: Statistical tests are presented in the

summary.)

Table 2 shows the inconsistency rates for the within-trial exper-

iment under the Indiana-P column displayed in a manner similar to

Table 1. The two rows at the top of Table 2 show the results for the

within-trial tests of dynamic inconsistency. The within-trial dy-

namic inconsistency rate for Indiana exceeded the corresponding

choice inconsistency rate.

The last five rows at the bottom of Table 2 show the results for
the between-trial tests. Both the dynamic and the strategic incon-

sistency rates exceeded the choice inconsistency rates for die

Indiana population. The consequential inconsistency rate was only

slightly higher than the choice inconsistency rates. In general, the

between-trial test results in Table 2 for the Indiana participants

replicate the pattern of results from the between-trial test shown in

Table 1 for the Indiana participants.

Discussion of Experiments 2a and 2b

The results for the Indiana population indicate that probabilities

based on planned choices generally favored taking the gamble, but

probabilities based on either final or isolated choices generally

favored taking the sure thing. This reversal of preference provides

strong indirect evidence for systematic violations of dynamic and

strategic consistency principles and no evidence for violations of

the consequential consistency principle, in agreement with Cubitt
et al. (1998).

The present experiment provides even more direct evidence for

these two conclusions on the basis of the consistency estimates.

The between-trial estimates indicated that the dynamic and strate-

gic inconsistency rates exceeded the choice inconsistency rate, but

the consequential inconsistency rate did not. Unlike the first ex-

periment, the within-trial estimates obtained from the Indiana

population also produced greater dynamic inconsistency compared

with choice inconsistency. This result was not due to a higher

within-trial choice inconsistency rate for the Indiana students—in

fact the opposite was true. Instead, the higher rate of dynamic

inconsistency for Indiana compared with Purdue students may

reflect group differences in the attractiveness of the gamble.

Thus far it has been assumed that the observed dynamic incon-

sistencies were caused by the multiple stages of actions and events

that intercede between the plan and final decisions. Alternatively,

one might argue that the results are caused by the time required for

these events to take place, that is, temporal inconsistencies in

preferences.2 When making a planned decision, participants chose

between consequences that were delayed from reception for

about 1 min (waiting to get past five stages). However, when

making a final decision, participants chose between consequences

that were delayed only a few seconds (waiting to get past one

stage). Previous studies of intertemporal choice have shown that

preferences can change simply by delaying the delivery of conse-

quences (Hoch & Loewenstein, 1991; Thaler, 1981). However,

these intertemporal choice studies involved weeks of delay,

whereas our participants waited less than 1 min to experience the

consequence of the planned decision. Nevertheless, it is possible to

eliminate this explanation by delivering the consequences for

planned and final decisions after the same amount of time. This

was one purpose of the third experiment. Another purpose was to

replicate the tests of the three consistency principles using larger

stakes (ranging from $7 to $11) for the final gamble.

Method for Experiment 3

There were 49 participants that participated in Experiment 3 from

Indiana University. All participants were students who volunteered for

payment contingent on their performance. Each student participated in one

session that lasted about 1.5 hr and earned about $8.00 on average depend-

ing on their performance (as described earlier). Experiment 3 used the

between-trial test procedure, and all the remaining details are the same as

for Experiments la and 2a, except where noted below.

2 The dynamic-consistency principle needs to be distinguished from the

temporal-consistency principle, where the latter is defined in terms of the

following pair of choices: For the first choice, an individual is asked at time

t0 to choose between consequence A delivered at a future time tA > 10

versus consequence B delivered at a future time fB > r0; for the second

choice, the individual is asked again at time /„ to choose between conse-

quence A delivered at a later time (tA + d) versus consequence B at a later

time (IB + d), with d > 0. To be temporally consistent, the individual

should make the same choice for each pair. In other words, adding a

constant delay to the reception of both consequences should not change the

preference (cf. Hoch & Loewenstein, 1991). Temporal consistency requires

consistency across the passage of time intervals, but it does not require

consistency across actions and events, whereas dynamic consistency does

not require consistency across time intervals but does require consistent

plans across actions and events (compare Strotz, 1956 vs. Machina, 1989,

for alternative views). The relation of the present work to temporal con-

sistency was brought to our attention by discussions with George Loewen-

stein and Chris Hsee at the New Directions in Decision Making conference

sponsored by Northwestern University in 1997, organized by Doug Medin

and Max Bazerman.
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There were two primary changes in design and procedure for Experi-

ment 3. First, the payoffs for choices at node [D] of the decision tree shown

in Figure 3 were changed as follows. Rather than manipulating the pun-

ishment as in the previous experiments, this time we manipulated the

sure-thing value across five levels ($7, $8, $9, $10, $11). Furthermore, we

no longer used arithmetic problems for punishment. Instead, the gamble

was presented as a choice between two equally likely monetary outcomes

that depended on the value of the sure thing. Consider, for example, a trial

on which the sure thing was set equal tn $9. In this case, the top branch of

the gamble stated, "win more than $9" and the bottom branch stated, "win

less than $9." They were told that if the spinner happened to land on the up

branch of the gamble, then the computer would "randomly select a dollar

value larger than that shown for the sure thing," and if the spinner

happened to choose the down branch of the gamble, then the computer

would "randomly select a dollar value smaller than that shown for the sure

thing." Here the monetary outcomes were uncertain—for example, the

participant didn't know how much more or less than $9 they could earn.

The purpose of using uncertain outcomes was to make it difficult for

decisions to be based on simple numerical calculations like expected value.

Second, participants were not given any feedback at the end of each trial.

They were not informed about whether they won or lost, and they were not

shown any amounts earned. The final pay, they were told, would be

determined at the end of the experiment by averaging the payoffs from six

trials randomly sampled out of all of the regular trials of the experiment

(excluding practice trials). Unknown to the participants, the computer

randomly selected payoffs from a uniform distribution. On the trials that

the spinner landed on the up branch, the distribution was uniform over (S,

S + $5), and on the trials that the spinner landed on the down branch, the

distribution was uniform over (S — $5, S). Using this procedure, the

consequences for all three types of decisions (planned, isolated, final) were

delayed until the very end of the experiment with the same average time

interval for each type of decision.

Results for Experiment 3

Proportion of gamble choices. Similar to Experiment 2, par-

ticipants preferred to gamble at node [D] for planned decisions, but

they changed preferences and chose not to gamble on isolated

choices, or they were indifferent on final decisions. The overall

proportions of gamble choices were .61 (N = 490) for planned, .44

(TV = 490) for isolated, and .50 <W = 273) for final choices. The

difference between the isolated and the final choice proportions is

not statistically significant (Z = —1.59,/) > .05). The difference

between the planned choice proportion and the pooled average of

the isolated and final choice proportions is statistically significant

(Z = 5.13, p < .01).

The right panel in Figure 5 shows the proportion of trials that the

gamble at node [D] was chosen as a function of the sure-thing

value, broken down by decision type for the Indiana students in

Experiment 3. As expected, this preference decreased as the sure-

thing value increased. Note, however, that at the intermediate

value ($9) of the sure thing, planned choices still favored the

gamble (55%), but isolated and final choices both switched to

favor the sure thing (39% and 38%, respectively). Statistical tests

of the main and interaction effects were performed using categor-

ical data analysis models (the standard option in the SAS proce-

dure CATMOD was used). For Experiment 3, the main effects of

decision type, )f(2, N - 1,253) = 29.75, p < .01, and sure-thing

value, jf(4, N = 1,253) = 117.87, p < .01, were significant,

but the interaction failed to reach significance, X2(8,

N = 1,253) = 5.62, p > .05.

Inconsistency rates. Table 1 also shows the inconsistency rates

for Experiment 3 under the Indiana-S column, collapsed across

sure-thing values levels and participants. All of the inconsistencies

in Table 1 were based on the between-trial procedure, and the rows

are interpreted in the same way as they were defined in the earlier

description of the results for Experiments la and 2a.

Once again, the dynamic inconsistency rate (.37) and the stra-

tegic inconsistency rate (.40) were similar, and both were much

higher than the choice inconsistency rates for either final (.20) or

planned (.29) choices. Also like the previous results, the conse-

quential inconsistency rate (.31) differed very little from the choice

inconsistency rate for isolated choices (.29). (Note: Statistical tests

are presented in the summary.)

Discussion of Experiment 3

Despite major changes in design and procedure, the results for

Experiment 3 closely matched those found with Experiment 2.

First of all, the probabilities based on planned choices generally

favored taking the gamble, but probabilities based on either final or

isolated choices generally favored taking the sure thing. Again,

this reversal of preference provides strong indirect evidence for

systematic violations of dynamic and strategic consistency princi-
ples and no evidence for violations of the consequential consis-

tency principle, confirming the results of Cubitt et al. (1998).

The present experiment provides even more direct evidence for

these two conclusions on the basis of the between-trial consistency

estimates. The results clearly indicated that the dynamic and stra-

tegic inconsistency rates exceeded the choice inconsistency rate,

but the consequential inconsistency rate did not. Note that in the

present study, the consequences for planned and final decisions

were delivered after the same amount of time. Thus, the dynamic

inconsistencies found in this experiment cannot be explained by

temporal inconsistencies. Instead, plans based on imaged occur-

rence of events are sometimes difficult to follow after one actually

realizes these same events.

Summary Tests of Consistency Principles

A violation of dynamic consistency occurs if the dynamic in-

consistency rate is significantly greater than the choice inconsis-

tency rate, and a violation of consequential consistency occurs if

the consequential inconsistency rate is significantly greater than

the choice inconsistency rate. A similar definition holds for a

violation of strategic consistency.

We performed statistical tests for violations of each principle

using the between-trial consistency estimates. The latter were used

because more data is available from this method. Also, because of
the similarity of the pattern of results found between Table 1 and

Table 2 for the first two experiments, these proportions were

pooled. For example, the 84 observations from the last row for the

Purdue students in Table 1 were pooled with the 192 observations

from the last row of the Purdue students in Table 2. Likewise,

the 71 observations from the last row of the Indiana-P students in

Table 1 were pooled with the 112 observations from the last row

of the Indiana-P students in Table 2. This produced a single set of

between-trial consistency estimates for each of the three

experiments.
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Table 3

Z Statistics Used to Statistically Test for Violations of Each

Type of Consistency Principle

Pair Type Purdue Indiana-P Indiana-S

7, -F2

P,-/2

P, ~F2

Consequential
Strategic
Dynamic

.88
4.73
2.45

.44
5.01
2.73

1.13
3.62
2.68

Note. Critical z = 1.65 to reject H0 at a = .05, one tail. The Z statistic
tests the difference between two proportions: One is an estimate of the type
of inconsistency indicated by each row of the first column, and the second
is the choice inconsistency rate (see footnote 3). / = isolated choice, P —
planned choice, F = final choice. Indiana-P = Experiment 2 participants;
Indiana-S = Experiment 3 participants.

Table 3 provides statistical tests of differences between propor-

tions for each type of inconsistency (consequential, strategic, and

dynamic) versus choice inconsistency.3 The first two columns

indicate the type of inconsistency being tested (consequential,

strategic, dynamic) and the last three columns indicate the corre-

sponding Z statistic, separately for Experiments 1, 2, and 3. (Note

that the critical z = 1.64 for a one-tail test at a = .03). In sum, the

dynamic and strategic inconsistency rates are both significantly

greater than the choice inconsistency rates, but the consequential

inconsistency rate is not significantly different from the choice

inconsistency rate. This basic pattern held for all three experiments

when using the between-trial estimates of consistency.

We performed additional statistical tests to directly compare the

rates produced by consequential, strategic, and dynamic inconsis-

tency (pooled across all three experiments to maximize power and

minimize Type 1 errors). The difference between the strategic and

consequential inconsistency rates is statistically significant

(Z = 4.3, p < .01). The difference between the dynamic and

consequential inconsistency rates is also statistically significant

(Z = 2.29, p < .05). However, the difference between the strategic

and dynamic inconsistency rates is not statistically significant

(Z = 1.53,p> .05).

One last result concerns the direction of change that occurred

when participants were inconsistent across planned and final

choices. For this analysis, we estimated the probability of choosing

the gamble on the planned choice and then choosing the sure thing

on the final choice, given that an inconsistent choice was made.4

These analyses can be summarized as follows across all the tests

from each of the two populations. For the Purdue students, 48% of

the 48 inconsistent choices were based on switching from planning

to take the gamble to finally taking the sure thing. For the Indiana

students, 65% of the 147 inconsistent choices were based on

switching from planning to take the gamble to finally taking the

sure thing.

General Discussion

Complex strategic decisions involving multiple stages of actions

and events can be represented graphically as decision trees. The

generally prescribed procedure for choosing a strategy from a

decision tree is a backward induction analysis that entails three

fundamental consistency principles: dynamic, consequential, and

strategic. These principles require the decision maker to have

consistent preferences across different types of choices. One type

is a planned choice, where the decision maker makes a commit-

ment at the beginning of a tree about a decision occurring at the

final stage in the tree. Another type is a final choice, where the

decision maker actually travels down the tree and makes the

decision at the final stage. A third type is an isolated choice, where

the final stage is clipped off and the decision maker makes a choice

after omitting the earlier stages of the tree. Dynamic consistency

requires the same action to be taken on both the planned and final

choices, consequential consistency requires the same action to be

taken on both the isolated and final choices, and strategic consis-

tency requires the same action to be taken on both the planned and

isolated choices. We reported five experiments to test these prin-

ciples using different participant populations, different procedures

for estimating consistency, and different factors for manipulating

the attractiveness of the gamble relative to the sure thing at the

final stage of the tree.

Tests of Consistency Principles

The main conclusions from this work are that both dynamic and

strategic consistency principles are systematically violated, but

there is no evidence for systematic violations of consequential

consistency in this paradigm. These conclusions are based on two

lines of evidence.

The first line of evidence is indirect, being based on the prob-

ability of taking a gamble obtained under different choice displays

for the same gamble. In general, the probabilities produced by the

planned decision differed significantly from the probabilities pro-

duced by the final or isolated decisions, and the latter two were not

different. The Purdue participants generally preferred to take the

gamble, but the probability was less extreme for planned choices

compared with final or isolated choices. The Indiana participants

reversed their preferences—they tended to prefer to take the gam-

ble during planning, but they tended to prefer not to take the

gamble during the final or isolated decisions. The latter result was

3 Consequential inconsistency rates are estimated from isolated-final
pairs, and they were compared with a choice inconsistency estimate ob-
tained by pooling isolated-isolated pairs and final-final pairs. Strategic

inconsistency rates ate estimated from plan-isolated pairs, and they were
compared with a choice inconsistency estimate obtained by pooling plan-
plan pairs and isolated-isolated pairs. Dynamic inconsistency rates are

estimated from plan-final pairs, and they were compared with choice

inconsistency estimates obtained by pooling plan-plan pairs and final-final
pairs.

4 This statistic was based on the following theoretical rationale. The joint
probability of changing from a planned choice for the gamble to a final
choice for the sure thing is postulated to be a product of three theoretical
probabilities: pp = the probability of choosing the gamble on the planned
decision, m = the probability of not recalling the preference made for the

planned decision, and qt = the probability of choosing the sure thing on the
final decision. The joint probability of changing from a planned choice for
the sure thing to a final choice for the gamble is also postulated to be a

product of three theoretical probabilities: qp = the probability of choosing
the sure thing on the planned decision, m = the probability of not recalling
the preference made for the planned decision, and pf = the probability of
choosing the gamble on the final decision. According to these assumptions,

we compute prmqfl(pp nuff + qpmpj). If there are no changes in the basic
choice probabilities from planned to final decisions, then pp = pf = p and
qp = qf = q. In this case, this ratio should equal .50.
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particularly strong for intermediate levels of punishment in Exper-

iment 2 or intermediate levels of sure-thing value in Experiment 3

(see Figure 5). This indirect evidence based on choice probabilities

is consistent with previous results reported by Cubitt et al. (1998).

The second line of evidence is more direct, being based on

comparisons of dynamic, consequential, strategic, and choice in-

consistency rates. We used two different procedures to estimate

these consistency rates. The between-trial test compared planned

and final choices that were separated by a large number of trials,

making it difficult to base the final choice on memory recall of the

planned choice. For all five experiments, this procedure produced

8% and 10% higher rates of dynamic and strategic inconsistencies,

respectively, compared with choice inconsistency, and only a 1%

higher rate of consequential inconsistency compared with choice

inconsistency. This is the first study to demonstrate that dynamic

and strategic inconsistencies occur at significantly higher rates

than what one could expect from choice inconsistency alone (see
Table 3).

We also used a within-trial test procedure to estimate and

compare dynamic and choice inconsistency rates. This procedure

compared planned and final choices made within the same choice

trial, making it easy to base the final choice on memory recall of

the planned choice. In fact, the choice inconsistency rate dropped

from about 30% to 20% from the between- to the within-test

procedures. As expected, this procedure also weakened the treat-

ment effect—the dynamic inconsistency rate was only 5% higher

than the choice inconsistency rate for the within-trial test.

Limitations and Extensions

The concepts of dynamic and consequential consistency exam-

ined in this research were defined in a highly specific manner. This

definition was necessary to provide rigorous tests of the axiomatic

foundations for backward induction analysis (cf. Machina, 1989;

Sarin & Wakker, 1998). It is important, however, to clearly dis-

tinguish these highly constrained definitions from the more general

and popular use of these terms (cf. Shafir & Tversky, 1992).

Intuitively, dynamic consistency requires decision makers to

follow through on their plans to the end. However, this require-

ment does not imply that decision makers should ignore newly

acquired information. For example, suppose a participant initially

makes a plan based on instructions that the probability of winning

the final gamble is .50. However, later, when she actually reaches

the final stage, she learns from another reliable source that the

probability of winning the final gamble is actually below .25. In

this case, the participant may change her plans, but this reflects

learning and not dynamic inconsistency. An antecedent condition

for a test of dynamic consistency requires the conditional proba-

bilities, given the entailed events, to remain the same for planned

and final decisions.

Intuitively, consequential consistency requires decision makers

to focus solely on final consequences and future events. However,

this requirement does not imply that decision makers should ignore

all past consequences. For example, suppose an individual would

accept an offer to buy a lottery ticket for a trip to Rome when it is

presented in isolation. However, now suppose that this individual
initially purchased a lottery ticket for Paris and won, and afterward

he was offered the lottery ticket for Rome. In this case, the

individual may change his mind, but this change reflects consump-

tion and not consequential inconsistency. An antecedent condition

for a test of consequential consistency requires the final conse-

quences to remain the same for the isolated and final decisions.

The conclusions concerning the consistency principles are also

initially limited to the paradigm illustrated in Figure 3, which is an

abstraction of real-life decisions that entail working toward a
higher goal under risks of failure or temptations of quitting early.

These principles also could be tested with more complex trees such

as that shown in Figure 1, and such tests are an important direction
for future research.

Nevertheless, the decision problem in Figure 3 is a generaliza-

tion of the standard single-stage gambling decision that is so

popular among decision researchers (see Goldstein & Weber,

1995). Furthermore, there is evidence that the present results hold

more broadly, and so these conclusions can be extended to a wider

range of situations.

First, the present experiments displayed the choice problems

graphically as decision trees, and one might question whether or

not these results generalize to more common presentations of

decision problems. To answer this question, we have recently

succeeded in extending our dynamic inconsistency findings to

text-based presentations of multistage decision problems (Barkan

& Busemeyer, 1999). Furthermore, the violations of dynamic

consistency reported by Cubitt et al. (1998) were based on purely

text-based presentations.

Second, the present experiments used payoffs ranging from $1

to $9, and one might wonder whether or not the same results occur

with larger sums. Cubitt et al. (1998) used larger amounts (up to

$40) and obtained the same pattern of results. Thus, the findings

generalize across the range of payoffs that are normally used in

laboratory experiments.

Third, violations of dynamic consistency have now been ob-

tained with three different participant populations. The Purdue

students were primarily older male Asian engineering and man-

agement students; the Indiana students were primarily younger

female liberal arts students. Furthermore, Cubitt et al.'s (1998)

participants were British from a variety of academic backgrounds.

Finally, the previous experiments used highly artificial gambles

to test dynamic consistency, and it is reasonable to ask if these

results are applicable to real-life situations as exemplified by
Figure 1. Some preliminary evidence from a medical decision-

making study by Christensen-Szalanski (1984) indicates that dy-

namic inconsistency occurs in the field as well as the laboratory.

Relation to Other Findings

A phenomenon called the disjunction effect (Tversky & Shafir,

1992) has a close relation to dynamic consistency. Tversky and

Shafir asked three groups of participants to imagine that they just

finished playing a gamble, and they had to decide whether or not

to play the same gamble again. One group was asked to imagine

they lost the first gamble; a second group was asked to imagine

they won the first gamble, and a third group was asked to imagine

that they did not know the outcome of the first gamble. The results

indicated that the first two groups bom preferred playing the

second gamble, but the third group preferred not to play the second

gamble.
The purpose of Tversky and Shafir's (1992) study was to test a

key axiom of subjective expected utility meory (Savage, 1954). In
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our terminology, the first group made a planned decision condi-

tioned on winning, the second made a plan conditioned on losing,

and the third made an unconditional plan. According to the axiom,

if the decision maker plans to play the second gamble independent

of the first play's assumed outcome, then the decision maker

should plan to play the second gamble even when the first outcome

is unknown. Tversky and Shafir's (1992) results violated this

axiom.

If the above results could be reproduced using outcomes that

were actually experienced rather than imagined during the first

play, then the results of this modified experiment could be rein-

terpreted as evidence for violations of dynamic consistency. Re-

cently, Barkan and Busemeyer (1999) carried out this experiment

and, as expected, found systematic violations of dynamic

consistency.

Another phenomenon called the pseudo-certainty effect (Tver-

sky & Kahneman, 1981) has a direct bearing on the issue of

strategic consistency. Tversky and Kahneman (1981) gave one

group of participants a simple choice between a gamble and a sure

thing, corresponding to an isolated type of decision. A second

group was faced with a two-stage decision (a two-stage version of

Figure 1) and was asked to make a planned choice about the

second stage before knowing the outcome of the first stage. A third

group was presented a single-stage decision, but with payoff

probabilities equated to those obtained from the two-stage display.

Tversky and Kahneman found no difference between the first and

second groups (both preferred the sure thing) but a large difference

between the second and third groups (the latter preferred the

gamble).

Note that the comparison between the first (isolated decision)

and second (planned decision) groups provides an indirect test of

strategic consistency. The lack of difference between these two

groups indicates that the strategic consistency principle was

obeyed in the Tversky and Kahneman (1981) study. The compar-

ison of the second group with the last group constitutes a test of the

reduction principle, which is a key axiom of expected utility theory

(cf. Machina, 1989).

The findings regarding strategic consistency reported by Tver-

sky and Kahneman (1981) seem to conflict with the violations of

strategic consistency found in the present research. One explana-

tion may be that the present study used a larger number of stages

(five) than used by Tversky and Kahneman (1981). However,

Cubitt et al. (1998) also used two-stage problems and methods

very similar to Tversky and Kahneman (1981). However, they

found that 38% (N = 50) of the participants preferred the gamble

in the isolated choice, and 57% (N = 51) preferred the gamble in

the planned decision, that is, violations of strategic inconsistency.

Further research is needed to clarify this apparent discrepancy.

One last phenomenon, called the sunk cost effect (Thaler, 1980),

seems to have implications for the consequential consistency prin-

ciple. As an example, Arkes and Blumer (1985) gave one group of

participants a hypothetical choice between investing an additional

million dollars to complete a project that already cost them 9

million or to discontinue investing in the project. A second group

was asked whether or not they would be willing to step into the

middle and invest 1 million to complete the same project (but

without any prior investment in the project). Arkes and Blumer

(1985) found that the first group preferred to invest the extra

million but the second did not. If we treat the first group as

providing the final choice in a two-stage decision and the second

group as providing the isolated choice, then the final and isolated

choices are quite different.

A closer inspection of the sunk cost effect reveals that it does

not necessarily imply a violation of the consequential consistency

principle because the consequential consistency test requires iden-

tical payoffs for the final and isolated choices. In the Arkes and

Blumer (1985) study, me final choice faced by the first group is to

continue the project (receiving an uncertain return from the project

minus the 10 million cost of the investment) versus discontinue the

project (losing the initial 9 million invested). The isolated choice

faced by the second group is to step into the middle of the project

(receiving an uncertain return from the project minus the 1 million

cost of the investment) versus not step into it (lose nothing). Note

that the consequences of the final choice for the first group (e.g.,

uncertain return and a cost of 10 million) are not the same as the

consequences faced by the participants in the second group (un-

certain return and a cost of 1 million).5 Therefore, the two groups

used in the sunk cost paradigm do not satisfy the requirements for

a test of consequential consistency. In sum, the sunk cost effect

does not constitute a violation of the consequential consistency

principle required for backward induction analysis. More gener-

ally, consequential consistency does not imply that the decision

maker has to ignore past consequences because the final outcomes

must include all of the consequences that occur along a path of a

decision tree.

Tests ofDFT

The pattern of inconsistency rates provides a strong a priori test

of DFT. Recall that planned decisions are made several stages

away from the final consequences, but final and isolated decisions

are both made immediately facing the final consequences. Accord-

ingly, DFT predicts that dynamic and strategic inconsistency rates

should exceed consequential and choice inconsistency rates, and

the latter two should not differ.6 Furthermore, this prediction holds

regardless of whether or not the approach and avoidance gradients

are assumed to differ. The results of all three experiments, sum-

marized in Table 3, clearly support this general prediction of the

theory.

5 The difference between the utility of uncertain return and a cost of 10

million and the utility of a cost of 9 million is not necessarily ordered the

same as the difference between the utility of uncertain return and a cost of 1

million and the utility of nothing. The order is the same under the special

assumption that the utility function is linear. For example. Beta and

Vaupel's (1982, pp. 229-233) argument to ignore sunk costs is based on

expected value theory (i.e., a linear utility function). However, expected

utility theory in particular and backward induction analysis in general

allows the utility function to be nonlinear. In general, sunk cost effects do

not imply violations of consequential consistency because the test of

consequential consistency requires identical payoffs for the final and

isolated choices.
6 Although it is true that DFT does not predict any violations of conse-

quential consistency as defined in the present experimental paradigm, this

fact does not imply that DFT cannot explain various types of sunk costs

effects reported in the literature, and a comprehensive explanation of all of

the sunk costs findings goes beyond the purpose of this article. As noted

earlier, sunk cost experiments do not satisfy the requirements for the test of

consequential consistency (see footnote 5).
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More specific predictions can be derived from DFT, contingent

on assumptions about the approach and avoidance gradients. If the

avoidance gradient is steeper than the approach gradient, then

preferences should reverse from plans to final decisions (see

Equation 1). During planning, when participants are several stages

away from the final consequences, the approach component ex-

ceeds the avoidance, and participants prefer to take the gamble.

Later, when participants reach the final choice and directly face the

consequences, the avoidance component exceeds the approach,

and participants prefer to take the sure thing. This case is consis-

tent with the results obtained from Experiments 2 and 3, where the

Indiana students generally preferred to take the gamble during the

planning stage but then switched and preferred to take the sure

thing during the final or isolated choice.

If the approach and avoidance gradients are approximately

equal, then DFT predicts that preference strength should be atten-

uated for planned preferences compared with final preferences (see

Equation 3). This case is consistent with the results of Experi-

ment 1, where the Purdue students generally produced less extreme

preferences for taking the gamble for planned choices compared

with their strong preferences favoring the gamble on final or

isolated choices.

In short, the observed differences between the participant pop-

ulations can be explained in terms of individual differences in

approach—avoidance gradients for the two groups. The Purdue

engineering and management majors might have found the arith-

metic problems less aversive than the Indiana University liberal

arts majors. It is interesting to note that a cross-cultural study by

Weber and Hsee (1999) found that Chinese participants tended to

be less risk averse than American participants, which agrees with

our finding that the predominantly Asian students from Purdue

University were less risk averse than the predominantly American

students from Indiana University.

Alternatively, die individual differences between the Purdue and

Indiana students also may be explained in terms of a recent

refinement of approach-avoidance conflict theory presented by

Forster, Higgins, and Idson (1998), which asserts that individuals

adopt either a promotion or a prevention focus. In the former case,

the approach gradient increases as distance decreases, and in the

latter case the avoidance gradient increases as distance decreases.

The promotion focus may have predominated in the Purdue pop-

ulation, and the prevention focus may have predominated in the

Indiana population. Interestingly, this distinction between pro-

motion and prevention focus is closely related to Lopes'

(1987) distinction between potential-mindedness and security-

mindedness, respectively.

In summary, predictions derived from DFT about direction of

change from planned to final decisions are contingent on assump-

tions regarding differences in approach-avoidance gradients.

However, predictions derived from DFT about rates of change for

dynamic and consequential consistency tests are independent of

assumptions regarding differences in approach-avoidance gradi-

ents. For this reason, the latter tests are emphasized more strongly

as providing empirical support for DFT.

Alternative Explanations

Prospect theory (see Kahneman & Tversky, 1979; Tversky &

Kahneman, 1981) makes an explicit statement regarding strategic

consistency. According to the isolation principle, there should be

no difference between planned and isolated choices, and thus

strategic consistency should be satisfied. Although Kahneman and

Tversky's own studies supported their isolation principle, the

present results and those reported by Cubitt et al. (1998) do not.

One obvious difference between the present study and the past

study by Kahneman and Tversky is that the present study used

five-stage decision trees, whereas the past study used two-stage

decisions. According to the goal-gradient hypothesis (see Figure

4), reducing the distance (number of stages) should reduce the rate

of strategic inconsistency.

Cubitt et al. (1998) suggested that violations of dynamic con-

sistency result from difficulty that decision makers have predicting

future preferences. This idea arises from previous research (Kah-

neman & Snell, 1992; Loewenstein & Adler, 1995) showing that

predicted evaluations are inaccurate indicators of experienced val-

ues. If a decision maker cannot predict how he or she will even-

tually feel about a prospect at a later stage, then the planned

decision cannot accurately represent the final choice. Cubitt et al.'s

explanation is conceptually consistent with the goal-gradient hy-

pothesis (see Figure 4) in the sense that valences anticipated from

a distance feel very different than valences experienced close to

the point of commitment.

Liberman and Trope (1998) recently proposed that individuals

tend to focus more on the desirability of the end states when they

are far from the goal, but they change and increase their attention

to the feasibility of reaching the desired end state as they get closer

to the goal. Applying this idea to the present context, participants

might attend more to the amount to win for planned choices, but

during the final choice they might attend more to the probability of

the winning. Thus, dynamic inconsistency might be caused by a

shift in attention from amount to probability of winning.

Earlier, we mentioned that dynamic inconsistency might be

caused by temporal inconsistency (see footnote 2 for a distinction).

Perhaps participants view the planned choice as a decision be-

tween slightly delayed consequences, but they view the final

choice as a decision between imminent consequences. However,

temporal discounting cannot explain the results of Experiment 3,

where the consequences for planned and final choices were deliv-

ered after the same amount of time. Nevertheless, temporal incon-

sistency may play an important role in other contexts (see Hoch &

Loewenstein, 1991). For example, Mischel (1974) investigated a

delayed-gratification paradigm, where children were given a

choice between an immediate small reward or a large delayed

reward. In this paradigm, children initially planned to take the

large delayed reward, but after suffering the wait for several

minutes, they changed their mind, opting instead for the immediate

small reward.

It is unnecessary to argue for a single cause producing violations

of dynamic consistency, and it is plausible that some combination

of the above explanations may be operating, depending on the

situation. More research is needed to start dissecting these initial

findings and determine the relative importance of each of these

various possible causes of dynamic inconsistency. The main goal

of the present research was to firmly establish the basic phenom-

ena and provide some theoretical groundwork for guiding future

research on this critical topic.
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Dynamic Decision-Making Paradigm

A final comment concerns the use of decision trees to test

fundamental principles of planning and decision making. Earlier

experiments on planning and dynamic decision making (see Breh-

mer, 1992; Busemeyer, in press; Kerstholt & Raaijmakers, 1997,

for reviews), were not designed to test fundamental principles of

backward induction analysis. Instead, they were designed to com-

pare human decision performance with optimal performance in a

global manner. For example, Sterman (1989) compared the profits

earned by human participants with profits earned by an optimal

model in a complex task that was designed to simulate marketplace

decision behavior. Optimal performance depends on myriad as-
sumptions, and departures from optimality are confounded with

numerous alternative explanations (computational errors, memory

failures, insufficient learning). These confounds make it impossi-

ble to isolate the source of the deviations from optimality in

complex dynamic decision tasks, and so these tasks do not permit

direct tests of the principles underlying backward induction anal-

ysis. What is needed is an experimental paradigm that is suffi-

ciently complex to include the dynamic features of strategic plan-

ning and decision making without confounding all the major

issues. Decision trees with a small number of stages are ideal for

satisfying these requirements. First, decision trees require strategic

decision making and planning of action sequences like the more

complex dynamic decision tasks. Second, decision trees permit

direct tests of basic principles of decision behavior, like earlier

single-stage decision tasks. Third, previous research on dynamic

decision making (see Rapoport, 1975) indicates that humans may

only be capable of planning 2 or 3 stages ahead, and thus decision

trees may be useful for understanding planning in more complex

dynamic decisions. The success of the reported experiments using

decision trees to provide the direct tests of the three principles of

backward induction analysis should encourage other researchers to

investigate this useful paradigm.

Conclusion

Violations of dynamic consistency pose a serious challenge for

decision and problem-solving theories, especially when emotional

outcomes are involved. Violations are likely to arise when the
emotional state of the decision maker changes as he or she moves

through the decision tree. Planned preferences at the beginning of

the tree under one emotional state may disagree with final prefer-

ences at the end of the tree under a different emotional state. This

paradox within the individual is difficult to resolve because there

is no way to know which of the two different emotional states

should guide the decision-maker's preferences. Referring back to
the example in Figure 1, if the woman facing this decision changes

from a planned preference to abort to a final preference not to

abort, how can one determine which is the best path?
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Appendix

Stimulus Orders Used in Experiments

The order of decision trees for the between-trial design are shown in the
array below:

P10 730 F50
P20 740 MO
7>30 750 F20
7-40 710 F30
7>50 720 F40

The trials progressed across the rows and down the columns: Trial 1 was
a planned choice with punishment = 10; Trial 2 was an isolated choice
with punishment = 30; Trial 3 was a final choice with a punishment = 50;
Trial 4 was a planned choice with a punishment equal to 20, etc. The above

table shows only the first half of the trials, and this order was replicated
across the remaining 15 trials. Half of the participants received the order
shown above, and half of the participants received the reverse of this order.

We formed the pairs used to test consistency by taking one member from

the first half and the second member from the second half of the trials. For
example, a planned choice for a five-stage tree with a punishment level

of 30 problems was presented on Trial 7; 20 trials later, the final choice for
exactly the same tree and punishment level was presented on Trial 27, and
this pair of trials was used to form a test of dynamic consistency.

The next array shows the order of the decision trees for the within-trial

experiments:

740 7>10 730 550
720 7MO 710 F30
750 P20 740 F10
730 P50 720 F40
710 P30 750 F20

Once again, the trials progressed across the columns and down the rows.
For example. Trial 1 was an isolated choice with punishment = 40;

Trial 2 was a plan-plan choice with punishment = 10; Trial 3 was an

isolated choice with punishment = 30; Trial 4 was a plan-final choice

with punishment = 50, etc. Half of the participants received the order
shown above, and half of the participants received the reverse of this

order.
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