Short
Vita for Jerome R. Busemeyer
Distinguished Professor, Indiana University, Bloomington IN, 1997-present
Psychological and Brain Science and Cognitive Science Program,
Adjunct Professor, Department of Statistics,
2006-present
Former Manager, Cognition and Decision Program
Air Force Office of Scientific
Research, 2005-2007
Post Doctoral Fellow,
Quantitative Methods, (1980) University of Illinois
Ph.D. (1979) University of South Carolina
M.A. (1976) University of South Carolina
B.A. (1973) University of Cincinnati, cum laude
Judgment and Decision Making
Concept Learning
Mathematical Models
Decision
Editor, 2012-2019
Journal
of Mathematical Psychology 1990-present,
(Chief Editor 2005 to 2010)
Associate
Editor Psychological
Review 2012-2015
Psychological Bulletin 1996-1998
Psychological Review 1999-2015
Psychonomic Bulletin and Review 2002-2005
Journal of Experimental Psychology: Learning, Memory, Cognition
1988-2002
Member NIMH Perception and Cognition Review Committee 1993-1998
Advisory Panel NSF Methodology, Measurement, and Statistics Program
1999-2000.
Member of the Society
for Mathematical Psychology
Past Member of the Psychometric
Society
Member of the Psychonomic Society
Past Member of the Cognitive
Neuroscience Society
Member of Society of Experimental Psychologists
Member of Cognitive Science Society
Memory & Cognition, $67,810, 1987-1989, PI
Decision, Risk,
Mgt Science, $102,000, 1996-1998 , PI
Methodology, Measurement, Statistics,
$2,749,198, 2001-2006, Co-PI
Methodology, Measurement, Statistics, $450,000 2009-2011
Methodology, Measurement, Statistics, $500,000 2016-2019
Perception &
Cognition, $244,000, 1996-1999, PI
Perception & Cognition, $209,578,
1990-1993, PI
Perception & Cognition, $599,607, 2004-2007, PI
$880,027, 2001-2005,
Co-PI
$800,000, 2005-2008,
Co-PI
$462,000, 2011-2104 , PI
AFOSR
$607,712
2012-2015 PI
$813,095
2015-2018 PI
$1,282,692
2020 – 2023 PI
ACADEMIC
AWARDS
2019 Honorary Doctorate University of Basel
2017 Fellow
Cognitive Science Society
2017 Fellow American Academy of Arts and Science
2015 Warren
Medal awarded by Society of Experimental Psychologists
2012 Provost
Professor of Indiana University
2006 Fellow of
the Society of Experimental Psychologists
Busemeyer,
J. R. (1980). The importance of measurement theory, error theory, and
experimental design for testing the significance of interactions. Psychological
Bulletin, 88, 237-244.
Busemeyer, J.
R., & Jones, L. E. (1983). The analysis of multiplicative combination
rules when the causal variables are measured with error. Psychological
Bulletin, 93 (3), 549-562.
Busemeyer, J. R. (1985).
Decision making under uncertainty: Simple scalability, fixed sample, and
sequential sampling models. Journal of Experimental Psychology: Learning,
Memory, and Cognition, 11, 538-564.
Busemeyer, J. R.,
& Rapoport, A. (1988). Psychological models of deferred decision
making. Journal of Mathematical Psychology, 32, 1-44.
Busemeyer,
J. R., & Myung, I. J. (1988) A new method for investigating prototype
learning. Journal of Experimental Psychology: Learning, Memory, Cognition,
14, 3-11.
Townsend, J. T.
& Busemeyer, J. R. (1989) Approach-avoidance: Return to dynamic decision
behavior. In Chizuko Izawa (Ed.) Current Issues in Cognitive
Processes: The Tulane Flowerree Symposium on
Cognition. Hillsdale, NJ: Erlbaum.
Myung,
I. J., & Busemeyer, J. R. (1992). Measurement free tests of a general
state-space model of prototype learning. Journal of Mathematical Psychology,
36, 32-67.
Busemeyer, J. R.,
& Townsend, J. T. (1992). Fundamental derivations from decision field
theory. Mathematical Social Sciences, 23, 255-282.
Busemeyer, J. R.,
& Myung, I. J. (1992). An adaptive approach to human decision making:
Learning theory, decision theory, and human performance. Journal of
Experimental Psychology:General, 121, 177-194.
Busemeyer,
J. R., Myung, I. J., & McDaniel, M. A. (1993). Cue competition effects:
Theoretical implications for adaptive network learning models. Psychological
Science, 4, 196-202.
Busemeyer, J. R., &
Townsend, J. T. (1993) Decision Field Theory: A dynamic cognition approach
to decision making. Psychological Review, 100, 432-459.
Busemeyer,
J. R., Hastie, R., & Medin, D. L. (1995). Decision
Making from a Cognitive Perspective. Psychology of Learning and Motivation
(Vol. 32). Academic Press.
Townsend, J. T.,
& Busemeyer, J. R. (1995) Dynamic representation of decision making. In
R. F. Port and T. van Gelder (Eds.) Mind as Motion. MIT press.
Busemeyer,
J. R., McDaniel, M. A., & Byun, E. (1996) The use of intervening variables
in causal learning. Psychology of Learning and Motivation, 34, 357-391.
Busemeyer, J. R.,
McDaniel, M. A., & Byun, E. (1997) The abstraction of intervening
concepts from experience with multiple input - multiple output causal
environments. Cognitive Psychology, 32, 1-48.
Delosh,
E., Busemeyer, J. R., & McDaniel, M. A. (1997) Extrapolation: The sine
qua non of abstraction in function learning. Journal
of Experimental Psychology: Learning, Memory, Cognition, 23, 968-986.
Busemeyer, J. R., Byun,
E., Delosh, E., & McDaniel, M. A. (1997)
Function Learning based on experience with input - output pairs by humans and
artificial neural networks. In K. Lamberts and D. Shanks (Eds.) Concepts and
Categories. Hove, East Sussex, UK: Psychology Press.
Diederich, A. & Busemeyer, J. R. (1999) Conflict and
the stochastic dominance principle of decision making. Psychological
Science,10, 353-359
Busemeyer, J. R. & Wang,
Y. (2000). Model Comparisons and model selections based on the
generalization criterion methodology. Journal of Mathematical Psychology,
44, 171-189.
Busemeyer, J. R., Weg, E. Barkan,
R., Li, X., & Ma, Z. (2000) Dynamic and consequential consistency of
choices between paths of decision trees. Journal of Experimental Psychology:
General, 129, 530-545.
Roe, R. M., Busemeyer, J. R., & Townsend, J. T. (2001)
Multi-alternative decision field theory: A dynamic connectionist model of
decision making. Psychological Review, 108, 370-392
Johnson, J. G.
& Busemeyer, J. R. (2001)
Multiple stage decision making; The effect of planning horizon on
dynamic consistency. Theory and Decision, 51, 217-246.
Busemeyer,
J. R. & Diederich, A. (2002) Survey of decision field theory. Mathematical
Social Sciences, 43, 345-370.
Busemeyer,
J. R. & Stout, J. C. (2002) A
Contribution of Cognitive Decision Models to Clinical Assessment: Decomposing
Performance on the Bechara Gambling Task.
Psychological Assessment, 14, 253-262
Busemeyer,
J. R., Townsend, J. T., & Stout, J. C. (2002) Motivational Underpinnings of Utility in
Decision Making: Decision Field Theory Analysis of Deprivation and Satiation. In S. Moore (Ed.) Emotional
Cognition. Amsterdam: John Benjamins.
Barkan, R. &
Busemeyer, J. R. (2003) Modeling Dynamic
Inconsistency with a Changing Reference Point. Journal of Behavioral
Decision Making 16,
235-255
Diederich, A., & Busemeyer, J. R . (2003) Simple Matrix Methods for
Analyzing Diffusion Models of Choice Probability, Choice Response Time and
Simple Response Time. Journal of Mathematical Psychology, 47, 304-322. (Best Paper Award for 2006).
Rieskamp, Jörg,
Jerome Busemeyer, and Tei
Laine. (2003) How do people learn to allocate resources? Comparing Two Learning
Theories. Journal of Experimental Psychology: Learning, Memory and Cognition.
29, 1066-1081.
Stout, J. C., Busemeyer, J. R., Lin, A., Grant, S. R., & Bonson, K. R. (2004) Cognitive Modeling Analysis
of the Decision-Making Processes Used by Cocaine Abusers. Psychonomic
Bulletin and Review, 11 (4), 742-747.
Busemeyer, J. R.
& Johnson, J. G. (2004) Computational models of decision making. In D.
Koehler & N. Harvey (Eds.) Handbook of Judgment and Decision Making.
Blackwell Publishing Co. Ch. 7, Pp 133-154.
Johnson,
J. G. & Busemeyer, J. R. (2005) A dynamic, computational model
of preference reversal phenomena. Psychological
Review, 112(4), 841-861.
Yechiam, E. & Busemeyer, J. R. (2005)
Comparisons of basic assumptions embedded in learning models for experienced
based decision making. Psychonomic
Bulletin and Review, 12 (3), 387-402.
McDaniel, M. A. & Busemeyer,
J. R. (2005) The conceptual basis of function learning and extrapolation:
Comparison of rule and associative based models. Psychonomic Bulletin and Review, 12 (1), 24-42.
Yechiam,
E. , Busemeyer, J. R., Stout, J. C., & Bechara, A. (2005) Using
cognitive models to map relations between neuropsychological disorders and
human decision making deficits. Psychological Science, 16 (12), 841-861.
Diederich, A. & Busemeyer, J. R. (2006) Modeling
the effects of payoffs on response bias in a perceptual discrimination task: Threshold
bound, drift rate change, or two stage processing hypothesis. Perception and Psychophysics, 97 (1), 51-72.
Busemeyer,
J. R., Wang, Z., & Townsend, J. T. (2006) Quantum dynamics of human
decision making. Journal of Mathematical Psychology, 50, 220-241.
Rieskamp,
J., Busemeyer, J. R., & Mellers, B. A. (2006) Extending the bounds of
rationality : A review of research on preferential choice. Journal of Economic Literature, 44, 631-636.
Busemeyer,
J.R., Jessup, R. K., Johnson, J.G., & Townsend, J. T. (2006) Building
bridges between neural models and complex human decision making behavior. Neural
Networks, 19, 1047-1058.
Busemeyer, J. R.,
Barkan, R., Mehta, S.; & Chatervedi,
A. (2007) Context models and models of preferential choice: Implications for Consumer
Behavior. Marketing Theory, 7 (1), 39-58.
Busemeyer, J. R. &
Johnson, J. G. (2008) Micro-process models of decision-making. In R. Sun
(Ed.) Cambridge Handbook of Computational Cognitive Modeling. Cambridge
University Press.
Yechiam, E. & Busemeyer, J. R. (2008) Evaluating
generalizability and parameter consistency in learning models. Games and Economic Behavior, 63,
370-394.
Busemeyer, J. R. & Pleskac, T. (2009) Theoretical tools for understanding
and aiding dynamic decision making. Journal
of Mathematical Psychology, 53, 126-138.
Jessup, R. K., Bishara, A. J., & Busemeyer, J. R. (2008) Feedback
produces divergence from prospect theory in predictive choice. Psychological Science, 19 (10),
1015-1022.
Ahn,
W. Y., Busemeyer, J. R., Wagenmakers, E. J.,
Stout, J. C. (2009) Comparison of decision learning models using the
generalization criterion method. Cognitive
Science, 32, 1376-1402.
Pothos,
E. M. & Busemeyer, J. R. (2009) A Quantum Probability Explanation for Violations of ‘Rational’ Decision
Theory. Proceedings of the Royal Society
B, 276 (1165), 2171-2178.
Busemeyer,
J. R. & Diederich, A. (2010) Cognitive
Modeling. Sage.
Johnson, J.
G. & Busemeyer, J. R. (2010) Decision-making under risk and
uncertainty. Wiley Interdisciplinary
Reviews: Cognitive Science, 1, 736-749.
Pleskac,
T. J. & Busemeyer, J. R. (2010).Two
Stage Dynamic Signal Detection: A Theory of Choice, Decision Time, and
Confidence. PDF Psychological
Review, 117 (3), 864-901.
Busemeyer, J. R., Pothos, E. & Franco, R., Trueblood, J. S. (2011) A
quantum theoretical explanation for probability judgment ‘errors’. Psychological
Review, 108, 193-218.
Trueblood,
J. S. & Busemeyer, J. R. (2011)
A quantum probability explanation for order effects on inference. Cognitive Science, 35, 1518-1552.
Hotaling, J. M., Busemeyer, J. R., & Li, J. (2010).
Theoretical developments in Decision Field Theory: A Comment on K. Tsetsos, N. Chater, & M.
Usher. Psychological Review, 117, 1294-1298.
Ahn,
W.Y., Krawitz, A., Kim, W., Busemeyer, J. R., &
Brown, J. W. (2011). A model based f-MRI analysis with hierarchical Bayesian
parameter estimation. Journal of
Neuroscience, Psychology, and Economics, 4(2), 95-110
Busemeyer,
J. R., & Bruza, P. D. (2012). Quantum models of cognition and decision.
Cambridge, UK: Cambridge University Press.
Pothos,
E. M., & Busemeyer, J. R. (2013). Can quantum probability provide a new
direction for cognitive modeling? Behavioral and Brain Sciences, 36,
255-274. (Target Article).
Pothos,
E. M., Busemeyer, J. R., & Trueblood, J. S. (2013). A quantum geometric
model of similarity. Psychological Review,
120 (3), 679-696.
Dai, J. &
Busemeyer, J. R. (2014). Towards a probabilistic, dynamic, and attribute-wise
model of intertemporal Choice. Journal of
Experimental Psychology: General, 143 (4), 1489-1514.
Busemeyer,
J. R., & Rieskamp, J. (2014). Psychological
research and theories on preferential choice. In S. Hess & A. Daly (Eds.), Handbook
of choice modeling. Edward Elgar
Publishers
Kvam, P. D., Pleskac, T. J., Yu, S., & Busemeyer, J. R. (2015)
Interference Effects of Choice on Confidence. Proceedings of the National Academy of Science. 112 (34)
10645-10650
Hotaling, J. M. Cohen, A. L., Shiffrin, R. M., & Busemeyer, J.
R. (2015) The dilution effect and information integration in perceptual
decision making. PLoS One 10(9): e0138481.
Doi:10.1371/journal.pone.0138481
Johnson, J. J.
& Busemeyer, J. R. (2016) A computational model of the attention process in
risky choice. Decision, 3 (4), 254-280.
Khododadi,
A., Fakhari, P., & Busemeyer, J. R. (2017)
Learning to Allocate Limited Time to Decisions with Different Expected
Outcomes. Cognitive Psychology, 95, 17-49
Fakhari,
P., Khodadadi, A. & Busemey, J. R. (2018). The
detour problem in a stochastic environment: Tolman Revisited Cognitive Psychology, 101, 29-49.
Busemeyer,
J. R., Gluth, S., Rieskamp,
J., Turner, B. M. (2019) Cognitive and Neural Bases of Multi-Attribute,
Multi-Alternative, Value-based Decisions. Trends
in Cognitive Sciences, 23, 3, 251-263.
Kvam, P. D.,
& Busemeyer, J. R. (2020) A distributional and dynamic theory of pricing
Psychological
Review, 127(6), 1053–1078
Note: More articles
appear in the
Quantum articles link
below